1
|
Tao L, Yang Y, Liu H, Yi L, Cao J, Xu P, Zhao Q, Xu Y, Zhang F, Liu D, Wu W, Jin Y. Characterization of cross-reactivity of coxsackievirus A2 VP1-specific polyclonal antibodies with enterovirus A71, coxsackievirus A16, and coxsackievirus A6. Virology 2024; 600:110244. [PMID: 39298881 DOI: 10.1016/j.virol.2024.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Coxsackievirus A2 (CVA2) is associated with multiple diseases in children. Currently, there is limited research on immunological detection methods for CVA2. Herein, the VP1 gene of CVA2 strain 201711, belonging to cluster 2 within genotype D, was analyzed. The structures of VP1 from CVA2 strains 201711, 7-1 and 12-1, enterovirus A71 (EV-A71) strain 201713, coxsackievirus A16 (CVA16) strain 201717, and coxsackievirus A6 (CVA6) strain JLS10 were compared. The Escherichia coli BL21(DE3)/pET vector system was employed to express the recombinant protein containing the entire VP1 of CVA2 strain 201711. Mice were immunized with the purified protein, and the sera were collected and used to specifically identify the VP1 in CVA2-infected RD cells by Western blot and immunofluorescence assay. There was no evident cross-reactivity of the sera with the VP1 of EV-A71, CVA16, and CVA6 strains mentioned above. Therefore, this study provided mouse-specific anti-CVA2 VP1 polyclonal antibodies for CVA2 detection.
Collapse
Affiliation(s)
- Ling Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Yawen Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China; School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Hejun Liu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liang Yi
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jingyi Cao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Pengwei Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Qian Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yinlan Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Dong Liu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuefei Jin
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
2
|
Xie Z, Khamrin P, Maneekarn N, Kumthip K. Novel Intertypic Recombinant Coxsackievirus A2 Containing Specific Amino Acid Mutations in the RNA-Dependent RNA Polymerase Potentially Associated With Its Emergence. J Med Virol 2024; 96:e70040. [PMID: 39530331 DOI: 10.1002/jmv.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Coxsackievirus A2 (CVA2), a member of enterovirus A species (EV-A), is associated with diverse human diseases and occasionally causes acute gastroenteritis (AGE). In Thailand, CVA2 emerged as the predominant genotype in 2019. The increasing incidence of CVA2, coupled with the limited availability of full-length genomes, highlights the need for more complete genome sequence analysis to facilitate molecular epidemiology study. This study aimed to investigate the molecular epidemiology, evolutionary dynamics, and recombination characteristics of CVA2 associated with AGE in Thailand from 2013 to 2022. A total of 19 full-genome sequences of CVA2 isolated from stool samples of AGE patients in Thailand were characterized and analyzed together with the reference sequences available in the GenBank database. A novel lineage of CVA2 (subgenotype C5) was detected with the potential recombination with CVA10 within the P2 and P3 regions. Specific consensus amino acid mutations, A61S in the VP3 gene and R136K in the 3D (RdRp) gene, were identified in all CVA2 recombinant strains. Additionally, the S45G mutation in the RdRp gene was found to be potentially associated with the emergence of CVA2 infection in 2019. In conclusion, this study reveals potential intertypic recombinant events and specific mutations in CVA2 strains isolated from AGE patients and provides a broader understanding of its evolutionary epidemiology.
Collapse
Affiliation(s)
- Zhenfeng Xie
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Guangxi Colleges and Universities Key Laboratory of Basic Research and Transformation of Cancer Immunity and Infectious Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Xie Z, Khamrin P, Maneekarn N, Kumthip K. Epidemiology of Enterovirus Genotypes in Association with Human Diseases. Viruses 2024; 16:1165. [PMID: 39066327 PMCID: PMC11281466 DOI: 10.3390/v16071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Enteroviruses (EVs) are well-known causes of a wide range of infectious diseases in infants and young children, ranging from mild illnesses to severe conditions, depending on the virus genotypes and the host's immunity. Recent advances in molecular surveillance and genotyping tools have identified over 116 different human EV genotypes from various types of clinical samples. However, the current knowledge about most of these genotypes, except for those of well-known genotypes like EV-A71 and EV-D68, is still limited due to a lack of comprehensive EV surveillance systems. This limited information makes it difficult to understand the true burden of EV-related diseases globally. Furthermore, the specific EV genotype associated with diseases varies according to country, population group, and study period. The same genotype can exhibit different epidemiological features in different areas. By integrating the data from established EV surveillance systems in the USA, Europe, Japan, and China, in combination with other EV infection studies, we can elaborate a better understanding of the distribution of prevalent EV genotypes and the diseases associated with EV. This review analyzed the data from various EV surveillance databases and explored the EV seroprevalence and the association of specific EV genotypes with human diseases.
