1
|
Jie J, Jihao R, Zheng L, Jie L, Xiaoling P, Wei Z, Feng G. Unraveling morphine tolerance: CCL2 induces spinal cord apoptosis via inhibition of Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis. Brain Behav Immun 2024; 124:347-362. [PMID: 39667633 DOI: 10.1016/j.bbi.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Morphine effectively relieves severe pain but leads to analgesic tolerance with long-term use.The molecular mechanisms underlying morphine tolerance remain incompletely understood. Existing literature suggests that chemokine CCL2, present in the spinal cord, plays a role in central nervous system inflammation, including neuropathic pain. Nevertheless, the precise mechanism through which CCL2 mediates morphine tolerance has yet to be elucidated. Consequently, this study aims to investigate the molecular pathways by which CCL2 contributes to the development of morphine analgesic tolerance. METHODS Rats were administered intrathecal morphine (10 μg/5 μl) twice a day for seven consecutive days to induce a model of morphine nociceptive tolerance. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression levels of CCL2 and its related mechanism molecules. Immunofluorescence was used to detect the localization of CCL2 in the spinal cord. Intrathecal injections of inhibitors or agonists to artificially regulate the expression of relevant molecules. The thermal tail-flick experiment was performed to evaluate morphine tolerance in rats. RESULTS Morphine-induced CCL2 expression was significantly increased in spinal cord, while conversely, the expressions of Nrf2 and PGC-1a were downregulated. Immunofluorescence showed that the enhanced immune response of CCL2 mainly co-localized with neurons. In vivo, we confirmed that intrathecally injection of CCL2 inhibitor Bindarit could effectively alleviate the occurrence of apoptosis and alleviate morphine tolerance. Similarly, pretreatment with Nrf2 signaling pathway agonist Oltipraz and PGC-1α agonist ZLN005 also achieved similar results, respectively. ROS Fluorescence Assay Kit indicated that increasing the expression of PGC-1α could alleviate the occurrence of apoptosis by reducing the level of ROS. CONCLUSION Our data emphasize that chemokine CCL2 inhibited the Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis, alleviating the occurrence of apoptosis in spinal cord, thereby participating in morphine tolerance. This may provide new targets for the treatment of morphine tolerance.
Collapse
Affiliation(s)
- Ju Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Jihao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zheng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xiaoling
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao Feng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Pușcașu C, Negreș S, Zbârcea CE, Chiriță C. Unlocking New Therapeutic Options for Vincristine-Induced Neuropathic Pain: The Impact of Preclinical Research. Life (Basel) 2024; 14:1500. [PMID: 39598298 PMCID: PMC11595627 DOI: 10.3390/life14111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Vincristine, a vinca alkaloid, is used in chemotherapy protocols for cancers such as acute leukemia, Hodgkin's disease, neuroblastoma, cervical carcinoma, lymphomas, breast cancer, and melanoma. Among the common adverse effects of vincristine is peripheral neuropathy, with most patients receiving a cumulative dose over 4 mg/m2 who develop varying degrees of sensory neuropathy. The onset of vincristine-induced peripheral neuropathy can greatly affect patients' quality of life, often requiring dose adjustments or the discontinuation of treatment. Moreover, managing vincristine-induced peripheral neuropathy is challenging, with few effective therapeutic strategies available. In the past decade, preclinical studies have explored diverse substances aimed at preventing or alleviating VIPN. Our review consolidates these findings, focusing on the analgesic efficacy and potential mechanisms of various agents, including pharmaceutical drugs, natural compounds, and antioxidants, that show promise in reducing neuropathic pain and protecting neural integrity in preclinical models. Key novel therapeutic options, such as metabolic agents (liraglutide), enzyme inhibitors (ulinastatin), antipsychotics (aripiprazole), interleukin-1 receptor antagonists (anakinra), hormones (oxytocin), and antioxidants (thioctic acid), are highlighted for their neuroprotective, anti-inflammatory, and antioxidant effects. Through this synthesis, we aim to enhance the current understanding of VIPN management by identifying pharmacological strategies that target critical molecular pathways, laying the groundwork for future clinical studies. By clarifying these novel pharmacological approaches and elucidating their mechanisms of action, this review provides a foundation for developing more effective VIPN treatment strategies to ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Cristina Elena Zbârcea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (C.C.)
| | | |
Collapse
|
3
|
Su Y, Verkhratsky A, Yi C. Targeting connexins: possible game changer in managing neuropathic pain? Trends Mol Med 2024; 30:642-659. [PMID: 38594094 DOI: 10.1016/j.molmed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Neuropathic pain is a chronic debilitating condition caused by nerve injury or a variety of diseases. At the core of neuropathic pain lies the aberrant neuronal excitability in the peripheral and/or central nervous system (PNS and CNS). Enhanced connexin expression and abnormal activation of connexin-assembled gap junctional channels are prominent in neuropathic pain along with reactive gliosis, contributing to neuronal hypersensitivity and hyperexcitability. In this review, we delve into the current understanding of how connexin expression and function contribute to the pathogenesis and pathophysiology of neuropathic pain and argue for connexins as potential therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, China.
| |
Collapse
|
4
|
Lu YY, Tsai HP, Tsai TH, Miao HC, Zhang ZH, Wu CH. RTA-408 Regulates p-NF-κB/TSLP/STAT5 Signaling to Ameliorate Nociceptive Hypersensitivity in Chronic Constriction Injury Rats. Mol Neurobiol 2024; 61:1714-1725. [PMID: 37773082 DOI: 10.1007/s12035-023-03660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Neuropathic pain following nerve injury is a complex condition, which often puts a negative impact on life and remains a sustained problem. To make pain management better is of great significance and unmet need. RTA 408 (Omaveloxone) is a traditional Asian medicine with a valid anti-inflammatory property. Thus, we aim to investigate the therapeutic effect of RTA-408 on mechanical allodynia in chronic constriction injury (CCI) rats as well as the underlying mechanisms. Neuropathic pain was induced by using CCI of the rats' sciatic nerve (SN) and the behavior testing was measured by calibrated forceps testing. Activation of Nrf-2, the phosphorylation of nuclear factor-κB (NF-κB), and the inflammatory response were assessed by western blots. The number of apoptotic neurons and degree of glial cell reaction were examined by immunofluorescence assay. RTA-408 exerts an analgesic effect on CCI rats. RTA-408 reduces neuronal apoptosis and glial cell activation by increasing Nrf-2 expression and decreasing the inflammatory response (TNF-α/ p-NF-κB/ TSLP/ STAT5). These data suggest that RTA-408 is a candidate with potential to reduce nociceptive hypersensitivity after CCI by targeting TSLP/STAT5 signaling.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Post-Baccalaureate Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hsiao-Chien Miao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei, 050700, People's Republic of China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Nasir A, Afridi OK, Ullah S, Khan H, Bai Q. Mitigation of sciatica injury-induced neuropathic pain through active metabolites derived from medicinal plants. Pharmacol Res 2024; 200:107076. [PMID: 38237646 DOI: 10.1016/j.phrs.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Sciatica characterized by irritation, inflammation, and compression of the lower back nerve, is considered one of the most common back ailments globally. Currently, the therapeutic regimens for sciatica are experiencing a paradigm shift from the conventional pharmacological approach toward exploring potent phytochemicals from medicinal plants. There is a dire need to identify novel phytochemicals with anti-neuropathic potential. This review aimed to identify the potent phytochemicals from diverse medicinal plants capable of alleviating neuropathic pain associated with sciatica. This review describes the pathophysiology of sciatic nerve pain, its cellular mechanisms, and the pharmacological potential of various plants and phytochemicals using animal-based models of sciatic nerve injury-induced pain. Extensive searches across databases such as Medline, PubMed, Web of Science, Scopus, ScienceDirect, and Google Scholar were conducted. The findings highlights 39 families including Lamiaceae, Asteraceae, Fabaceae, and Apocyanaceae and Cucurbitaceae, effectively treating sciatic nerve injury-induced pain. Flavonoids made up 53% constituents, phenols and terpenoids made up 15%, alkaloids made up 13%, and glycosides made up 6% to be used in neuorpathic pain. Phytochemicals derived from various medicinal plants can serve as potential therapeutic targets for both acute and chronic sciatic injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Sami Ullah
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan.
