1
|
Shi X, Liu R, Wang Y, Yu T, Zhang K, Zhang C, Gu Y, Zhang L, Wu J, Wang Q, Zhu F. Inhibiting acid-sensing ion channel exerts neuroprotective effects in experimental epilepsy via suppressing ferroptosis. CNS Neurosci Ther 2024; 30:e14596. [PMID: 38357854 PMCID: PMC10867794 DOI: 10.1111/cns.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Epilepsy is a chronic neurological disease characterized by repeated and unprovoked epileptic seizures. Developing disease-modifying therapies (DMTs) has become important in epilepsy studies. Notably, focusing on iron metabolism and ferroptosis might be a strategy of DMTs for epilepsy. Blocking the acid-sensing ion channel 1a (ASIC1a) has been reported to protect the brain from ischemic injury by reducing the toxicity of [Ca2+ ]i . However, whether inhibiting ASIC1a could exert neuroprotective effects and become a novel target for DMTs, such as rescuing the ferroptosis following epilepsy, remains unknown. METHODS In our study, we explored the changes in ferroptosis-related indices, including glutathione peroxidase (GPx) enzyme activity and levels of glutathione (GSH), iron accumulation, lipid degradation products-malonaldehyde (MDA) and 4-hydroxynonenal (4-HNE) by collecting peripheral blood samples from adult patients with epilepsy. Meanwhile, we observed alterations in ASIC1a protein expression and mitochondrial microstructure in the epileptogenic foci of patients with drug-resistant epilepsy. Next, we accessed the expression and function changes of ASIC1a and measured the ferroptosis-related indices in the in vitro 0-Mg2+ model of epilepsy with primary cultured neurons. Subsequently, we examined whether blocking ASIC1a could play a neuroprotective role by inhibiting ferroptosis in epileptic neurons. RESULTS Our study first reported significant changes in ferroptosis-related indices, including reduced GPx enzyme activity, decreased levels of GSH, iron accumulation, elevated MDA and 4-HNE, and representative mitochondrial crinkling in adult patients with epilepsy, especially in epileptogenic foci. Furthermore, we found that inhibiting ASIC1a could produce an inhibitory effect similar to ferroptosis inhibitor Fer-1, alleviate oxidative stress response, and decrease [Ca2+ ]i overload by inhibiting the overexpressed ASIC1a in the in vitro epilepsy model induced by 0-Mg2+ . CONCLUSION Inhibiting ASIC1a has potent neuroprotective effects via alleviating [Ca2+ ]i overload and regulating ferroptosis on the models of epilepsy and may act as a promising intervention in DMTs.
Collapse
Affiliation(s)
- Xiaorui Shi
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ru Liu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Yingting Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Tingting Yu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Kai Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yuyu Gu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Limin Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Qun Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Fei Zhu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
2
|
Al-Hassany L, Boucherie DM, Creeney H, van Drie RWA, Farham F, Favaretto S, Gollion C, Grangeon L, Lyons H, Marschollek K, Onan D, Pensato U, Stanyer E, Waliszewska-Prosół M, Wiels W, Chen HZ, Amin FM. Future targets for migraine treatment beyond CGRP. J Headache Pain 2023; 24:76. [PMID: 37370051 DOI: 10.1186/s10194-023-01567-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.