Collapse
Affiliation(s)
- Zhenfeng Xie
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Guangxi Colleges and Universities Key Laboratory of Basic Research and Transformation of Cancer Immunity and Infectious Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Wang Y, Ji W, Li D, Sun T, Zhu P, Li J, Zhang L, Zhang Y, Yang H, Chen S, Jin Y, Duan G. Active inoculation with an inactivated Coxsackievirus A2 vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine 2023; 41:6470-6482. [PMID: 37718187 DOI: 10.1016/j.vaccine.2023.08.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Coxsackievirus A2 (CVA2) is one of the causative agents of hand-foot-and-mouth disease (HFMD), which poses a great challenge for global public health. However, presently, there are no available commercial vaccines or antivirals to prevent CVA2 infection. Here, we present an inactivated Vero cell-based whole CVA2 vaccine candidate and evaluate its safety and efficacy in this study. Neonatal BALB/c mice were vaccinated at 5 and 7 days old, respectively, and then challenged with either homologous or heterologous strain of CVA2 at a lethal dose at 10 days old. The inactivated whole CVA2 vaccine candidate showed a high protective efficacy. Additionally, our inactivated vaccine stimulated the production of CVA2-specific IgG1 and IgG2a antibodies in vivo and high titers of neutralization antibodies (NtAbs) in the serum of immunized mice. Maternal immunization with the inactivated CVA2 vaccine provided full protection to pups against lethal infection. Compared with mice inoculated with only alum, the viral loads were decreased, and pathological changes were relieved in tissue samples of immunized mice. Moreover, the transcription levels of some genes related to cytokines (IFN-γ and TNF-α, MCP-1, IL-6, CXCL-10 etc.) were significantly reduced. The number of immune cells and levels of cytokines in peripheral blood of mice inoculated with only alum were higher than that of immunized mice. It is noteworthy that this vaccine showed a good cross-immunity efficacy against Enterovirus A71 (EVA71) challenge. In conclusion, our findings suggest that this experimental inactivated CVA2 vaccine is a promising component of polyvalent vaccines related to HFMD in the near future.
Collapse
Affiliation(s)
- Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Infectious Disease Control and Prevention, Jiangshan Center for Disease Control and Prevention, Jiangshan 324100, Zhejiang, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junwei Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Infectious Disease Control and Prevention, Jiangshan Center for Disease Control and Prevention, Jiangshan 324100, Zhejiang, China
| | - Liang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
5
|
Hu G, Jin WP, Yang ZH, Lv SY, Wu J, Yu YT, Meng SL, Guo J, Wang ZJ, Shen S. Efficacy of Coxsackievirus A2 vaccine candidates correlating to humoral immunity in mice challenged with a mouse-adapted strain. Vaccine 2022; 40:4716-4725. [PMID: 35760737 DOI: 10.1016/j.vaccine.2022.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 05/06/2022] [Accepted: 06/05/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND In recent years, Coxsackievirus A2 (CV-A2) has become one of the main serotypes of enterovirus species A associated with hand, foot and mouth disease (HFMD) in China. It has also caused HFMD epidemics in many countries all over the world. Currently, there are no effective, preventive vaccines against it. METHODS A CV-A2 strain was isolated in RD cells and then adapted to grow in Vero cells. This is in compliance with guidelines for cell substrates allowed for human vaccines by the Chinese regulatory authority. Groups of newborn Kunming mice were inoculated on day 3 and day 9 using two formulations of candidate vaccines, empty particles and full particles. They were then challenged on day 14 at a lethal dose with a mouse-adapted strain. RESULTS The mice in the control group all died within 14 days post-challenge whereas most of the mice in the candidate vaccine groups survived. It was found that the titers of neutralizing antibodies was dose-dependent in sera of immunized mice. The results also showed that the vaccine candidates stimulated a strong humoral immune response and protected the mice from disease and death. The virus loads in tissues or organs were significantly reduced and pathological changes were either weak or not observed in the immunized groups compared with those in Al(OH)3 control group. Preliminary mapping of the nucleotide and amino acid residues potentially related to cell tropism of the vaccine strain and virulence of the challenge strain was performed. CONCLUSION The results showed that the RD cell-isolated and Vero cell-adapted CV-A2 strain is a promising vaccine candidate. This active immunization-challenge mouse model mimics the vaccination and then exposure to wildtype viruses, compared with passive immunization-challenge model, and is invaluable for efficacy evaluation in studies on multivalent vaccines containing CV-A2 against HFMD.