| | - Qian Bai
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Usman M, Malik H, Tokhi A, Arif M, Huma Z, Rauf K, Sewell RDE. 5,7-Dimethoxycoumarin ameliorates vincristine induced neuropathic pain: potential role of 5HT 3 receptors and monoamines. Front Pharmacol 2023; 14:1213763. [PMID: 37920212 PMCID: PMC10619918 DOI: 10.3389/fphar.2023.1213763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Vincristine is the drug of choice for Hodgkin's lymphoma, acute lymphoblastic leukemia, and non-Hodgkin lymphoma. Despite its significant anticancer effects, it causes dose-dependent neuropathy, leading to compulsive dose reduction. The available drugs used for vincristine-induced neuropathic pain (VINP) have a range of safety, efficacy, and tolerability issues prompting a search for new therapies. 5,7-Dimethoxycoumarin (5,7-DMC) also known as citropten, is a natural coumarin found in the essential oils of citrus plants such as lime, lemons, and bergamots, and it possesses both antidepressant and anti-inflammatory effects. This study was designed to investigate the possible analgesic and antiallodynic effects of 5,7-DMC in a murine model of VINP. Vincristine was administered to groups of BALB/c male mice (0.1 mg/kg intraperitoneally) once daily for 14 days to induce VINP. Thermal hyperalgesia and mechanical allodynia were quantified using the tail immersion test and von Frey filament application method. The levels of monoamine neurotransmitters and vitamin C in frontal cortical, striatal and hippocampal tissues, as well as the TNF-α level in plasma, were quantified using high performance liquid chromatography and ELISA respectively. On day 15 of the protocol, acute treatment with 5,7-DMC clearly reversed VINP thermal hyperalgesia, mechanical static allodynia, mechanical dynamic allodynia, and cold allodynia. The activity of 5,7-DMC against hyperalgesia and allodynia was inhibited by pretreatment with ondansetron but not naloxone, implicating a 5-HT3 receptor involvement. VINP vitamin C levels were restored by 5,7-DMC in the frontal cortex, and changes in serotonin, dopamine, adenosine, inosine and hypoxanthine levels caused by vincristine were reversed either fully or partially. Additionally, the vincristine-induced rise in hippocampal serotonin, dopamine, inosine and striatal serotonin was appreciably reversed by 5,7-DMC. 5,7-DMC also reversed the vincristine-induced increase in the plasma level of TNF-α. In negating the changes in the levels of some neurotransmitters in the brain caused by vincristine, 5,7-DMC showed stronger effects than gabapentin. It was concluded that, there is a potential role of 5-HT3 receptors and monoamines in the amelioration of VINP induced by 5,7-DMC, and the use of this compound warrants further investigation.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Hurmat Malik
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zilli Huma
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Bibi T, Bano S, Ud Din F, Ali H, Khan S. Preparation, characterization, and pharmacological application of oral Honokiol-loaded solid lipid nanoparticles for diabetic neuropathy. Int J Pharm 2023; 645:123399. [PMID: 37703961 DOI: 10.1016/j.ijpharm.2023.123399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Honokiol is a phytochemical component with a variety of pharmacological properties. However, the major limitation of Honokiol is its poor solubility and low oral bioavailability. In this study, we formulated and characterized oral Honokiol-loaded solid lipid nanoparticles (SLNs) to enhance bioavailability and then evaluated their effectiveness in experimental diabetic neuropathy (DN). The finalized formulation has a spherical morphology, a particle size (PS) of 121.31 ± 9.051 nm, a polydispersity index (PDI) of 0.249 ± 0.002, a zeta potential (ZP) of -20.8 ± 2.72 mV, and an entrapment efficiency (% EE) of 88.66 ± 2.30 %. In-vitro release data shows, Honokiol-SLNs displayed a sustained release profile at pH (7.4). The oral bioavailability of Honokiol-SLNs was remarkably greater (8-fold) than Honokiol-Pure suspension. The neuroprotective property of Honokiol-SLNs was initially demonstrated against hydrogen peroxide H2O2-stimulated PC12 (pheochromocytoma) cells. Furthermore, results of in-vivo studies demonstrated that treatment with Honokiol-SLNs significantly (p < 0.001) suppressed oxidative stress by inhibition of nuclear factor kappa B (NF-κB) and significant (p < 0.001) upregulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling in the spinal cord. The expression of transient receptor potential melastatin 8(TRPM8) and transient receptor potential vanilloid 1 (TRPV1) was significantly (p < 0.001) downregulated. Honokiol-SLNs inhibited apoptosis by significant (p < 0.001) downregulation of cleaved caspase-3 expression in the spinal cord. These findings demonstrate that Honokiol-SLNs providedbetter neuroprotection in DN because of higher oral bioavailability.
Collapse
Affiliation(s)
- Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahar Bano
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
8
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Active Opioid Antinociceptive Principles for Medicinal Chemistry and Drug Design. Molecules 2023; 28:7089. [PMID: 37894567 PMCID: PMC10609244 DOI: 10.3390/molecules28207089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pain continues to be an enormous global health challenge, with millions of new untreated or inadequately treated patients reported annually. With respect to current clinical applications, opioids remain the mainstay for the treatment of pain, although they are often associated with serious side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery, and they hold potential for pain management. Traditional medicine has had a long history in clinical practice due to the fact that nature provides a rich source of active principles. For instance, opium had been used for pain management until the 19th century when its individual components, such as morphine, were purified and identified. In this review article, we conducted a literature survey aimed at identifying natural products interacting either directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor signaling, whose structures could be interesting from a drug design perspective.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, Via Santa Sofia n. 97, 95100 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
9
|
Li GZ, Hu YH, Lu YN, Yang QY, Fu D, Chen F, Li YM. CaMKII and Ca V3.2 T-type calcium channel mediate Connexin-43-dependent inflammation by activating astrocytes in vincristine-induced neuropathic pain. Cell Biol Toxicol 2023; 39:679-702. [PMID: 34286406 DOI: 10.1007/s10565-021-09631-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Vincristine (VCR), an alkaloid isolated from vinca, is a commonly used chemotherapeutic drug. However, VCR therapy can lead to dose-dependent peripheral neurotoxicity, mainly manifesting as neuropathic pain, which is one of the dominant reasons for limiting its utility. Experimentally, we discovered that VCR-induced neuropathic pain (VINP) was accompanied by astrocyte activation; the upregulation of phospho-CaMKII (p-CaMKII), CaV3.2, and Connexin-43 (Cx43) expression; and the production and release of inflammatory cytokines and chemokines in the spinal cord. Similar situations were also observed in astrocyte cultures. Interestingly, these alterations were all reversed by intrathecal injection of KN-93 (a CaMKII inhibitor) or L-Ascorbic acid (a CaV3.2 inhibitor). In addition, KN-93 and L-Ascorbic acid inhibited the increase in [Ca2+]i associated with astrocyte activation. We also verified that knocking down or inhibiting Cx43 level via intrathecal injection of Cx43 siRNA or Gap27 (a Cx43 mimetic peptide) relieved pain hypersensitivity and reduced the release of inflammatory factors; however, they did not affect astrocyte activation or p-CaMKII and CaV3.2 expression. Besides, the overexpression of Cx43 through the transfection of the Cx43 plasmid did not affect p-CaMKII and CaV3.2 expressions in vitro. Therefore, CaMKII and CaV3.2 may activate astrocytes by increasing [Ca2+]i, thereby mediating Cx43-dependent inflammation in VINP. Moreover, we demonstrated that the CaMKII signalling pathway was involved in VCR-induced inflammation, apoptosis, and mitochondrial damage. Collectively, our findings show a novel mechanism by which CaMKII and CaV3.2 mediate Cx43-dependent inflammation by activating astrocytes in neuropathic pain induced by VCR.