Collapse
Affiliation(s)
- Linda Al-Hassany
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannah Creeney
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ruben W A van Drie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Fatemeh Farham
- Department of Headache, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Silvia Favaretto
- Headache Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Lou Grangeon
- Neurology Department, Rouen University Hospital, Rouen, France
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karol Marschollek
- Department of Neurology, Wroclaw Medical University, Wrocław, Poland
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Umberto Pensato
- Neurology and Stroke Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Wietse Wiels
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Zhou Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Gladkikh IN, Klimovich AA, Kalina RS, Kozhevnikova YV, Khasanov TA, Osmakov DI, Koshelev SG, Monastyrnaya MM, Andreev YA, Leychenko EV, Kozlov SA. Anxiolytic, Analgesic and Anti-Inflammatory Effects of Peptides Hmg 1b-2 and Hmg 1b-4 from the Sea Anemone Heteractis magnifica. Toxins (Basel) 2023; 15:toxins15050341. [PMID: 37235375 DOI: 10.3390/toxins15050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Acid-sensing ion channels (ASICs) have been known as sensors of a local pH change within both physiological and pathological conditions. ASIC-targeting peptide toxins could be potent molecular tools for ASIC-manipulating in vitro, and for pathology treatment in animal test studies. Two sea anemone toxins, native Hmg 1b-2 and recombinant Hmg 1b-4, both related to APETx-like peptides, inhibited the transient current component of human ASIC3-Δ20 expressed in Xenopus laevis oocytes, but only Hmg 1b-2 inhibited the rat ASIC3 transient current. The Hmg 1b-4 action on rASIC3 as a potentiator was confirmed once again. Both peptides are non-toxic molecules for rodents. In open field and elevated plus maze tests, Hmg 1b-2 had more of an excitatory effect and Hmg 1b-4 had more of an anxiolytic effect on mouse behavior. The analgesic activity of peptides was similar and comparable to diclofenac activity in an acid-induced muscle pain model. In models of acute local inflammation induced by λ-carrageenan or complete Freund's adjuvant, Hmg 1b-4 had more pronounced and statistically significant anti-inflammatory effects than Hmg 1b-2. It exceeded the effect of diclofenac and, at a dose of 0.1 mg/kg, reduced the volume of the paw almost to the initial volume. Our data highlight the importance of a comprehensive study of novel ASIC-targeting ligands, and in particular, peptide toxins, and present the slightly different biological activity of the two similar toxins.
Collapse
Affiliation(s)
- Irina N Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Anna A Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Rimma S Kalina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Yulia V Kozhevnikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey G Koshelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Margarita M Monastyrnaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Elena V Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
4
|
Involvement of Potassium Channel Signalling in Migraine Pathophysiology. Pharmaceuticals (Basel) 2023; 16:ph16030438. [PMID: 36986537 PMCID: PMC10057509 DOI: 10.3390/ph16030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Migraine is a primary headache disorder ranked as the leading cause of years lived with disability among individuals younger than 50 years. The aetiology of migraine is complex and might involve several molecules of different signalling pathways. Emerging evidence implicates potassium channels, predominantly ATP-sensitive potassium (KATP) channels and large (big) calcium-sensitive potassium (BKCa) channels in migraine attack initiation. Basic neuroscience revealed that stimulation of potassium channels activated and sensitized trigeminovascular neurons. Clinical trials showed that administration of potassium channel openers caused headache and migraine attack associated with dilation of cephalic arteries. The present review highlights the molecular structure and physiological function of KATP and BKCa channels, presents recent insights into the role of potassium channels in migraine pathophysiology, and discusses possible complementary effects and interdependence of potassium channels in migraine attack initiation.