Collapse
Affiliation(s)
- Gang Hu
- Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan 430207, China
| | - Wei-Ping Jin
- Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan 430207, China
| | - Zhi-Hui Yang
- Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan 430207, China
| | - Shi-Yun Lv
- Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan 430207, China
| | - Jie Wu
- Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan 430207, China
| | - Yu-Ting Yu
- Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan 430207, China
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan 430207, China
| | - Jing Guo
- Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan 430207, China
| | - Ze-Jun Wang
- Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan 430207, China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan 430207, China.
| |
Collapse
|
6
|
The CXCL10/CXCR3 Axis Promotes Disease Pathogenesis in Mice upon CVA2 Infection. Microbiol Spectr 2022; 10:e0230721. [PMID: 35604176 PMCID: PMC9241849 DOI: 10.1128/spectrum.02307-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus A2 (CVA2) is an emerging pathogen that results in hand-foot-and-mouth disease (HFMD) outbreaks. Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD. However, the immunopathogenesis of CVA2 infection is poorly understood. We first detected the transcriptional levels of 81 inflammation-related genes in neonatal mice with CVA2 infection. Remarkably, CVA2 induced higher expression of chemokine (C-X-C motif) ligand 10 (CXCL10) in multiple organs and tissues. CXCL10 acts through its cognate receptor chemokine (C-X-C motif) receptor 3 (CXCR3) and regulates immune responses. CXCL10/CXCR3 activation contributes to the pathogenesis of many inflammatory diseases. Next, we found CXCL10 and CXCR3 expression to be significantly elevated in the organs and tissues from CVA2-infected mice at 5 days postinfection (dpi) using immunohistochemistry (IHC). To further explore the role of CXCL10/CXCR3 in CVA2 pathogenesis, an anti-CXCR3 neutralizing antibody (αCXCR3) or IgG isotype control antibody was used to treat CVA2-infected mice on the same day as infection and every 24 h until 5 dpi. Our results showed that αCXCR3 therapy relieved the clinical manifestations and pathological damage and improved the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (interleukin 6 [IL-6], tumor necrosis factor alpha [TNF-α], and IL-1β) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis by inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD. IMPORTANCE Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD cases. We detected the expression of 81 inflammation-related genes and found higher expression of CXCL10 in CVA2-infected mice. Next, we confirmed CXCL10/CXCR3 activation using immunohistochemistry and found that anti-CXCR3 neutralizing antibody (αCXCR3) therapy could relieve the clinical manifestations and pathological damage and improve the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (IL-6, TNF-α, and IL-1β) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents the first evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis via inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD.
Collapse
|
7
|
Wu Z, Zhu S, Qian J, Hu Y, Ji W, Li D, Zhu P, Liang R, Jin Y. Analysis of miRNAs Involved in Mouse Heart Injury Upon Coxsackievirus A2 Infection. Front Cell Infect Microbiol 2022; 12:765445. [PMID: 35155276 PMCID: PMC8831793 DOI: 10.3389/fcimb.2022.765445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/03/2022] [Indexed: 12/03/2022] Open
Abstract
Coxsackievirus A2 (CVA2) has recently been constantly detected, and is associated with viral myocarditis in children. Our previous study demonstrated that CVA2 led to heart damage in a neonatal murine model. However, the molecular mechanism of heart injury caused by CVA2 remains largely unknown. Emerging evidence suggests the significant functions of miRNAs in Coxsackievirus infection. To investigate potential miRNAs involved in heart injury caused by CVA2, our study, for the first time, conducted a RNA-seq in vivo employing infected mice hearts. In total, 87, 101 and 76 differentially expressed miRNAs were identified at 3 days post infection (dpi), 7 dpi and 7 dpi vs 3 dpi. Importantly, above 3 comparison strategies shared 34 differentially expressed miRNAs. These results were confirmed by quantitative PCR (qPCR). Next, we did GO, KEGG, and miRNA-mRNA integrated analysis of differential miRNAs. The dual-luciferase reporter assay confirmed the miRNA-mRNA pairs. To further confirm the above enriched pathways and processes, we did Western blotting and immunofluorescence staining. Our results suggest that inflammatory responses, T cell activation, apoptosis, autophagy, antiviral immunity, NK cell infiltration, and the disruption of tight junctions are involved in the pathogenesis of heart injury caused by CVA2. The dysregulated miRNAs and pathways recognized in the current study can improve the understanding of the intricate interactions between CVA2 and the heart injury, opening a novel avenue for the future study of CVA2 pathogenesis.