Collapse
Affiliation(s)
- Gui-Zhou Li
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Yi-Ni Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Qing-Yan Yang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Di Fu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yun-Man Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
10
|
Khan A, Shal B, Ullah Khan A, Ullah Shah K, Saniya Zahra S, ul Haq I, ud Din F, Ali H, Khan S. Neuroprotective mechanism of Ajugarin-I against Vincristine-Induced neuropathic pain via regulation of Nrf2/NF-κB and Bcl2 signalling. Int Immunopharmacol 2023; 118:110046. [PMID: 36989890 DOI: 10.1016/j.intimp.2023.110046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Vincristine (VCR) is a well-known chemotherapeutic agent that frequently triggers neuropathic pain. Ajugarin-I (Aju-I) isolated from Ajuga bracteosa exerts antioxidant, anti-inflammatory, and neuroprotective properties. The present study was designed to investigate the ameliorative potential of Aju-I against VCR-induced neuropathic pain and explored the underlying mechanism involved. The neuroprotective potential of Aju-I was first confirmed against hydrogen peroxide (H2O2)-induced cytotoxicity and oxidative stress in PC12 cells. For neuropathic pain induction, vincristine was given intraperitoneally (i.p.) into adult male albino mice (BALB/c) of the same age (8-12 weeks old) for 10 days (days 1-10). Aju-I (1 and 5 mg/kg) doses were administered from day 11 to 21 intraperitoneally (i.p.) after the neuropathic induction. Initially, behavioral tests such as thermal hyperalgesia, mechanical allodynia, and cold allodynia were performed to investigate the antinociceptive potential of Ajugarin-I (1 and 5 mg/kg, b.w). The nuclear factor-erythroid factor 2-related factor 2(Nrf2), nuclear factor-κB (NF-κB), BCL2-associated × protein (Bax), and B-cell-lymphoma-2 (Bcl-2) signaling proteins were determined by immunohistochemistry and western blot. Additionally, inflammatory cytokines, antioxidant, and oxidative stress parameters were also measured in the spinal cord and sciatic nerve. The behavioral results demonstrated that Aju-I (5 mg/kg) markedly alleviated VCR-induced neuropathic pain behaviors including hyperalgesia and allodynia. It reversed the histological alterations caused by VCR in the sciatic nerve, spinal cord, and brain. It significantly alleviated oxidative stress and inflammation by regulating the immunoreactivity of Nrf2/NF-κB signaling. It suppressed apoptosis by regulating the immunoreactivity of Bcl-2/Bax and Caspase-3. The flow cytometry and comet analysis also confirmed its anti-apoptotic potential. It considerably improved the antioxidant status and mitigated VCR-induced inflammatory cytokines. High-performance liquid chromatography (HPLC) analysis indicated that Aju-I crosses the blood-brain barrier (BBB) and penetrated the brain tissue. These findings suggest that Aju-I treatment inhibited vincristine-induced neuropathy via regulation of Nrf2/NF-κB and Bcl2 signaling.
Collapse
|
11
|
Bo L, Wang Y, Li Y, Wurpel JND, Huang Z, Chen ZS. The Battlefield of Chemotherapy in Pediatric Cancers. Cancers (Basel) 2023; 15:cancers15071963. [PMID: 37046624 PMCID: PMC10093214 DOI: 10.3390/cancers15071963] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The survival rate for pediatric cancers has remarkably improved in recent years. Conventional chemotherapy plays a crucial role in treating pediatric cancers, especially in low- and middle-income countries where access to advanced treatments may be limited. The Food and Drug Administration (FDA) approved chemotherapy drugs that can be used in children have expanded, but patients still face numerous side effects from the treatment. In addition, multidrug resistance (MDR) continues to pose a major challenge in improving the survival rates for a significant number of patients. This review focuses on the severe side effects of pediatric chemotherapy, including doxorubicin-induced cardiotoxicity (DIC) and vincristine-induced peripheral neuropathy (VIPN). We also delve into the mechanisms of MDR in chemotherapy to the improve survival and reduce the toxicity of treatment. Additionally, the review focuses on various drug transporters found in common types of pediatric tumors, which could offer different therapeutic options.
Collapse
Affiliation(s)
- Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Youyou Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Yidong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
- Institute for Biotechnology, St. John’s University, Queens, NY 11439, USA
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| |
Collapse
|
12
|
Su CJ, Zhang JT, Zhao FL, Xu DL, Pan J, Liu T. Resolvin D1/N-formyl peptide receptor 2 ameliorates paclitaxel-induced neuropathic pain through the activation of IL-10/Nrf2/HO-1 pathway in mice. Front Immunol 2023; 14:1091753. [PMID: 36993950 PMCID: PMC10040838 DOI: 10.3389/fimmu.2023.1091753] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionPaclitaxel is a chemotherapy drug that is commonly used to treat cancer, but it can cause paclitaxel-induced neuropathic pain (PINP) as a side effect. Resolvin D1 (RvD1) has been shown to be effective in promoting the resolution of inflammation and chronic pain. In this study, we evaluated the effects of RvD1 on PINP and its underlying mechanisms in mice.MethodsBehavioral analysis was used to assess the establishment of the PINP mouse model and to test the effects of RvD1 or other formulations on mouse pain behavior. Quantitative real-time polymerase chain reaction analysis was employed to detect the impact of RvD1 on 12/15 Lox, FPR2, and neuroinflammation in PTX-induced DRG neurons. Western blot analysis was used to examine the effects of RvD1 on FPR2, Nrf2, and HO-1 expression in DRG induced by PTX. TUNEL staining was used to detect the apoptosis of DRG neurons induced by BMDM conditioned medium. H2DCF-DA staining was used to detect the reactive oxygen species level of DRG neurons in the presence of PTX or RvD1+PTX treated BMDMs CM.ResultsExpression of 12/15-Lox was decreased in the sciatic nerve and DRG of mice with PINP, suggesting a potential involvement of RvD1 in the resolution of PINP. Intraperitoneal injection of RvD1 promoted pain resolution of PINP in mice. Intrathecal injection of PTX-treated BMDMs induced mechanical pain hypersensitivity in naïve mice, while pretreatment of RvD1 in BMDMs prevented it. Macrophage infiltration increased in the DRGs of PINP mice, but it was not affected by RvD1 treatment. RvD1 increased IL-10 expression in the DRGs and macrophages, while IL-10 neutralizing antibody abolished the analgesic effect of RvD1 on PINP. The effects of RvD1 in promoting IL-10 production were also inhibited by N-formyl peptide receptor 2 (FPR2) antagonist. The primary cultured DRG neurons apoptosis increased after stimulation with condition medium of PTX-treated BMDMs, but decreased after pretreatment with RvD1 in BMDMs. Finally, Nrf2-HO1 signaling was additionally activated in DRG neurons after stimulation with condition medium of RvD1+PTX-treated BMDMs, but these effects were abolished by FPR2 blocker or IL-10 neutralizing antibody.DiscussionIn conclusion, this study provides evidence that RvD1 may be a potential therapeutic strategy for the clinical treatment of PINP. RvD1/FPR2 upregulates IL-10 in macrophages under PINP condition, and then IL-10 activates the Nrf2- HO1 pathway in DRG neurons, relieve neuronal damage and PINP.
Collapse
Affiliation(s)
- Cun-Jin Su
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Cun-Jin Su,
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Feng-Lun Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - De-Lai Xu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- College of Life Sciences, Yanan University, Yanan, China
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou Medical College of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Cun-Jin Su,
| |
Collapse
|
13
|
Ji R, Jia F, Chen X, Gao Y, Yang J. Carnosol inhibits KGN cells oxidative stress and apoptosis and attenuates polycystic ovary syndrome phenotypes in mice through Keap1-mediated Nrf2/HO-1 activation. Phytother Res 2023; 37:1405-1421. [PMID: 36786429 DOI: 10.1002/ptr.7749] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/15/2023]
Abstract
Excessive oxidative stress and apoptosis of ovarian granulosa cells lead to abnormal follicular development and ovulation disorders in polycystic ovary syndrome (PCOS). Carnosol is a plant-derived polyphenol that has been proven to exhibit several cell protective effects. In this study, we established hyperandrogenic PCOS models both in vitro and in vivo. In the human ovarian granulosa cell line, KGN cells, decreased viability and mitochondrial membrane potential, and upregulated reactive oxygen species (ROS) level and apoptosis induced by DHT were partly reversed by carnosol. Western blotting results showed that carnosol treatment inhibited the DHT-activated mitochondrial apoptotic pathway by activating nuclear factor-erythroid 2-related factor (Nrf2)/heme oxygenase 1 (HO-1). Knockdown of Nrf2 by transfecting with siRNA or inhibiting HO-1 by zinc protoporphyrin (ZnPP) blocked the protective effects of carnosol. Computational modeling and pull-down assay results confirmed the direct binding of carnosol to kelch-like ECH-associated protein 1 (Keap1). In vivo results showed that the intraperitoneal administration of carnosol (50 and 100 mg/kg) improved estrous cycle disorders, polycystic ovary, and decreased elevated androgen in the PCOS mice. In summary, Carnosol has an effective role in inhibiting oxidative stress and apoptosis in DHT-treated KGN cells and protecting against mouse PCOS phenotypes through the Keap1-mediated activation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Fangyuan Jia
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Zhengzhou City, Henan, China.,Department of Aortic Surgery, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yue Gao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
14
|
Luan Y, Luo Y, Deng M. New advances in Nrf2-mediated analgesic drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154598. [PMID: 36603339 DOI: 10.1016/j.phymed.2022.154598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Oxidative stress is an inevitable process that occurs during life activities, and it can participate in the development of inflammation. Although great progress has been made according to research examining analgesic drugs and therapies, there remains a need to develop new analgesic drugs to fill certain gaps in both the experimental and clinical space. PURPOSE This review reports the research and preclinical progress of this class of analgesics by summarizing known nuclear factor E-2-related factor-2 (Nrf2) pathway-modulating substances. STUDY DESIGN We searched and reported experiments that intervene in the Nrf2 pathway and its various upstream and downstream molecules for analgesic therapy. METHODS The medical literature database (PubMed) was searched for experimental studies examining the reduction of pain in animals through the Nrf2 pathway, the research methods were analyzed, and the pathways were classified and reported according to the pathway of these experimental interventions. RESULTS Humans have identified a variety of substances that can fight pain by regulating the expression of Nrf2 and its upstream and downstream pathways. CONCLUSION The Nrf2 pathway exerts anti-inflammatory activity by regulating oxidative stress, thereby playing a role in the fight against pain.