Collapse
|
5
|
Lackovic J, Jeevakumar V, Burton M, Price TJ, Dussor G. Peroxynitrite Contributes to Behavioral Responses, Increased Trigeminal Excitability, and Changes in Mitochondrial Function in a Preclinical Model of Migraine. J Neurosci 2023; 43:1627-1642. [PMID: 36697259 PMCID: PMC10008057 DOI: 10.1523/jneurosci.1366-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Administration of a nitric oxide (NO) donor triggers migraine attacks, but the mechanisms by which this occurs are unknown. Reactive nitroxidative species, including NO and peroxynitrite (PN), have been implicated in nociceptive sensitization, and neutralizing PN is antinociceptive. We determined whether PN contributes to nociceptive responses in two distinct models of migraine headache. Female and male mice were subjected to 3 consecutive days of restraint stress or to dural stimulation with the proinflammatory cytokine interleukin-6. Following resolution of the initial poststimulus behavioral responses, animals were tested for hyperalgesic priming using a normally non-noxious dose of the NO donor sodium nitroprusside (SNP) or dural pH 7.0, respectively. We measured periorbital von Frey and grimace responses in both models and measured stress-induced changes in 3-nitrotyrosine (3-NT) expression (a marker for PN activity) and trigeminal ganglia (TGs) mitochondrial function. Additionally, we recorded the neuronal activity of TGs in response to the PN generator SIN-1 [5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride]. We then tested the effects of the PN decomposition catalysts Fe(III)5,10,15,20-tetrakis(N-methylpyridinium-4-yl) porphyrin (FeTMPyP) and FeTPPS [Fe(III)5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride], or the PN scavenger MnTBAP [Mn(III)tetrakis(4-benzoic acid)porphyrin] against these behavioral, molecular, and neuronal changes. Neutralizing PN attenuated stress-induced periorbital hypersensitivity and priming to SNP, with no effect on priming to dural pH 7.0. These compounds also prevented stress-induced increases in 3-NT expression in both the TGs and dura mater, and attenuated TG neuronal hyperexcitability caused by SIN-1. Surprisingly, FeTMPyP attenuated changes in TG mitochondrial function caused by SNP in stressed males only. Together, these data strongly implicate PN in migraine mechanisms and highlight the therapeutic potential of targeting PN.SIGNIFICANCE STATEMENT Among the most reliable experimental triggers of migraine are nitric oxide donors. The mechanisms by which nitric oxide triggers attacks are unclear but may be because of reactive nitroxidative species such as peroxynitrite. Using mouse models of migraine headache, we show that peroxynitrite-modulating compounds attenuate behavioral, neuronal, and molecular changes caused by repeated stress and nitric oxide donors (two of the most common triggers of migraine in humans). Additionally, our results show a sex-specific regulation of mitochondrial function by peroxynitrite following stress, providing novel insight into the ways in which peroxynitrite may contribute to migraine-related mechanisms. Critically, our data underscore the potential in targeting peroxynitrite formation as a novel therapeutic for the treatment of migraine headache.
Collapse
Affiliation(s)
- Jacob Lackovic
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Vivek Jeevakumar
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Michael Burton
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
6
|
Verkest C, Salinas M, Diochot S, Deval E, Lingueglia E, Baron A. Mechanisms of Action of the Peptide Toxins Targeting Human and Rodent Acid-Sensing Ion Channels and Relevance to Their In Vivo Analgesic Effects. Toxins (Basel) 2022; 14:toxins14100709. [PMID: 36287977 PMCID: PMC9612379 DOI: 10.3390/toxins14100709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent H+-gated cation channels largely expressed in the nervous system of rodents and humans. At least six isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) associate into homotrimers or heterotrimers to form functional channels with highly pH-dependent gating properties. This review provides an update on the pharmacological profiles of animal peptide toxins targeting ASICs, including PcTx1 from tarantula and related spider toxins, APETx2 and APETx-like peptides from sea anemone, and mambalgin from snake, as well as the dimeric protein snake toxin MitTx that have all been instrumental to understanding the structure and the pH-dependent gating of rodent and human cloned ASICs and to study the physiological and pathological roles of native ASICs in vitro and in vivo. ASICs are expressed all along the pain pathways and the pharmacological data clearly support a role for these channels in pain. ASIC-targeting peptide toxins interfere with ASIC gating by complex and pH-dependent mechanisms sometimes leading to opposite effects. However, these dual pH-dependent effects of ASIC-inhibiting toxins (PcTx1, mambalgin and APETx2) are fully compatible with, and even support, their analgesic effects in vivo, both in the central and the peripheral nervous system, as well as potential effects in humans.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Miguel Salinas
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Sylvie Diochot
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Emmanuel Deval
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Eric Lingueglia
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Anne Baron
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Correspondence:
| |
Collapse
|
7
|
Abstract
Headache disorders can produce recurrent, incapacitating pain. Migraine and cluster headache are notable for their ability to produce significant disability. The anatomy and physiology of headache disorders is fundamental to evolving treatment approaches and research priorities. Key concepts in headache mechanisms include activation and sensitization of trigeminovascular, brainstem, thalamic, and hypothalamic neurons; modulation of cortical brain regions; and activation of descending pain circuits. This review will examine the relevant anatomy of the trigeminal, brainstem, subcortical, and cortical brain regions and concepts related to the pathophysiology of migraine and cluster headache disorders.