Collapse
Affiliation(s)
- Zhaoke Wu
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shenshen Zhu
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanfeng Qian
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanmin Hu
- Department of Gerontology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ruonan Liang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuefei Jin,
| |
Collapse
|
8
|
The Disruption of the Endothelial Barrier Contributes to Acute Lung Injury Induced by Coxsackievirus A2 Infection in Mice. Int J Mol Sci 2021; 22:ijms22189895. [PMID: 34576058 PMCID: PMC8467819 DOI: 10.3390/ijms22189895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Sporadic occurrences and outbreaks of hand, foot, and mouth disease (HFMD) caused by Coxsackievirus A2 (CVA2) have frequently reported worldwide recently, which pose a great challenge to public health. Epidemiological studies have suggested that the main cause of death in critical patients is pulmonary edema. However, the pathogenesis of this underlying comorbidity remains unclear. In this study, we utilized the 5-day-old BALB/c mouse model of lethal CVA2 infection to evaluate lung damage. We found that the permeability of lung microvascular was significantly increased after CVA2 infection. We also observed the direct infection and apoptosis of lung endothelial cells as well as the destruction of tight junctions between endothelial cells. CVA2 infection led to the degradation of tight junction proteins (e.g., ZO-1, claudin-5, and occludin). The gene transcription levels of von Willebrand factor (vWF), endothelin (ET), thrombomodulin (THBD), granular membrane protein 140 (GMP140), and intercellular cell adhesion molecule-1 (ICAM-1) related to endothelial dysfunction were all significantly increased. Additionally, CVA2 infection induced the increased expression of inflammatory cytokines (IL-6, IL-1β, and MCP-1) and the activation of p38 mitogen-activated protein kinase (MAPK). In conclusion, the disruption of the endothelial barrier contributes to acute lung injury induced by CVA2 infection; targeting p38-MAPK signaling may provide a therapeutic approach for pulmonary edema in critical infections of HFMD.
Collapse
|
9
|
Ji W, Zhu P, Liang R, Zhang L, Zhang Y, Wang Y, Zhang W, Tao L, Chen S, Yang H, Jin Y, Duan G. Coxsackievirus A2 Leads to Heart Injury in a Neonatal Mouse Model. Viruses 2021; 13:v13081588. [PMID: 34452454 PMCID: PMC8402683 DOI: 10.3390/v13081588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Coxsackievirus A2 (CVA2) has emerged as an active pathogen that has been implicated in hand, foot, and mouth disease (HFMD) and herpangina outbreaks worldwide. It has been reported that severe cases with CVA2 infection develop into heart injury, which may be one of the causes of death. However, the mechanisms of CVA2-induced heart injury have not been well understood. In this study, we used a neonatal mouse model of CVA2 to investigate the possible mechanisms of heart injury. We detected CVA2 replication and apoptosis in heart tissues from infected mice. The activity of total aspartate transaminase (AST) and lactate dehydrogenase (LDH) was notably increased in heart tissues from infected mice. CVA2 infection also led to the disruption of cell-matrix interactions in heart tissues, including the increases of matrix metalloproteinase (MMP)3, MMP8, MMP9, connective tissue growth factor (CTGF) and tissue inhibitors of metalloproteinases (TIMP)4. Infiltrating leukocytes (CD45+ and CD11b+ cells) were observed in heart tissues of infected mice. Correspondingly, the expression levels of inflammatory cytokines in tissue lysates of hearts, including tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), IL6 and monocyte chemoattractant protein-1 (MCP-1) were significantly elevated in CVA2 infected mice. Inflammatory signal pathways in heart tissues, including phosphatidylinositol 3-kinase (PI3K)-AKT, mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB), were also activated after infection. In summary, CVA2 infection leads to heart injury in a neonatal mouse model, which might be related to viral replication, increased expression levels of MMP-related enzymes and excessive inflammatory responses.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (P.Z.); (R.L.); (L.Z.); (Y.Z.); (Y.W.); (S.C.); (H.Y.)
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (P.Z.); (R.L.); (L.Z.); (Y.Z.); (Y.W.); (S.C.); (H.Y.)
| | - Ruonan Liang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (P.Z.); (R.L.); (L.Z.); (Y.Z.); (Y.W.); (S.C.); (H.Y.)
| | - Liang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (P.Z.); (R.L.); (L.Z.); (Y.Z.); (Y.W.); (S.C.); (H.Y.)
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (P.Z.); (R.L.); (L.Z.); (Y.Z.); (Y.W.); (S.C.); (H.Y.)
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (P.Z.); (R.L.); (L.Z.); (Y.Z.); (Y.W.); (S.C.); (H.Y.)
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Ling Tao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China;
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (P.Z.); (R.L.); (L.Z.); (Y.Z.); (Y.W.); (S.C.); (H.Y.)
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (P.Z.); (R.L.); (L.Z.); (Y.Z.); (Y.W.); (S.C.); (H.Y.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (P.Z.); (R.L.); (L.Z.); (Y.Z.); (Y.W.); (S.C.); (H.Y.)
- Correspondence: (Y.J.); (G.D.)
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (W.J.); (P.Z.); (R.L.); (L.Z.); (Y.Z.); (Y.W.); (S.C.); (H.Y.)