Collapse
Affiliation(s)
- Yifan Luan
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yaping Luo
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
15
|
Takeshita AA, Hammock BD, Wagner KM. Soluble epoxide hydrolase inhibition alleviates chemotherapy induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1100524. [PMID: 36700145 PMCID: PMC9868926 DOI: 10.3389/fpain.2022.1100524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a particularly pernicious form of neuropathy and the associated pain is the primary dose-limiting factor of life-prolonging chemotherapy treatment. The prevalence of CIPN is high and can last long after treatment has been stopped. Currently, late in the COVID-19 pandemic, there are still increased psychological pressures on cancer patients as well as additional challenges in providing analgesia for them. These include the risks of nonsteroidal anti-inflammatory drug (NSAID) analgesics potentially masking early infection symptoms and the immunosuppression of steroidal and opiate based approaches. Even without these concerns, CIPN is often inadequately treated with few therapies that offer significant pain relief. The experiments we report use soluble epoxide hydrolase inhibitors (sEHI) which relieved this intractable pain in preclinical models. Doses of EC5026, an IND candidate intended to treat neuropathic pain, elicited dose dependent analgesic responses in multiple models including platinum-based, taxane, and vinca alkaloid-based CIPN pain in Sprague Dawley rats. At the same time as a class, the sEHI are known to result in fewer debilitating side effects of other analgesics, likely due to their novel mechanism of action. Overall, the observed dose-dependent analgesia in both male and female rats across multiple models of chemotherapy induced neuropathic pain holds promise as a useful tool when translated to the clinic.
Collapse
Affiliation(s)
| | - Bruce D. Hammock
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen M. Wagner
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States,Correspondence: Karen M. Wagner ;
| |
Collapse
|
16
|
khan A, Wang F, Shal B, Khan AU, Zahra SS, Haq IU, Khan S, Rengasamy KRR. Anti-neuropathic pain activity of Ajugarin-I via activation of Nrf2 signaling and inhibition of TRPV1/TRPM8 nociceptors in STZ-induced diabetic neuropathy. Pharmacol Res 2022; 183:106392. [DOI: 10.1016/j.phrs.2022.106392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/26/2022]
|
17
|
Batallé G, Bai X, Pol O. The Interaction between Carbon Monoxide and Hydrogen Sulfide during Chronic Joint Pain in Young Female Mice. Antioxidants (Basel) 2022; 11:antiox11071271. [PMID: 35883761 PMCID: PMC9312227 DOI: 10.3390/antiox11071271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
A relationship between carbon monoxide (CO) and hydrogen sulfide (H2S) has been described in different pathological conditions, but their interaction in modulating joint pain has not yet been investigated. In young female mice with monosodium acetate-induced joint degeneration and pain, we assessed: (1) the effects of CORM-2 (tricarbonyldichlororuthenium(II)dimer), a CO-releasing molecule, and CoPP (cobalt protoporphyrin IX), an inducer of heme oxygenase 1 (HO-1), administered alone and combined with low doses of two slow-releasing H2S donors, DADS (diallyl disulfide) and GYY4137 (morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex) on the mechanical allodynia and loss of grip strength provoked by joint degeneration; (2) the role of Nrf2, NAD(P)H: quinone oxidoreductase 1 (NQO1) and HO-1 in the antinociceptive actions of H2S donors; (3) the impact of DADS and GYY4137 treatment on the expression of Nrf2 and several antioxidant proteins in dorsal root ganglia (DRG) and periaqueductal gray matter (PAG). Our data showed that treatment with H2S donors inhibited allodynia and functional deficits, while CORM-2 and CoPP only prevented allodynia. The Nrf2 pathway is implicated in the analgesic actions of DADS and GYY4137 during joint degeneration. Moreover, the co-administration of low doses of CORM-2 or CoPP with DADS or GYY4137 produced higher antiallodynic effects and greater recovery of grip strength deficits than those produced by each of these compounds alone. The activation of the antioxidant system caused by H2S donors in DRG and/or PAG might explain the enhancement of antinociceptive effects. These data reveal a positive interaction between H2S and CO in modulating joint pain in female mice.
Collapse
Affiliation(s)
- Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (G.B.); (X.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (G.B.); (X.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (G.B.); (X.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
18
|
Neurodegeneration in Multiple Sclerosis: The Role of Nrf2-Dependent Pathways. Antioxidants (Basel) 2022; 11:antiox11061146. [PMID: 35740042 PMCID: PMC9219619 DOI: 10.3390/antiox11061146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Multiple sclerosis (MS) encompasses a chronic, irreversible, and predominantly immune-mediated disease of the central nervous system that leads to axonal degeneration, neuronal death, and several neurological symptoms. Although various immune therapies have reduced relapse rates and the severity of symptoms in relapsing-remitting MS, there is still no cure for this devastating disease. In this brief review, we discuss the role of mitochondria dysfunction in the progression of MS, focused on the possible role of Nrf2 signaling in orchestrating the impairment of critical cellular and molecular aspects such as reactive oxygen species (ROS) management, under neuroinflammation and neurodegeneration in MS. In this scenario, we propose a new potential downstream signaling of Nrf2 pathway, namely the opening of hemichannels and pannexons. These large-pore channels are known to modulate glial/neuronal function and ROS production as they are permeable to extracellular Ca2+ and release potentially harmful transmitters to the synaptic cleft. In this way, the Nrf2 dysfunction impairs not only the bioenergetics and metabolic properties of glial cells but also the proper antioxidant defense and energy supply that they provide to neurons.
Collapse
|
19
|
Gong Y, Jiang X, Yang S, Huang Y, Hong J, Ma Y, Fang X, Fang Y, Wu J. The Biological Activity of 3-O-Acetyl-11-keto-β-Boswellic Acid in Nervous System Diseases. Neuromolecular Med 2022; 24:374-384. [PMID: 35303275 PMCID: PMC8931781 DOI: 10.1007/s12017-022-08707-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/02/2022] [Indexed: 12/29/2022]
Abstract
Frankincense is a hard gelatinous resin exuded by Boswellia serrata. It contains a complex array of components, of which acetyl-11-keto-beta-boswellic acid (AKBA), a pentacyclic triterpenoid of the resin class, is the main active component. AKBA has a variety of physiological actions, including anti-infection, anti-tumor, and antioxidant effects. The use of AKBA for the treatment of mental diseases has been documented as early as ancient Greece. Recent studies have found that AKBA has anti-aging and other neurological effects, suggesting its potential for the treatment of neurological diseases. This review focuses on nervous system-related diseases, summarizes the functions and mechanisms of AKBA in promoting nerve repair and regeneration after injury, protecting against ischemic brain injury and aging, inhibiting neuroinflammation, ameliorating memory deficits, and alleviating neurotoxicity, as well as having anti-glioma effects and relieving brain edema. The mechanisms by which AKBA functions in different diseases and the relationships between dosage and biological effects are discussed in depth with the aim of increasing understanding of AKBA and guiding its use for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Yuqing Gong
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Xinyi Jiang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Suibi Yang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Yue Huang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jinhui Hong
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Yanxiu Ma
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Xin Fang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Yong Fang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, 150081, China.