Collapse
Affiliation(s)
- Andrea M Harriott
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yulia Orlova
- Department of Neurology, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Picci G, Marchesan S, Caltagirone C. Ion Channels and Transporters as Therapeutic Agents: From Biomolecules to Supramolecular Medicinal Chemistry. Biomedicines 2022; 10:biomedicines10040885. [PMID: 35453638 PMCID: PMC9032600 DOI: 10.3390/biomedicines10040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ion-channel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great innovative potential in biomedicine pertains the design and development of synthetic ion channels and transporters, which may provide unexplored therapeutic opportunities. However, most studies in this challenging and multidisciplinary area are still at a fundamental level. In this review, we discuss the progress that has been made over the last five years on ion channels and transporters, touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We conclude with the identification of therapeutic opportunities for future exploration.
Collapse
Affiliation(s)
- Giacomo Picci
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (C.C.)
| | - Claudia Caltagirone
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
- Correspondence: (S.M.); (C.C.)
| |
Collapse
|
9
|
Sivils A, Yang F, Wang JQ, Chu XP. Acid-Sensing Ion Channel 2: Function and Modulation. MEMBRANES 2022; 12:membranes12020113. [PMID: 35207035 PMCID: PMC8880099 DOI: 10.3390/membranes12020113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/08/2023]
Abstract
Acid-sensing ion channels (ASICs) have an important influence on human physiology and pathology. They are members of the degenerin/epithelial sodium channel family. Four genes encode at least six subunits, which combine to form a variety of homotrimers and heterotrimers. Of these, ASIC1a homotrimers and ASIC1a/2 heterotrimers are most widely expressed in the central nervous system (CNS). Investigations into the function of ASIC1a in the CNS have revealed a wealth of information, culminating in multiple contemporary reviews. The lesser-studied ASIC2 subunits are in need of examination. This review will focus on ASIC2 in health and disease, with discussions of its role in modulating ASIC function, synaptic targeting, cardiovascular responses, and pharmacology, while exploring evidence of its influence in pathologies such as ischemic brain injury, multiple sclerosis, epilepsy, migraines, drug addiction, etc. This information substantiates the ASIC2 protein as a potential therapeutic target for various neurological, psychological, and cerebrovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Correspondence: ; Tel.: +1-816-235-2248; Fax: +1-816-235-6517
| |
Collapse
|
10
|
Abstract
Migraine is a common and disabling neurological disorder, with several manifestations, of which pain is just one. Despite its worldwide prevalence, there remains a paucity of targeted and effective treatments for the condition, leaving many of those affected underserved by available treatments. Work over the last 30+ years has recently led to the emergence of the first targeted acute and preventive treatments in our practice since the triptan era in the early 1990s, which are changing the landscape of migraine treatment. These include the monoclonal antibodies targeting calcitonin gene-related peptide or its receptor. Evolving work on novel therapeutic targets, as well as continuing to exploit drugs used in other disorders that may also have a therapeutic effect in migraine, is likely to lead to more and more treatments being able to be offered to migraineurs. Future work involves the development of agents that lack vasoconstrictive effects, such as lasmiditan, do not contribute to medication overuse, such as the gepants, and do not interact with other drugs that may be used for the disorder, as well as agents that can act both acutely and preventively, thereby utilising the quantum between acute and preventive drug effects which has been demonstrated with different migraine drugs before. Here we discuss the evolution of oral migraine treatments over the last 5 years, including those that have gained regulatory approval and reached clinical practice, those in development and potential other targets for the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility and South London and Maudsley Biomedical Research Centre, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- NIHR King's Clinical Research Facility and South London and Maudsley Biomedical Research Centre, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK.