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Y.J.); (G.D.)
| |
Collapse
|
10
|
Ji W, Qin L, Tao L, Zhu P, Liang R, Zhou G, Chen S, Zhang W, Yang H, Duan G, Jin Y. Neonatal Murine Model of Coxsackievirus A2 Infection for the Evaluation of Antiviral Therapeutics and Vaccination. Front Microbiol 2021; 12:658093. [PMID: 34122374 PMCID: PMC8192712 DOI: 10.3389/fmicb.2021.658093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/30/2021] [Indexed: 01/08/2023] Open
Abstract
Coxsackievirus (CV) A2 has emerged as an important etiological agent in the pathogen spectrum of hand, foot, and mouth disease (HFMD). The symptoms of CVA2 infections are generally mild, but worsen rapidly in some people, posing a serious threat to children’s health. However, compared with enterovirus 71 detected frequently in fatal cases, limited attention has been paid to CVA2 infections because of its benign clinical course. In the present study, we identified three CVA2 strains from HFMD infections and used the cell-adapted CVA2 strain HN202009 to inoculate 5-day-old BALB/c mice intramuscularly. These mice developed remarkably neurological symptoms such as ataxia, hind-limb paralysis, and death. Histopathological determination showed neuronophagia, pulmonary hemorrhage, myofiberlysis and viral myocarditis. Viral replication was detected in multiple organs and tissues, and CVA2 exhibited strong tropism to muscle tissue. The severity of illness was associated with abnormally high levels of inflammatory cytokines, including interleukin (IL)-6, IL-10, tumor necrosis factor α, and monocyte chemotactic protein 1, although the blockade of these proinflammatory cytokines had no obvious protection. We also tested whether an experimental formaldehyde-inactivated CVA2 vaccine could induce protective immune response in adult mice. The CVA2 antisera from the vaccinated mice were effective against CVA2 infection. Moreover, the inactivated CVA2 vaccine could successfully generate immune protection in neonatal mice. Our results indicated that the neonatal mouse model could be a useful tool to study CVA2 infection and to develop CVA2 vaccines.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Luwei Qin
- Henan Province Center for Disease Control and Prevention, Zhengzhou, China
| | - Ling Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ruonan Liang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangyuan Zhou
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Ai Y, Zhang W, Wu J, Zhang J, Shen M, Yao S, Deng C, Li X, Wu D, Tian P, Cheng X, Zha H, Wu K. Molecular Epidemiology and Clinical Features of Enteroviruses-Associated Hand, Foot, and Mouth Disease and Herpangina Outbreak in Zunyi, China, 2019. Front Med (Lausanne) 2021; 8:656699. [PMID: 33981716 PMCID: PMC8109248 DOI: 10.3389/fmed.2021.656699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Hand, foot and mouth disease (HFMD) and herpangina (HA), two of the most common childhood infectious diseases, are associated with enteroviruses (EVs) infection. The aim of this study was to identify the molecular epidemiology of enterovirus causing HFMD/HA in Zunyi, China, during 2019, and to describe the clinical features of the cases. Methods: We collected the information on demographic and clinical characteristics, laboratory data of laboratory-confirmed EVs associated HFMD/HA cases in Zunyi Medical University Third Affiliated Hospital between March 1 and July 31, 2019. EV types were determined by either one-step real time RT-PCR or partial VP1 gene sequencing and sequence alignment. Phylogenetic analysis of CVA6, CVA2, and CVA5 were established based on the partial VP1 gene sequences by neighbor-joining method. Differences in clinical characteristics and laboratory results of the cases were compared among patients infected with the most prevalent EV types. Results: From 1 March to 31 July 2019, 1,377 EVs associated HFMD/HA inpatients were confirmed. Of them, 4 (0.3%, 4/1,377) were EV-A71-associated cases, 84 (6.1%, 84/1,377) were CVA16-associated cases, and 1,289 (93.6%, 1,289/1,377) were non-EV-A71/CVA16-associated cases. Of the randomly selected 372 non-EV-A71/CVA16 cases, EV types have been successfully determined in 273 cases including 166 HFMD and 107 HA cases. For HFMD cases, the three most common types were CVA6 (80.7%, 134/166), CVA2 (5.4%, 9/166) and CVA5 (3.0%, 5/166); similarly, for HA cases, the three most prevalent serotypes were CVA6 (36.5%, 39/107), CVA2 (21.5%, 23/107) and CVA5 (18.7%, 20/107). Phylogenetic analysis showed that subclade D of CVA5, and subclade E of CVA6 and CVA2 were predominant in Zunyi during the outbreak in 2019. Compared with the cases caused by CVA16, the incidence of high fever and severe infection associated with CVA2, CVA5, and CVA6 was higher. Conclusions: The recent HFMD/HA outbreak in Zunyi is due to a larger incidence of CVA6, CVA2, and CVA5. Novel diagnostic reagents and vaccines against these types would be important to monitor and control EV infections.