| | - Jing Wu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
The 7-Hydroxyflavone attenuates chemotherapy-induced neuropathic pain by targeting inflammatory pathway. Int Immunopharmacol 2022; 107:108674. [PMID: 35276461 DOI: 10.1016/j.intimp.2022.108674] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022]
Abstract
Vincristine and paclitaxel are widely used chemotherapeutic drugs for the treatment of brain tumors, breast cancer, leukemia, lymphomas, and malignant solid tumors. Though, these drugs are associated with some severe adverse effects including peripheral neuropathic pain. The anti-nociceptive and anti-inflammatory properties of the 7-Hydroxyflavone (7HF) were evaluated in the mice using thermally- and chemically-induced nociception, naloxone antagonistic test, and carrageenan-induced paw edema models. Initially, the in-vitro cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitory assays were carried out. Peripheral neuropathic pain was induced in the Sprague Dawley (SD) rats by administration of paclitaxel (4 mg/kg) and vincristine (200 µg/kg) on days 1, 3, 5, 7, and 9, respectively. The protective effect of 7HF was assessed against the chemotherapy-induced peripheral neuropathy in the rats. Moreover, the expression of the inflammatory mediators in the spinal cord was investigated through RT-PCR. In addition, a computational study was performed to find the potential therapeutic targets and the binding mechanism of 7HF. The 7HF caused concentration-dependent inhibition of COX-2 and 5-LOX, it attenuated the nociceptive pain, carrageenan-induced paw edema, and the development of mechanical and cold allodynia, and hyperalgesia dose-dependently without causing motor coordination deficit. Likewise, the 7HF decreased the vincristine-induced increased expression of different inflammatory mediators including COX-2, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and nuclear factor-kappa B (NF-κB). The computational study showed the effective interactions of 7HF with the binding sites of NF-κB, COX-2, and 5-LOX, exert its inhibitory activities. These findings reveal that the 7HF has anti-nociceptive, anti-inflammatory, and anti-neuropathic potentials.
Collapse
|
21
|
Basu P, Averitt DL, Maier C, Basu A. The Effects of Nuclear Factor Erythroid 2 (NFE2)-Related Factor 2 (Nrf2) Activation in Preclinical Models of Peripheral Neuropathic Pain. Antioxidants (Basel) 2022; 11:430. [PMID: 35204312 PMCID: PMC8869199 DOI: 10.3390/antiox11020430] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress, resulting from an imbalance between the formation of damaging free radicals and availability of protective antioxidants, can contribute to peripheral neuropathic pain conditions. Reactive oxygen and nitrogen species, as well as products of the mitochondrial metabolism such as superoxide anions, hydrogen peroxide, and hydroxyl radicals, are common free radicals. Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is a transcription factor encoded by the NFE2L2 gene and is a member of the cap 'n' collar subfamily of basic region leucine zipper transcription factors. Under normal physiological conditions, Nrf2 remains bound to Kelch-like ECH-associated protein 1 in the cytoplasm that ultimately leads to proteasomal degradation. During peripheral neuropathy, Nrf2 can translocate to the nucleus, where it heterodimerizes with muscle aponeurosis fibromatosis proteins and binds to antioxidant response elements (AREs). It is becoming increasingly clear that the Nrf2 interaction with ARE leads to the transcription of several antioxidative enzymes that can ameliorate neuropathy and neuropathic pain in rodent models. Current evidence indicates that the antinociceptive effects of Nrf2 occur via reducing oxidative stress, neuroinflammation, and mitochondrial dysfunction. Here, we will summarize the preclinical evidence supporting the role of Nrf2 signaling pathways and Nrf2 inducers in alleviating peripheral neuropathic pain.
Collapse
Affiliation(s)
- Paramita Basu
- Pittsburgh Center for Pain Research and The Pittsburgh Project to End Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dayna L. Averitt
- Division of Biology, School of the Sciences, Texas Woman’s University, Denton, TX 76204, USA; (D.L.A.); (C.M.)
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman’s University, Denton, TX 76204, USA; (D.L.A.); (C.M.)
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| |
Collapse
|
22
|
The Beneficial Effects of Heme Oxygenase 1 and Hydrogen Sulfide Activation in the Management of Neuropathic Pain, Anxiety- and Depressive-like Effects of Paclitaxel in Mice. Antioxidants (Basel) 2022; 11:antiox11010122. [PMID: 35052626 PMCID: PMC8773208 DOI: 10.3390/antiox11010122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy constitutes an unresolved clinical problem that severely decreases the quality of the patient’s life. It is characterized by somatosensory alterations, including chronic pain, and a high risk of suffering mental disorders such as depression and anxiety. Unfortunately, an effective treatment for this neuropathology is yet to be found. We investigated the therapeutic potential of cobalt protoporphyrin IX (CoPP), a heme oxygenase 1 inducer, and morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex (GYY4137), a slow hydrogen sulfide (H2S) donor, in a preclinical model of paclitaxel (PTX)-induced peripheral neuropathy (PIPN) in mice. At three weeks after PTX injection, we evaluated the effects of the repetitive administration of 5 mg/kg of CoPP and 35 mg/kg of GYY4137 on PTX-induced nociceptive symptoms (mechanical and cold allodynia) and on the associated emotional disturbances (anxiety- and depressive-like behaviors). We also studied the mechanisms that could mediate their therapeutic properties by evaluating the expression of key proteins implicated in the development of nociception, oxidative stress, microglial activation, and apoptosis in prefrontal cortex (PFC) and dorsal root ganglia (DRG) of mice with PIPN. Results demonstrate that CoPP and GYY4137 treatments inhibited both the nociceptive symptomatology and the derived emotional alterations. These actions were mainly mediated through potentiation of antioxidant responses and inhibiting oxidative stress in the DRG and/or PFC of mice with PIPN. Both treatments normalized some plasticity changes and apoptotic reactions, and GYY4137 blocked microglial activation induced by PTX in PFC. In conclusion, this study proposes CoPP and GYY4137 as good candidates for treating neuropathic pain, anxiety- and depressive-like effects of PTX.
Collapse
|
23
|
Zhao L, Tao X, Wan C, Dong D, Wang C, Xi Q, Liu Y, Song T. Astaxanthin alleviates inflammatory pain by regulating the p38 mitogen-activated protein kinase and nuclear factor-erythroid factor 2-related factor/heme oxygenase-1 pathways in mice. Food Funct 2021; 12:12381-12394. [PMID: 34825683 DOI: 10.1039/d1fo02326h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory pain is a complex process that has a substantial negative impact on post-injury quality of life. Astaxanthin (AST), which is a lipid-soluble red-orange carotenoid that is found in lobsters, inhibits the development and maintenance of inflammation in mice via its antioxidant and anti-inflammatory activities. However, the specific mechanisms underlying these effects remain unclear. In this study, we aimed to elucidate the mechanism by which astaxanthin alleviated inflammation using a mouse model with Complete Freund's adjuvant (CFA)-induced inflammatory pain. Mechanical allodynia and thermal hyperalgesia were observed on days 1-14 post CFA injection. Expression of p38 mitogen-activated protein kinase (MAPK) in the left paw and L4-6 dorsal root ganglia (DRG) were upregulated in the CFA-induced mice. Expression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways were also increased. Astaxanthin relieved mechanical allodynia and thermal hyperalgesia induced by CFA and inhibited the inflammatory response (e.g., infiltration of inflammatory cells and production of inflammatory factors) in the ipsilateral paw and DRG. Additionally, AST inhibited p38 MAPK and enhanced Nrf2/HO-1 contents in the left paw and DRG, and reversed the pain induced by p38 MAPK agonist and Nrf2 inhibitors. These findings suggest that AST exerts anti-inflammatory effects and regulates p38 MAPK and Nrf2/HO-1 to alleviate inflammatory pain. AST may be a potential therapeutic agent for relieving inflammation.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Xueshu Tao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Chengfu Wan
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Daosong Dong
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Chenglong Wang
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Qi Xi
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Yan Liu
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Tao Song
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| |
Collapse
|
24
|
Burgess J, Ferdousi M, Gosal D, Boon C, Matsumoto K, Marshall A, Mak T, Marshall A, Frank B, Malik RA, Alam U. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol Ther 2021; 9:385-450. [PMID: 34655433 PMCID: PMC8593126 DOI: 10.1007/s40487-021-00168-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This review provides an update on the current clinical, epidemiological and pathophysiological evidence alongside the diagnostic, prevention and treatment approach to chemotherapy-induced peripheral neuropathy (CIPN). FINDINGS The incidence of cancer and long-term survival after treatment is increasing. CIPN affects sensory, motor and autonomic nerves and is one of the most common adverse events caused by chemotherapeutic agents, which in severe cases leads to dose reduction or treatment cessation, with increased mortality. The primary classes of chemotherapeutic agents associated with CIPN are platinum-based drugs, taxanes, vinca alkaloids, bortezomib and thalidomide. Platinum agents are the most neurotoxic, with oxaliplatin causing the highest prevalence of CIPN. CIPN can progress from acute to chronic, may deteriorate even after treatment cessation (a phenomenon known as coasting) or only partially attenuate. Different chemotherapeutic agents share both similarities and key differences in pathophysiology and clinical presentation. The diagnosis of CIPN relies heavily on identifying symptoms, with limited objective diagnostic approaches targeting the class of affected nerve fibres. Studies have consistently failed to identify at-risk cohorts, and there are no proven strategies or interventions to prevent or limit the development of CIPN. Furthermore, multiple treatments developed to relieve symptoms and to modify the underlying disease in CIPN have failed. IMPLICATIONS The increasing prevalence of CIPN demands an objective approach to identify at-risk patients in order to prevent or limit progression and effectively alleviate the symptoms associated with CIPN. An evidence base for novel targets and both pharmacological and non-pharmacological treatments is beginning to emerge and has been recognised recently in publications by the American Society of Clinical Oncology and analgesic trial design expert groups such as ACTTION.