- Department of Neurology, University of California, Los Angeles, USA.
| |
Collapse
|
11
|
Zobdeh F, Ben Kraiem A, Attwood MM, Chubarev VN, Tarasov VV, Schiöth HB, Mwinyi J. Pharmacological treatment of migraine: Drug classes, mechanisms of action, clinical trials and new treatments. Br J Pharmacol 2021; 178:4588-4607. [PMID: 34379793 DOI: 10.1111/bph.15657] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022] Open
Abstract
Migraine is the sixth most prevalent disease globally, a major cause of disability, and it imposes an enormous personal and socioeconomic burden. Migraine treatment is often limited by insufficient therapy response, leading to the need for individually adjusted treatment approaches. In this review, we analyse historical and current pharmaceutical development approaches in acute and chronic migraine based on a comprehensive and systematic analysis of Food and Drug Administration (FDA)-approved drugs and those under investigation. The development of migraine therapeutics has significantly intensified during the last 3 years, as shown by our analysis of the trends of drug development between 1970 and 2020. The spectrum of drug targets has expanded considerably, which has been accompanied by an increase in the number of specialised clinical trials. This review highlights the mechanistic implications of FDA-approved and currently investigated drugs and discusses current and future therapeutic options based on identified drug classes of interest.
Collapse
Affiliation(s)
- Farzin Zobdeh
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Aziza Ben Kraiem
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Vladimir N Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
12
|
Yamamoto T, Mulpuri Y, Izraylev M, Li Q, Simonian M, Kramme C, Schmidt BL, Seltzman HH, Spigelman I. Selective targeting of peripheral cannabinoid receptors prevents behavioral symptoms and sensitization of trigeminal neurons in mouse models of migraine and medication overuse headache. Pain 2021; 162:2246-2262. [PMID: 33534356 PMCID: PMC8277668 DOI: 10.1097/j.pain.0000000000002214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Migraine affects ∼15% of the world's population greatly diminishing their quality of life. Current preventative treatments are effective in only a subset of migraine patients, and although cannabinoids seem beneficial in alleviating migraine symptoms, central nervous system side effects limit their widespread use. We developed peripherally restricted cannabinoids (PRCBs) that relieve chronic pain symptoms of cancer and neuropathies, without appreciable central nervous system side effects or tolerance development. Here, we determined PRCB effectiveness in alleviating hypersensitivity symptoms in mouse models of migraine and medication overuse headache. Long-term glyceryl trinitrate (GTN, 10 mg/kg) administration led to increased sensitivity to mechanical stimuli and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment, but not posttreatment, prevented behavioral and biochemical correlates of GTN-induced sensitization. Low pH-activated and allyl isothiocyanate-activated currents in acutely isolated trigeminal neurons were reversibly attenuated by PRCB application. Long-term GTN treatment significantly enhanced these currents. Long-term sumatriptan treatment also led to the development of allodynia to mechanical and cold stimuli that was slowly reversible after sumatriptan discontinuation. Subsequent challenge with a previously ineffective low-dose GTN (0.1-0.3 mg/kg) revealed latent behavioral sensitization and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment prevented all behavioral and biochemical correlates of allodynia and latent sensitization. Importantly, long-term PRCB treatment alone did not produce any behavioral or biochemical signs of sensitization. These data validate peripheral cannabinoid receptors as potential therapeutic targets in migraine and medication overuse headache.