Collapse
Affiliation(s)
- Yuanhang Ai
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Weiwei Zhang
- Department of Pediatrics and Child Health, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Jie Wu
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Jingzhi Zhang
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Meijing Shen
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Shifei Yao
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Chengmin Deng
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Xiaoqian Li
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Dejing Wu
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Peng Tian
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Xiaoju Cheng
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - He Zha
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Kaifeng Wu
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China.,Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| |
Collapse
|
12
|
Gao F, Bian LL, Chen L, Zhou YP, Li GF, Mao QY, He Q, Wu X, Yao SS, Yang XM, Liang ZL. A cross-sectional seroepidemiology study of seven major enteroviruses causing HFMD in Guangdong, China. J Infect 2021; 83:119-145. [PMID: 33872666 DOI: 10.1016/j.jinf.2021.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Fan Gao
- National Institutes for Food and Drug Control, No.31, Huatuo Street, Beijing, P.R. China
| | - Lian-Lian Bian
- National Institutes for Food and Drug Control, No.31, Huatuo Street, Beijing, P.R. China; Wuhan Institute of Biological Products CO., LTD, Wuhan, P.R. China
| | - Lei Chen
- Minhai Biotechnology CO.,LTD, Beijing, P.R. China
| | - Yan-Ping Zhou
- Wuhan Institute of Biological Products CO., LTD, Wuhan, P.R. China
| | - Gui-Fan Li
- Minhai Biotechnology CO.,LTD, Beijing, P.R. China
| | - Qun-Ying Mao
- National Institutes for Food and Drug Control, No.31, Huatuo Street, Beijing, P.R. China
| | - Qian He
- National Institutes for Food and Drug Control, No.31, Huatuo Street, Beijing, P.R. China
| | - Xing Wu
- National Institutes for Food and Drug Control, No.31, Huatuo Street, Beijing, P.R. China
| | - Shan-Shan Yao
- National Institutes for Food and Drug Control, No.31, Huatuo Street, Beijing, P.R. China
| | - Xiao-Ming Yang
- Wuhan Institute of Biological Products CO., LTD, Wuhan, P.R. China; China National Biotech Group CO., LTD, Shuangqiao Road, Beijing 100024, P.R. China.
| | - Zheng-Lun Liang
- National Institutes for Food and Drug Control, No.31, Huatuo Street, Beijing, P.R. China.
| |
Collapse
|
13
|
Ye YZ, Dou YL, Hao JH, Zhou L, Lin AW, Wang SN, Deng JK, Lei M, Luo RP, Liao YN, Chen Y, Long YY, Chen BQ, Yang Z, Gan L, Nong GM, Yan WL, Yu H. Efficacy and safety of interferon α-2b spray for herpangina in children: A randomized, controlled trial. Int J Infect Dis 2021; 107:62-68. [PMID: 33878461 DOI: 10.1016/j.ijid.2021.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The treatment of acute herpangina is inconsistent. We aim to evaluate the effectiveness and safety of interferon α-2b spray versus Ribavirin for this disease. METHODS A randomized, controlled trial was conducted in eight hospitals in China between 2016 and 2018. 668 patients (1-7 years old) were randomized into an experimental group (treated with Interferon α-2b spray) or control group (received Ribavirin Aerosol). Body temperature returning to normal within 72 h and remaining so for 24 h was the primary outcome; release of oral herpes and adverse events were the secondary outcomes. RESULTS (1) The average age of onset was 2.5 years old. (2) After 72 h treatment, body temperature of 98.5% patients in experimental group and 94.3% in control group returned to normal and remained so for 24 h (P = 0.004). The differences were greater at 48 h treatment (95.2% vs. 85.9%, P < 0.001) and at 24 h (77.5% vs. 66.5%, P = 0.001). (3) The rate of improved oral herpes in the experimental group was higher than that in control group (46.7% vs.37.1%, P = 0.011). No adverse reaction occurred. CONCLUSIONS Local application of recombinant interferon α-2b spray showed better efficacy for acute herpangina in children. It was safe for use.