Collapse
Affiliation(s)
- Jamie Burgess
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Kohei Matsumoto
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Anne Marshall
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Tony Mak
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew Marshall
- Faculty of Health and Life Sciences, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Faculty of Health and Life Sciences, The Pain Research Institute, University of Liverpool, Liverpool, L9 7AL, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Bernhard Frank
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Rayaz A Malik
- Research Division, Qatar Foundation, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| |
Collapse
|
25
|
Priddy C, Li J. The role of the Nrf2/Keap1 signaling cascade in mechanobiology and bone health. Bone Rep 2021; 15:101149. [PMID: 34869801 PMCID: PMC8626578 DOI: 10.1016/j.bonr.2021.101149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
In conjunction with advancements in modern medicine, bone health is becoming an increasingly prevalent concern among a global population with an ever-growing life expectancy. Countless factors contribute to declining bone strength, and age exacerbates nearly all of them. The detrimental effects of bone loss have a profound impact on quality of life. As such, there is a great need for full exploration of potential therapeutic targets that may provide antiaging benefits and increase the life and strength of bone tissues. The Keap1-Nrf2 pathway is a promising avenue of this research. The cytoprotective and antioxidant functions of this pathway have been shown to mitigate the deleterious effects of oxidative stress on bone tissues, but the exact cellular and molecular mechanisms by which this occurs are not yet fully understood. Presently, refined animal and loading models are allowing exploration into the effect of the Keap1-Nrf2 pathway in a tissue-specific or even cell-specific manner. In addition, Nrf2 activators currently undergoing clinical trials can be utilized to investigate the particular cellular mechanisms at work in this cytoprotective cascade. Although the timing and dosing of treatment with Nrf2 activators need to be further investigated, these activators have great potential to be used clinically to prevent and treat osteoporosis.
Collapse
Affiliation(s)
- Carlie Priddy
- Department of Biology, Indiana University – Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University – Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
26
|
Dugbartey GJ. Carbon Monoxide in Pancreatic Islet Transplantation: A New Therapeutic Alternative to Patients With Severe Type 1 Diabetes Mellitus. Front Pharmacol 2021; 12:750816. [PMID: 34707503 PMCID: PMC8542862 DOI: 10.3389/fphar.2021.750816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatic islet transplantation is a minimally invasive procedure to replace β-cells in a subset of patients with autoimmune type 1 diabetic mellitus, who are extremely sensitive to insulin and lack counter-regulatory measures, and thereby increasing their risk of neuroglycopenia and hypoglycemia unawareness. Thus, pancreatic islet transplantation restores normoglycemia and insulin independence, and prevents long-term surgical complications associated with whole-organ pancreas transplantation. Nonetheless, relative inefficiency of islet isolation and storage process as well as progressive loss of islet function after transplantation due to unvoidable islet inflammation and apoptosis, hinder a successful islet transplantation. Carbon monoxide (CO), a gas which was once feared for its toxicity and death at high concentrations, has recently emerged as a medical gas that seems to overcome the challenges in islet transplantation. This minireview discusses recent findings about CO in preclinical pancreatic islet transplantation and the underlying molecular mechanisms that ensure islet protection during isolation, islet culture, transplantation and post-transplant periods in type 1 diabetic transplant recipients. In addition, the review also discusses clinical translation of these promising experimental findings that serve to lay the foundation for CO in islet transplantation to replace the role of insulin therapy, and thus acting as a cure for type 1 diabetes mellitus and preventing long-term diabetic complications.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON, Canada.,Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON, Canada.,Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, ON, Canada.,Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
27
|
Khan A, Shal B, Khan AU, Bibi T, Islam SU, Baig MW, Haq IU, Ali H, Ahmad S, Khan S. Withametelin, a novel phytosterol, alleviates neurological symptoms in EAE mouse model of multiple sclerosis via modulation of Nrf2/HO-1 and TLR4/NF-κB signaling. Neurochem Int 2021; 151:105211. [PMID: 34688804 DOI: 10.1016/j.neuint.2021.105211] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/11/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system (CNS) that remains incurable. Withametelin (WMT), a phytosterol, showed diverse biological activities isolated from the leaves of Datura innoxa. In the present study, we used an in vitro model of HT22 and BV-2 cell lines and an in vivo murine model of MS, experimental autoimmune encephalomyelitis (EAE), to explore the antioxidant and anti neuroinflammatory potential of WMT. The results showed that pretreatment with WMT markedly inhibited H2O2-induced cytotoxicity and oxidative stress in a dose-dependent manner. Correspondingly, WMT post-immunization treatment significantly attenuated EAE-induced clinical score, weight loss, neuropathic pain behaviors, and motor dysfunction. It markedly lowers EAE-induced elevated circulating leucocytes, spinal deformity, and splenomegaly. It strikingly inhibited the Evans blue and FITC extravasation in the brain. It remarkably reversed the EAE-induced histopathological alteration of the brain, spinal cord, eye, and optic nerve. It significantly intensified the antioxidant defense mechanism by improving the expression level of nuclear factor-erythroid-related factor-2 (Nrf2), heme-oxygenase-1 (HO-1) but reducing the expression level of the Kelch-like-ECH-associated-protein-1 (keap-1), inducible-nitric-oxide-synthase (iNOS) in the CNS. Likewise, it markedly suppressed neuroinflammation by reducing the expression level of toll-like-receptor 4 (TLR4), nuclear-factor-kappa-B (NF-κB), activator-protein-1 (AP-1) but increased the expression level IkB-α in the CNS. Furthermore, molecular dynamics simulations and MMPBSA binding free energies were determined to validate the dynamic stability of complexes and shed light on the atomic level intermolecular interaction energies. Taken together, this study showed that WMT has significant neuroprotective potential in EAE via modulation of Nrf2 mediated-oxidative stress and NF-κB mediated inflammation.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
28
|
Dugbartey GJ. Carbon monoxide as an emerging pharmacological tool to improve lung and liver transplantation protocols. Biochem Pharmacol 2021; 193:114752. [PMID: 34487717 DOI: 10.1016/j.bcp.2021.114752] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
Carbon monoxide (CO) has long been considered purely as a toxic gas. It binds to hemoglobin at high concentrations and displaces oxygen from its binding site, resulting in carboxyhemoglobin formation, which reduces oxygen-carrying capacity of blood and culminates in tissue hypoxia and its associated complications. Recently, however, CO is quickly moving past its historic notorious tag as a poisonous gas to a physiological signaling molecule with therapeutic potentials in several clinical situations including transplant-induced injury. This review discusses current knowledge of CO gas and CO-releasing molecules (CO-RMs) in preclinical models of lung and liver transplantation, and underlying molecular mechanisms of cyto- and organ protection during organ procurement, preservation, implantation and post-transplant periods. In addition, a discussion of the future of CO in clinical organ transplantation is provided.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
29
|
Khan A, Shal B, Khan AU, Ullah R, Baig MW, ul Haq I, Seo EK, Khan S. Suppression of TRPV1/TRPM8/P2Y Nociceptors by Withametelin via Downregulating MAPK Signaling in Mouse Model of Vincristine-Induced Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22116084. [PMID: 34199936 PMCID: PMC8200233 DOI: 10.3390/ijms22116084] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023] Open
Abstract
Vincristine (VCR) is a widely used chemotherapy drug that induced peripheral painful neuropathy. Yet, it still lacks an ideal therapeutic strategy. The transient receptor potential (TRP) channels, purinergic receptor (P2Y), and mitogen-activated protein kinase (MAPK) signaling play a crucial role in the pathogenesis of neuropathic pain. Withametelin (WMT), a potential Phytosteroid isolated from datura innoxa, exhibits remarkable neuroprotective properties. The present investigation was designed to explore the effect of withametelin on VCR-induced neuropathic pain and its underlying molecular mechanism. Initially, the neuroprotective potential of WMT was confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. To develop potential candidates for neuropathic pain treatment, a VCR-induced neuropathic pain model was established. Vincristine (75 μg/kg) was administered intraperitoneally (i.p.) for 10 consecutive days (day 1-10) for the induction of neuropathic pain. Gabapentin (GBP) (60 mg/kg, i.p.) and withametelin (0.1 and 1 mg/kg i.p.) treatments were given after the completion of VCR injection on the 11th day up to 21 days. The results revealed that WMT significantly reduced VCR-induced pain hypersensitivity, including mechanical allodynia, cold allodynia, and thermal hyperalgesia. It reversed the VCR-induced histopathological changes in the brain, spinal cord, and sciatic nerve. It inhibited VCR-induced changes in the biochemical composition of the myelin sheath of the sciatic nerve. It markedly downregulated the expression levels of TRPV1 (transient receptor potential vanilloid 1); TRPM8 (Transient receptor potential melastatin 8); and P2Y nociceptors and MAPKs signaling, including ERK (Extracellular Signal-Regulated Kinase), JNK (c-Jun N-terminal kinase), and p-38 in the spinal cord. It suppressed apoptosis by regulating Bax (Bcl2-associated X-protein), Bcl-2 (B-cell-lymphoma-2), and Caspase-3 expression. It considerably attenuated inflammatory cytokines, oxidative stress, and genotoxicity. This study suggests that WMT treatment suppressed vincristine-induced neuropathic pain by targeting the TRPV1/TRPM8/P2Y nociceptors and MAPK signaling.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan;
| | - Muhammad Waleed Baig
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Ihsan ul Haq
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
- Correspondence: (E.K.S.); (S.K.); Tel.: +82-2-3277-3047 (E.K.S.); +92-51-9064-4056 (S.K.)