Collapse
Affiliation(s)
- Toru Yamamoto
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Yatendra Mulpuri
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Mikhail Izraylev
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Qianyi Li
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Menooa Simonian
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Christian Kramme
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Brian L. Schmidt
- Department of Oral & Maxillofacial Surgery and Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY
| | - Herbert H. Seltzman
- Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
13
|
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci 2021; 22:ijms22094810. [PMID: 34062742 PMCID: PMC8125064 DOI: 10.3390/ijms22094810] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions.
Collapse
|
14
|
Abstract
Migraine is a common, chronic disorder that often manifests in childhood. This article discusses the prevalence, diagnosis, and clinical management of uncommon subtypes of migraine with aura, including hemiplegic migraine, retinal migraine, and abdominal migraine.
Collapse
Affiliation(s)
- Vincent M Vacca
- Vincent M. Vacca, Jr., is a retired nurse in West Palm Beach, Fla. Sarah Beth Thomas is a professional development manager at Brigham and Women's Hospital in Boston, Mass
| | | |
Collapse
|
15
|
Holton CM, Strother LC, Dripps I, Pradhan AA, Goadsby PJ, Holland PR. Acid-sensing ion channel 3 blockade inhibits durovascular and nitric oxide-mediated trigeminal pain. Br J Pharmacol 2020; 177:2478-2486. [PMID: 31975427 PMCID: PMC7205795 DOI: 10.1111/bph.14990] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 01/03/2023] Open
Abstract
Background and Purpose There is a major unmet need to develop new therapies for migraine. We have previously demonstrated the therapeutic potential of the acid‐sensing ion channel (ASIC) blockade in migraine, via an ASIC1 mechanism. ASIC3 is expressed in the trigeminal ganglion and its response is potentiated by NO that can trigger migraine attacks in patients. Thus we sought to explore the potential therapeutic effect of ASIC3 blockade in migraine. Experimental Approach To investigate this, we utilised validated electrophysiological and behavioural rodent preclinical models. In rats, ASIC3 blockade using APETx2 (50 or 100 μg·kg−1, i.v.) was measured by using durovascular and NO‐evoked trigeminal nociceptive responses along with cortical spreading depression models. In mice, we sought to determine if periorbital mechanical sensitivity, induced by acute nitroglycerin (10 mg·kg−1, i.p.), was attenuated by APETx2 (230 μg·kg−1, i.p.), as well as latent sensitisation induced by bright light stress in a chronic nitroglycerin model. Key Results Here, we show that the ASIC3 blocker APETx2 inhibits durovascular‐evoked and NO‐induced sensitisation of trigeminal nociceptive responses in rats. In agreement, acute and chronic periorbital mechanosensitivity induced in mice by nitroglycerin and subsequent bright light stress‐evoked latent sensitivity as a model of chronic migraine are all reversed by APETx2. Conclusion and Implications These results support the development of specific ASIC3 or combined ASIC1/3 blockers for migraine‐related pain and point to a potential role for ASIC‐dependent NO‐mediated attack triggering. This has key implications for migraine, given the major unmet need for novel therapeutic targets.
Collapse
Affiliation(s)
- Christopher M Holton
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lauren C Strother
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Peter J Goadsby
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip R Holland
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
16
|
Abstract
Migraine is among the most common and most disabling disorders worldwide, yet its underlying pathophysiology is among the most poorly understood. New information continues to emerge on mechanisms within the central and peripheral nervous systems that may contribute to migraine attacks. Additionally, new therapeutics have recently become available and along with much needed relief for many patients, these drugs provide insight into the disorder based on their mechanism of action. This review will cover new findings within the last several years that add to the understanding of migraine pathophysiology, including those related to the vasculature, calcitonin gene-related peptide (CGRP), and mechanisms within the cortex and meninges that may contribute to attacks. Discussion will also cover recent findings on novel therapeutic targets, several of which continue to show promise in new preclinical studies, including acid-sensing ion channels (ASICs) and the delta-opioid receptor (DOR).