Collapse
Affiliation(s)
- Ying-Zi Ye
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Ya-Lan Dou
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, Shanghai, China
| | - Jian-Hua Hao
- Department of Internal Medicine, Children's Hospital of Kaifeng City, Kaifeng, China
| | - Li Zhou
- Department of Internal Medicine, Children's Hospital of Kaifeng City, Kaifeng, China
| | - Ai-Wei Lin
- Department of Infectious Diseases, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Shao-Ning Wang
- Department of Infectious Diseases, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Ji-Kui Deng
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Min Lei
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Ru-Ping Luo
- Department of Infectious Diseases, Hunan Children's Hospital, Changsha, China
| | - Yi-Nan Liao
- Department of Infectious Diseases, Hunan Children's Hospital, Changsha, China
| | - Yan Chen
- Department of Pediatrics Internal Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan-Yuan Long
- Department of Pediatrics Internal Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Bi-Quan Chen
- Department of Infectious Diseases, Anhui Provincial Children'S Hospital, Hefei, China
| | - Zhi Yang
- Department of Infectious Diseases, Anhui Provincial Children'S Hospital, Hefei, China
| | - Lu Gan
- Department of Pediatrics, Changhai Hospital, Shanghai, China
| | - Guang-Min Nong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei-Li Yan
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, Shanghai, China.
| | - Hui Yu
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Zhao TS, Du J, Li HJ, Cui Y, Liu Y, Yang Y, Cui F, Lu QB. Molecular epidemiology and clinical characteristics of herpangina children in Beijing, China: a surveillance study. PeerJ 2020; 8:e9991. [PMID: 33088614 PMCID: PMC7568857 DOI: 10.7717/peerj.9991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/28/2020] [Indexed: 11/20/2022] Open
Abstract
Background Herpangina is a highly infectious disease, which is usually prevalent in preschool children. Methods This study analyzed the clinical and pathogenic characteristics of herpangina children to demonstrate the epidemiology of herpangina. Clinical manifestations, laboratory indicators and pharyngeal swabs were collected from children with herpangina who were monitored by Tongzhou Center for Disease Control and Prevention in Beijing, 2008. Utilizing pharyngeal swabs, virus extraction and amplification were performed for nucleotide identification and sequencing. The phylogenetic analysis was conducted based on all sequences amplified in this study and strains retrieved from GenBank. Results Among 190 children with herpangina, 69.0% (131/190) were positive for enterovirus. Eight genotypes were identified, mainly including CV-A6 (39/131), CV-A4 (25/131), CV-A10 (24/131). The phylogenetic analysis showed one CV-A6 strain of Tongzhou was imported from Japan. CV-A10 strains were clustered into five groups (A-E). The dominant cluster of CV-A10 was Group E6 between 2009 and 2013, and converted to Group E5 after 2013. CV-A6 was the predominant pathogen causing herpangina in Tongzhou in 2018, followed by CV-A4 and CV-A10. Conclusions The circulation of coxsackievirus had spatiotemporal cluster. In controlling the transmission of herpangina, the surveillance and reporting system should be enhanced.
Collapse
Affiliation(s)
- Tian-Shuo Zhao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Juan Du
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Hong-Jun Li
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Control and Prevention, Beijing, China
| | - Yan Cui
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Control and Prevention, Beijing, China
| | - Yaqiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Yanna Yang
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Control and Prevention, Beijing, China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
15
|
Genetic characterization of VP1 of coxsackieviruses A2, A4, and A10 associated with hand, foot, and mouth disease in Vietnam in 2012-2017: endemic circulation and emergence of new HFMD-causing lineages. Arch Virol 2020; 165:823-834. [PMID: 32008121 DOI: 10.1007/s00705-020-04536-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
While conducting sentinel surveillance of hand, foot, and mouth disease (HFMD) in Vietnam, we found a sudden increase in the prevalence of coxsackievirus A10 (CV-A10) in 2016 and CV-A2 and CV-A4 in 2017, the emergence of which has been reported recently to be associated with various clinical manifestations in other countries. However, there have been only a limited number of molecular studies on those serotypes, with none being conducted in Vietnam. Therefore, we sequenced the entire VP1 genes of CV-A10, CV-A4, and CV-A2 strains associated with HFMD in Vietnam between 2012 and 2017. Phylogenetic analysis revealed a trend of endemic circulation of Vietnamese CV-A10, CV-A4, and CV-A2 strains and the emergence of thus-far undescribed HFMD-causing lineages of CV-A4 and CV-A2. The Vietnamese CV-A10 strains belonged to a genotype comprising isolates from patients with HFMD from several other countries; however, most of the Vietnamese strains were grouped into a local lineage. Recently, emerging CV-A4 strains in Vietnam were grouped into a unique lineage within a genotype comprising strains isolated from patients with acute flaccid paralysis from various countries. New substitutions were detected in the putative BC and HI loops in the Vietnamese CV-A4 strains. Except for one strain, Vietnamese CV-A2 isolates were grouped into a unique lineage of a genotype that includes strains from various countries that are associated with other clinical manifestations. Enhanced surveillance is required to monitor their spread and to specify their roles as etiological agents of HFMD or "HFMD-like" diseases, especially for CV-A4 and CV-A2. Further studies including whole-genome sequencing should be conducted to fully understand the evolutionary changes occurring in these newly emerging strains.