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
- Correspondence: (E.K.S.); (S.K.); Tel.: +82-2-3277-3047 (E.K.S.); +92-51-9064-4056 (S.K.)
| |
Collapse
|
30
|
Carbenoxolone has the potential to ameliorate acute incision pain in rats. Mol Med Rep 2021; 24:520. [PMID: 34013377 PMCID: PMC8160483 DOI: 10.3892/mmr.2021.12159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Carbenoxolone (CBX) is primarily used to relieve various types of neuropathic and inflammatory pain. However, little is known concerning the role of CBX in acute pain and its functional mechanisms therein and this was investigated in the present study. Rats underwent toe incision and behavioral tests were performed to assess mechanical hypersensitivity. The expression levels of pannexin 1 (Px1) and connexin 43 (Cx43) were detected using western blot analysis 2, 4, 6 or 24 h after toe incision, and the expression of TNF-α, IL-1β and P substance (SP) was determined by ELISA; Px1 and Cx43 expression was also examined by immunofluorescence staining. At 2, 6 and 12 h post-toe incision, the postoperative pain threshold was significantly reduced, which was subsequently recovered at 2 and 6 h post-surgery following pretreatment with CBX or pannexin 1 mimetic inhibitory peptide. CBX reduced Px1 levels at 4 and 24 h post-incision. However, Cx43 levels were reduced by CBX as little as 2 h post-surgery. Furthermore, CBX not only distinctly decreased the levels of Px1 and Cx43, but also reduced the co-localization of Px1 or Cx43 with glial fibrillary acidic protein, 2 h after incision. It was also observed that the protein levels of inflammatory makers (IL-1β, SP and TNF-α) showed a tendency to decline at 2, 4, 6 and 24 h after incision. Collectively, the expression of Px1 and Cx43 in astrocytes may be involved in pain behaviors diminished by CBX, and CBX potentially reduces acute pain by decreasing Px1 and Cx43 levels. Px1 and Cx43 from spinal astrocytes may serve important roles in the early stages and maintenance of acute pain, while preoperative injection of CBX has the potential to relieve hyperalgesia.
Collapse
|
31
|
郑 智, 金 愈, 金 思, 柯 博. [Carbon Monoxide and Pain Regulation: A Review]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:396-401. [PMID: 34018356 PMCID: PMC10409187 DOI: 10.12182/20210560102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 02/05/2023]
Abstract
Carbon monoxide (CO) is an endogenous gasotransmitter produced by the degradation of heme in the presence of heme oxygenase (HO) in mammals. It has been demonstrated that CO participates in a variety of physiological activities and pathological processes, and is closely related to cell protection and homeostasis maintenance in organ tissues. It has been shown by a growing number of studies that CO may play a regulatory and interventional role in the process of the occurrence and development of pain through a variety of mechanisms of action. However, its mechanism of action is still not fully understood and the uncontrollable factors concerning CO administration also placed considerable limitation to its application. This paper reviews the potential targets and pathways of CO in pain regulation and discusses the challenges and opportunities in the clinical application of CO in order to provide suggestions for further exploration and development of CO analgesics.
Collapse
Affiliation(s)
- 智尧 郑
- 四川大学华西临床医学院 (成都 610041)West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - 愈茗 金
- 四川大学华西临床医学院 (成都 610041)West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - 思怡 金
- 四川大学华西临床医学院 (成都 610041)West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - 博文 柯
- 四川大学华西临床医学院 (成都 610041)West China School of Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Zhou YQ, Mei W, Tian XB, Tian YK, Liu DQ, Ye DW. The therapeutic potential of Nrf2 inducers in chronic pain: Evidence from preclinical studies. Pharmacol Ther 2021; 225:107846. [PMID: 33819559 DOI: 10.1016/j.pharmthera.2021.107846] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Chronic pain remains an enormous health problem affecting approximatively 30% of the world's population. Opioids as the first line analgesics often leads to undesirable side effects when used long term. Therefore, novel therapeutic targets are urgently needed to the development of more efficacious analgesics. Substantial evidence indicates that excessive reactive oxygen species (ROS) are extremely important to the development of chronic pain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidant defense. Emerging evidence suggests that Nrf2 and its downstream effectors are implicated in chronic inflammatory and neuropathic pain. Notably, controversial results have been reported regarding the expression of Nrf2 and its downstream targets in peripheral and central regions involved in pain transmission. However, our recent studies and results from other laboratories demonstrate that Nrf2 inducers exert potent analgesic effects in various murine models of chronic pain. In this review, we summarized and discussed the preclinical evidence demonstrating the therapeutic potential of Nrf2 inducers in chronic pain. These evidence indicates that Nrf2 activation are beneficial in chronic pain mostly by alleviating ROS-associated pathological processes. Overall, Nrf2-based therapy for chronic pain is an area with great promise, but more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Da-Wei Ye
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
33
|
Geisler S. Vincristine- and bortezomib-induced neuropathies - from bedside to bench and back. Exp Neurol 2021; 336:113519. [PMID: 33129841 PMCID: PMC11160556 DOI: 10.1016/j.expneurol.2020.113519] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Vincristine and bortezomib are effective chemotherapeutics widely used to treat hematological cancers. Vincristine blocks tubulin polymerization, whereas bortezomib is a proteasome inhibitor. Despite different mechanisms of action, the main non-hematological side effect of both is peripheral neuropathy that can last long after treatment has ended and cause permanent disability. Many different cellular and animal models of various aspects of vincristine and bortezomib-induced neuropathies have been generated to investigate underlying molecular mechanisms and serve as platforms to develop new therapeutics. These models revealed that bortezomib induces several transcriptional programs in dorsal root ganglia that result in the activation of different neuroinflammatory pathways and secondary central sensitization. In contrast, vincristine has direct toxic effects on the axon, which are accompanied by changes similar to those observed after nerve cut. Axon degeneration following both vincristine and bortezomib is mediated by a phylogenetically ancient, genetically encoded axon destruction program that leads to the activation of the Toll-like receptor adaptor SARM1 (sterile alpha and TIR motif containing protein 1) and local decrease of nicotinamide dinucleotide (NAD+). Here, I describe current in vitro and in vivo models of vincristine- and bortezomib induced neuropathies, present discoveries resulting from these models in the context of clinical findings and discuss how increased understanding of molecular mechanisms underlying different aspects of neuropathies can be translated to effective treatments to prevent, attenuate or reverse vincristine- and bortezomib-induced neuropathies. Such treatments could improve the quality of life of patients both during and after cancer therapy and, accordingly, have enormous societal impact.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, MO, USA.