Collapse
Affiliation(s)
- Greg Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
17
|
Valade D. [New horizons for acute and prophylactic treatments of migraine]. Biol Aujourdhui 2019; 213:59-64. [PMID: 31274104 DOI: 10.1051/jbio/2019021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Indexed: 02/04/2023]
Abstract
The current treatment of migraine attacks is triptans and NSAIDs, but the calcitonin gene-related peptide (CGRP) has emerged as a key neuropeptide target for migraine therapy. Despite an off target class effect on liver enzymes, two CGRP receptor antagonists, ubrogepant and rimegepant, remain in development, together with a 5-HT1F receptor agonist (lasmiditan), for which cardiovascular contraindications that limit the utility of triptans do not exist. Importantly, to avoid an excessive use of acute medication with the risk of medication overuse, prophylactic therapeutics are the best choice. To date, monoclonal antibodies which block CGRP actions are on the market all over the world but not yet in France. The research is very active in different directions and targets notably hypothalamic neuropeptides because the hypothalamus hosts many key neuropeptide systems that seem to play a role in migraine physiopathology. These neuropeptides include orexins, oxytocin, neuropeptide Y (NPY) and pituitary adenylate cyclase-activating polypeptide (PACAP). In addition, other promising drugs for the treatment of migraine are nitric oxide synthase inhibitors and acid-sensing ion channel (ASIC) blockers.
Collapse
Affiliation(s)
- Dominique Valade
- Service de Neurochirurgie, Hôpital Pitié-Salpétrière, 75013 Paris, France
| |
Collapse
|
18
|
Proia P, Amato A, Contrò V, Monaco AL, Brusa J, Brighina F, Messina G. Relevance of lactate level detection in migrane and fibromyalgia. Eur J Transl Myol 2019; 29:8202. [PMID: 31354925 PMCID: PMC6615065 DOI: 10.4081/ejtm.2019.8202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to determine the blood lactate levels in healthy and pathological subjects, particularly with migraine and fibromyalgia. Moreover we investigated the possible correlation between lactate concentration, postural stability and balance disorders; the composition of the groups were: migraine (n = 25; age 49.7 ± 12.5), fibromyalgia (n = 10; age 43.7 ± 21.2), control group (n = 16 age 28.52 ± 2.4). The results showed that patients with fibromyalgia (FG) had higher lactate levels compared to migraine (MG) and control group (CG) (mean ± sd: FG = 1.78 ± 0.9 mmol/L; MG = 1.45±1 mmol/L; CG = 0,85 ± 0,07 mmol/L). The same situation was highlighted about the sway path length with eyes closed (FG = 518 ± 195 mm; MG = 465 ± 165 mm; CG = 405 ± 94,72 mm) and with eyes open (FG = 430 ± 220 mm; MG = 411 ± 143 mm; CG = 389 ± 107 mm). This can be explained by the fact that energy-intensive postural strategies must be used to optimize both static and dynamic coordination, in particular with repeated contractions of tonic oxidative muscle cells responsible for postural control.
Collapse
Affiliation(s)
- Patrizia Proia
- Department of Psychology, Educational Science and Human Movement, University of Palermo
| | - Alessandra Amato
- Department of Psychology, Educational Science and Human Movement, University of Palermo
| | - Valentina Contrò
- Department of Psychology, Educational Science and Human Movement, University of Palermo
| | - Alessandra Lo Monaco
- Department of Psychology, Educational Science and Human Movement, University of Palermo
| | - Jessica Brusa
- Department of Psychology, Educational Science and Human Movement, University of Palermo
| | - Filippo Brighina
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Italy
| | - Giuseppe Messina
- Department of Psychology, Educational Science and Human Movement, University of Palermo
| |
Collapse
|
19
|
Abstract
Migraine is a chronic episodic disorder typically characterized by a debilitating headache. This article offers tools to identify potential triggers and prevent or reduce the occurrence of attacks.