Collapse
|
16
|
Andrés C, Guasch E, Piñana M, Fernandes P, Gimferrer L, Esso DV, Codina MG, Esperalba J, Vila J, Rodrigo C, Martín MC, Fuentes F, Rubio S, Pumarola T, Antón A. Recombinant CV-A6 strains related to hand-foot-mouth disease and herpangina at primary care centers (Barcelona, Spain). Future Microbiol 2019; 14:499-507. [PMID: 31033351 DOI: 10.2217/fmb-2018-0336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: To describe the genetic diversity of enteroviruses (EV) causing hand, foot and mouth disease (HFMD) and herpangina, especially of coxsackievirus (CV)-A6, from patients attended at pediatric primary care centers during the 2017-2018 season. Methods: Phylogenetic analysis of partial VP1 region was performed for genetic characterization. The complete VP1 and 3Dpol proteins were sequenced for lineage determination and detection of recombination events. Results: An 80% of samples were EV laboratory-confirmed. CV-A6 was the most detected (70%) and associated with atypical HFMD (78%). The comparison of VP1 and 3Dpol phylogenies showed evidence of recombination in three strains, in which two shifted to CV-A16 3Dpol. Conclusion: The study provides recent information regarding the nonrecombinant and recombinant EVs related to HFMD at primary care centers.
Collapse
Affiliation(s)
- Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eulàlia Guasch
- Primary Care Service Muntanya, Institut Català de la Salut, Department of Health, Barcelona, Spain
| | - Maria Piñana
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Fernandes
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Gimferrer
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Diego Van Esso
- Primary Care Service Muntanya, Institut Català de la Salut, Department of Health, Barcelona, Spain
| | - Maria Gema Codina
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jorgina Vila
- Paediatric Hospitalisation Unit, Department of Paediatrics, Hospital Universitari Maternoinfantil Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Rodrigo
- Paediatric Hospitalisation Unit, Department of Paediatrics, Hospital Universitari Maternoinfantil Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Carmen Martín
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Fuentes
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Rubio
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | -
- Primary Care Service Muntanya, Institut Català de la Salut, Department of Health, Barcelona, Spain
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Near-Complete Genome Sequences of 12 Coxsackievirus Group A Strains from Hand, Foot, and Mouth Disease and Herpangina Cases with Different Clinical Symptoms. Microbiol Resour Announc 2019; 8:MRA01655-18. [PMID: 30834371 PMCID: PMC6386572 DOI: 10.1128/mra.01655-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Coxsackievirus group A (CV-A) strains are important pathogens of hand, foot, and mouth disease and herpangina. We report here the near-complete genome sequences of 12 CV-A strains isolated from infants and children with different clinical diseases. The presented data will be very useful for future genome-based epidemiological studies.
Collapse
|
18
|
Yang Q, Gu X, Zhang Y, Wei H, Li Q, Fan H, Xu Y, Li J, Tan Z, Song Y, Yan D, Ji T, Zhu S, Xu W. Persistent circulation of genotype D coxsackievirus A2 in mainland of China since 2008. PLoS One 2018; 13:e0204359. [PMID: 30235342 PMCID: PMC6147602 DOI: 10.1371/journal.pone.0204359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/06/2018] [Indexed: 11/30/2022] Open
Abstract
Coxsackievirus A2 (CV-A2) has emerged as an important etiological agent in the hand, foot, and mouth disease and herpangina pathogen spectrum because of its high global prevalence. In the present study, we investigated the evolutionary dynamics of CV-A2 circulating in China. We analyzed a total of 163 entire VP1 sequences of CV-A2, including 74 sequences generated from the present study and 89 sequences collected from the GenBank database. Phylogenetic analysis based on the entire VP1 nucleotide sequences confirmed the persistent circulation of the predominant genotype D in mainland of China since 2008. Cluster analysis grouped the sequences into two distinct clusters, clusters 1 and 2, with most grouped under cluster 2. After 2012, cluster 1 was gradually replaced by cluster 2. Results of Bayesian Markov chain Monte Carlo analysis suggested that multiple lineages of genotype D were transmitted in mainland of China at an estimated evolutionary rate of 6.32×10−3 substitutions per site per year, which is consistent with the global evolutionary rate of CV-A2 (5.82×10−3 substitutions per site per year). Continuous transmission and evolution of CV-A2 resulted in the genetic polymorphism.
Collapse
Affiliation(s)
- Qian Yang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xinrui Gu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- RCSC National Training Center, Beijing, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Haiyan Wei
- Henan Center for Disease Control and Prevention, Zhengzhou, People's Republic of China
| | - Qi Li
- Hebei Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | - Huan Fan
- Jiangsu Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Yi Xu
- Shaanxi Center for Disease Control and Prevention, Xi'an, People's Republic of China
| | - Jie Li
- Beijing Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhaolin Tan
- Tianjin Center for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
- * E-mail:
| |
Collapse
|