| |
Collapse
|
34
|
Li GZ, Hu YH, Li DY, Zhang Y, Guo HL, Li YM, Chen F, Xu J. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology 2020; 81:161-171. [DOI: 10.1016/j.neuro.2020.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
|
35
|
Huang SS, Cao S, Lu CE, Qin YB, Yang JP. Effects of nicorandil on p120 expression in the spinal cord and dorsal root ganglion of rats with chronic postsurgical pain. Mol Med Rep 2020; 22:4821-4827. [PMID: 33173987 PMCID: PMC7646919 DOI: 10.3892/mmr.2020.11546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/21/2020] [Indexed: 01/25/2023] Open
Abstract
Chronic postsurgical pain (CPSP) has a high incidence, but the underlying mechanism is not well understood. Accumulating evidence has suggested that central sensitization is the main mechanism of pain. To study the role of p120 in CPSP, a skin/muscle incision and retraction (SMIR) model was established, and immunofluorescence staining and western blotting were performed to analyze the expression of p120 in the spinal cord and dorsal root ganglion (DRG). The results demonstrated that SMIR increased the expression of p120 in the DRG and the spinal cord compared with the naive group. Furthermore, it was demonstrated that p120 was mainly distributed in the glial fibrillary acidic protein-positive astrocytes in the spinal cord, and in the neurofilament 200-positive medium and large neurons in the DRG. Our previous studies have shown that adenosine triphosphate-sensitive potassium channel (KATP) agonists can reduce postoperative pain in rats. Therefore, the changes in p120 were observed in the DRG and spinal cord of rats following the intraperitoneal injection of nicorandil, a KATP agonist. It was demonstrated that nicorandil administration could relieve mechanical pain experienced following SMIR in rats, and decrease the expression of p120 in the DRG and spinal cord. The results revealed that p120 may contribute to the prophylactic analgesic effect of nicorandil, thus providing a novel insight into the mechanism of CPSP prevention.
Collapse
Affiliation(s)
- Sai-Sai Huang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Su Cao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Cui E Lu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi-Bin Qin
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian-Ping Yang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
36
|
Wang M, Yang X, Pan Z, Wang Y, De La Cruz LK, Wang B, Tan C. Towards "CO in a pill": Pharmacokinetic studies of carbon monoxide prodrugs in mice. J Control Release 2020; 327:174-185. [PMID: 32745568 PMCID: PMC7606817 DOI: 10.1016/j.jconrel.2020.07.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022]
Abstract
Carbon monoxide (CO) is a known endogenous signaling molecule with potential therapeutic indications in treating inflammation, cancer, neuroprotection, and sickle cell disease among many others. One of the hurdles in using CO as a therapeutic agent is the development of pharmaceutically acceptable delivery forms for various indications. Along this line, we have developed organic CO prodrugs that allow for packing this gaseous molecule into a dosage form for the goal of "carbon monoxide in a pill." This should enable non-inhalation administration including oral and intravenous routes. These prodrugs have previously demonstrated efficacy in multiple animal models. To further understand the CO delivery efficiency of these prodrugs in relation to their efficacy, we undertook the first pharmacokinetic studies on these prodrugs. In doing so, we selected five representative prodrugs with different CO release kinetics and examined their pharmacokinetics after administration via oral, intraperitoneal, and intravenous routes. It was found that all three routes were able to elevate systemic CO level with delivery efficiency in the order of intravenous, oral, and intraperitoneal routes. CO prodrugs and their CO-released products were readily cleared from the circulation. CO prodrugs demonstrate promising pharmaceutical properties in terms of oral CO delivery and minimal drug accumulation in the body. This represents the very first study of the interplay among CO release kinetics, CO prodrug clearance, route of administration, and CO delivery efficiency.
Collapse
Affiliation(s)
- Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Yingzhe Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA.
| |
Collapse
|
37
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
38
|
Liu P, Chen J, Ma S, Zhang J, Zhou J. Albiflorin Attenuates Mood Disorders Under Neuropathic Pain State by Suppressing the Hippocampal NLRP3 Inflammasome Activation During Chronic Constriction Injury. Int J Neuropsychopharmacol 2020; 24:64-76. [PMID: 33000169 PMCID: PMC7816674 DOI: 10.1093/ijnp/pyaa076] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/18/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuropathic pain is a multifaceted and ubiquitous disease across the globe. Mood disorders, such as anxiety and depression, are frequently observed in patients suffering from neuropathic pain. Both neuropathic pain and comorbid mood disorders seriously impact quality of life. Accumulated evidence shows that activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is involved in the neuroinflammatory pathogenesis of neuropathic pain, anxiety, and depression. However, the role of the NLRP3 inflammasome in the pathological process of anxiety and depression under the neuropathic pain state has not been fully described. Albiflorin, a monoterpene glycoside, may be a potential regulator of the NLRP3 inflammasome, but it is not clear whether albiflorin relates to NLRP3 inflammasome activation. METHODS We used a systematic pharmacological method to confirm whether the activation of the NLRP3 inflammasome in the hippocampus was involved in the development of neuropathic pain associated with mood disorders and whether albiflorin could be an effective treatment for these symptoms. RESULTS The NLRP3 inflammasome contributed to the neuropathic pain and comorbid anxiety and depression-like behaviors induced by chronic constriction injury of the sciatic nerve, and albiflorin may relieve these symptoms via inhibition of the NLRP3 inflammasome activity. Moreover, albiflorin enhanced the translocation of the nuclear factor erythroid 2-related factor 2 into the nucleus and suppressed nuclear factor-kappa B activity in the hippocampus. CONCLUSIONS Albiflorin, as a potential therapeutic agent, might greatly improve the overall symptoms of neuropathic pain.
Collapse
Affiliation(s)
- Pei Liu
- Hebei Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Hebei, Chengde, China
| | - Jianjun Chen
- Hebei Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Hebei, Chengde, China
| | - Shuai Ma
- Hebei Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Hebei, Chengde, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianyu Zhou
- Hebei Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Hebei, Chengde, China,Correspondence: Jianyu Zhou, PhD, Hebei Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Anyuan Road, Shuangqiao District, Chengde 067000, Hebei, China ()
| |
Collapse
|
39
|
Pol O. The role of carbon monoxide, heme oxygenase 1, and the Nrf2 transcription factor in the modulation of chronic pain and their interactions with opioids and cannabinoids. Med Res Rev 2020; 41:136-155. [PMID: 32820550 DOI: 10.1002/med.21726] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
Chronic pain and its associated comorbidities are difficult to treat, even when the most potent analgesic compounds are used. Thus, research on new strategies to effectively relieve nociceptive and/or emotional disorders accompanying chronic pain is essential. Several studies have demonstrated the anti-inflammatory and antinociceptive effects of different carbon monoxide-releasing molecules (CO-RMs), inducible heme oxygenase 1 (HO-1), and nuclear factor-2 erythroid factor-2 (Nrf2) transcription factor activators in several models of acute and chronic pain caused by inflammation, nerve injury or diabetes. More recently, the antidepressant and/or anxiolytic effects of several Nrf2 transcription factor inducers were demonstrated in a model of chronic neuropathic pain. These effects are mainly produced by inhibition of oxidative stress, inflammation, glial activation, mitogen-activated protein kinases and/or phosphoinositide 3-kinase/phospho-protein kinase B phosphorylation in the peripheral and/or central nervous system. Other studies also demonstrated that the analgesic effects of opioids and cannabinoids are improved when these drugs are coadministered with CO-RMs, HO-1 or Nrf2 activators in different preclinical pain models and that these improvements are generally mediated by upregulation or prevention of the downregulation of µ-opioid receptors, δ-opioid receptors and/or cannabinoid 2 receptors in the setting of chronic pain. We reviewed all these studies as well as studies on the mechanisms of action underlying the effects of CO-RMs, HO-1, and Nrf2 activators in chronic pain. In summary, activation of the Nrf2/HO-1/carbon monoxide signaling pathway alone and/or in combination with the administration of specific analgesics is a valid strategy for the treatment of chronic pain and some associated emotional disorders.
Collapse
Affiliation(s)
- Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|