Collapse
Affiliation(s)
- Vincent M Vacca
- Vincent M. Vacca, Jr., is a member of the adjunct faculty at the University of Massachusetts in Boston, Mass
| |
Collapse
|
20
|
Guo L, Zhao L, Ming P, Hong L, Liu A, Li R. Sumatriptan inhibits the electrophysiological activity of ASICs in rat trigeminal ganglion neurons. Eur J Pharmacol 2018; 841:98-103. [PMID: 30336137 DOI: 10.1016/j.ejphar.2018.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Sumatriptan, a selective serotonin 5-HT1 receptor agonist, is an effective therapeutic for migraine attacks. However, the molecular mechanisms underlying sumatriptan migraine relief are still not fully understood. Here, we found that acid-sensing ion channels (ASICs), pH sensors, are peripheral targets of sumatriptan against migraine. Sumatriptan can inhibit the electrophysiological activity of ASICs in the trigeminal ganglion (TG) neurons. In the present study, sumatriptan decreased proton-gated currents mediated by ASICs in a concentration-dependent manner. In addition, sumatriptan shifted concentration-response curves for protons downwards, with a decrease of 37.3 ± 4.6% in the maximum current response but with no significant change in the pH0.5 value. Sumatriptan inhibition of ASIC currents was blocked by 5-HT1D receptor antagonist BRL 15572, but not by 5-HT1B antagonist SB 224289. Moreover, the sumatriptan inhibition of ASICs can be mimicked by the 5-HT1D receptor agonist L-694,247, but not by the 5-HT1B agonist CP-93129. Sumatriptan inhibition of ASIC currents was also reversed by G-protein αi subunit inhibitor PTX and 8-Br-cAMP, suggesting the inhibition may involve the intracellular signal transduction. Finally, sumatriptan decreased the number of action potentials induced by acid stimuli in rat TG neurons. Our results indicated that the anti-migraine drug, sumatriptan, inhibited ASICs in rat TG neurons via 5-HT1D receptor subtype and a cAMP-dependent signal pathway. These observations add to the understanding of the mechanisms that underlie the clinical effectiveness of anti-migraine sumatriptan.
Collapse
Affiliation(s)
- Longhua Guo
- Clinical Laboratory, The People's Hospital of Longhua, Shenzhen, PR China; Key Laboratory on Innovation Research for Medicine Laboratory Technology, The People's Hospital of Longhua, Shenzhen, PR China
| | - Ling Zhao
- Clinical Laboratory, The People's Hospital of Longhua, Shenzhen, PR China; Key Laboratory on Innovation Research for Medicine Laboratory Technology, The People's Hospital of Longhua, Shenzhen, PR China
| | - Pinghong Ming
- Clinical Laboratory, The People's Hospital of Longhua, Shenzhen, PR China; Key Laboratory on Innovation Research for Medicine Laboratory Technology, The People's Hospital of Longhua, Shenzhen, PR China
| | - Ling Hong
- Clinical Laboratory, The People's Hospital of Longhua, Shenzhen, PR China; Key Laboratory on Innovation Research for Medicine Laboratory Technology, The People's Hospital of Longhua, Shenzhen, PR China
| | - Aisheng Liu
- Clinical Laboratory, The People's Hospital of Longhua, Shenzhen, PR China; Key Laboratory on Innovation Research for Medicine Laboratory Technology, The People's Hospital of Longhua, Shenzhen, PR China
| | - Rukai Li
- Clinical Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11 Jixiang Road, Shiyan street, Baoan District, Shenzhen, PR China.
| |
Collapse
|
21
|
Affiliation(s)
- Peter J Goadsby
- NIHR-Wellcome Trust, King's Clinical Research Facility, King's College Hospital, London, UK.
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
| | - Philip R Holland
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| |
Collapse
|