1
|
Thachamvally R, Chander Y, Kumar R, Kumar G, Khandelwal N, G A, Manuja A, Vaid RK, Kumar N, Barua S, Pal Y, Tripathi BN, Bhattacharya TK. First Isolation and Genetic Characterization of Avian Nephritis Virus 4 from Commercial Poultry in India. Avian Dis 2024; 68:202-208. [PMID: 39400214 DOI: 10.1637/aviandiseases-d-23-00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/06/2024] [Indexed: 10/15/2024]
Abstract
Avian nephritis virus (ANV), which belongs to the family Astroviridae, is associated with different clinical manifestations (enteric and kidney disorders) in poultry. Despite being a significant pathogen of the avian industry worldwide, information regarding genetic features of these viruses in India is scarce. In this study, 386 intestinal samples collected from 37 slaughterhouses in two north Indian states (Rajasthan and Haryana) were screened for ANV with reverse transcription PCR (RT-PCR) targeting the conserved ORF1b gene, followed by nucleotide sequencing of the amplified product. RT-PCR and sequencing confirmed the presence of ANV in 32 clinical samples (8.29%), with concurrent infections of infectious bronchitis virus, chicken astrovirus, and fowl adenoviruses observed in some clinical samples (n = 4). Virus isolations were successful from four out of 12 ANV-positive clinical samples passaged via the yolk-sac route in specific-pathogen-free embryonated chicken eggs. Additionally, the near-complete genomes of two viruses were determined through sequencing. Phylogenetic analysis based on full-length capsid protein sequences classified the viruses into ANV genotype 4 (ANV4), and to the best of our knowledge this is the first report of ANV4 from India. This study revealed the presence and circulation of new strains of ANV in Indian poultry. Genetic profiling and isolation of the viruses in this study will not only aid in the development of diagnostic tools and vaccines for ANV but also offer valuable insights into its epidemiology.
Collapse
Affiliation(s)
- Riyesh Thachamvally
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India, ,
| | - Yogesh Chander
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India
| | - Ram Kumar
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India
| | - Garvit Kumar
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India
| | - Nitin Khandelwal
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India
| | - Anagha G
- Kerala State Animal Husbandry Department (AHD), Kerala, 695033, India
| | - Anju Manuja
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India
| | - Rajesh Kumar Vaid
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India
| | - Naveen Kumar
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India
| | - Sanjay Barua
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India
| | - Yash Pal
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India
| | - B N Tripathi
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India
| | - T K Bhattacharya
- National Centre for Veterinar T e Cultures ICAR-NRC on E uines Sirsa Road Hisar Har ana 125001 India
| |
Collapse
|
2
|
Rashid F, Xie Z, Wei Y, Xie Z, Xie L, Li M, Luo S. Biological features of fowl adenovirus serotype-4. Front Cell Infect Microbiol 2024; 14:1370414. [PMID: 38915924 PMCID: PMC11194357 DOI: 10.3389/fcimb.2024.1370414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is highly pathogenic to broilers aged 3 to 5 weeks and has caused considerable economic loss in the poultry industry worldwide. FAdV-4 is the causative agent of hydropericardium-hepatitis syndrome (HHS) or hydropericardium syndrome (HPS). The virus targets mainly the liver, and HPS symptoms are observed in infected chickens. This disease was first reported in Pakistan but has now spread worldwide, and over time, various deletions in the FAdV genome and mutations in its major structural proteins have been detected. This review provides detailed information about FAdV-4 genome organization, physiological features, epidemiology, coinfection with other viruses, and host immune suppression. Moreover, we investigated the role and functions of important structural proteins in FAdV-4 pathogenesis. Finally, the potential regulatory effects of FAdV-4 infection on ncRNAs are also discussed.
Collapse
Affiliation(s)
- Farooq Rashid
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - You Wei
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhiqin Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Meng Li
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
3
|
Franzo G, Faustini G, Tucciarone CM, Pasotto D, Legnardi M, Cecchinato M. Conflicting Evidence between Clinical Perception and Molecular Epidemiology: The Case of Fowl Adenovirus D. Animals (Basel) 2023; 13:3851. [PMID: 38136888 PMCID: PMC10741239 DOI: 10.3390/ani13243851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fowl adenoviruses (FAdVs, species FAdV-A/-E) are responsible for several clinical syndromes reported with increasing frequency in poultry farms in the last decades. In the present study, a phylodynamic analysis was performed on a group of FAdV-D Hexon sequences with adequate available metadata. The obtained results demonstrated the long-term circulation of this species, at least several decades before the first identification of the disease. After a period of progressive increase, the viral population showed a high-level circulation from approximately the 1960s to the beginning of the new millennium, mirroring the expansion of intensive poultry production and animal trade. At the same time, strain migration occurred mainly from Europe to other continents, although other among-continent connections were estimated. Thereafter, the viral population declined progressively, likely due to the improved control measures, potentially including the development and application of FAdV vaccines. An increase in the viral evolutionary rate featured this phase. A role of vaccine-induced immunity in shaping viral evolution could thus be hypothesized. Accordingly, several sites of the Hexon, especially those targeted by the host response were proven under a significant pervasive or episodic diversifying selection. The present study results demonstrate the role of intensive poultry production and market globalization in the rise of FAdV. The applied control strategies, on the other hand, were effective in limiting viral circulation and shaping its evolution.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell’Università, 16, 35020 Legnaro, Italy; (G.F.); (C.M.T.); (D.P.); (M.L.); (M.C.)
| | | | | | | | | | | |
Collapse
|
4
|
Detection, Quantification and Molecular Characterization of Fowl Adenoviruses Circulating in Ecuadorian Chicken Flocks during 2019-2021. Vet Sci 2023; 10:vetsci10020115. [PMID: 36851419 PMCID: PMC9963715 DOI: 10.3390/vetsci10020115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Fowl adenoviruses are a group of pathogens that cause large economic losses worldwide in the poultry industry, in addition to producing a wide range of diseases, such as IBH, HHS, and enteric and respiratory diseases. The objective of this study was to quantify, identify, and molecularly characterize the types of FAdV circulating in commercial poultry farms (broilers, breeders, and layers) in Ecuador from 2019 to 2021. Molecular characterization was performed by PCR, quantification by qPCR, and subsequent sequencing for each positive sample. The results indicated that the FAdV genotypes circulating in our country are FAdV-2/D2, FAdV-6/E1, FAdV-8a/E2, and FAdV-11/D3; the samples were grouped into different groups that contain sequences that were obtained from countries in Africa, Asia, and America, and that are found in birds at different ages, since early age where can cause different clinical signs, such as diarrhea, ruffled feathers and dwarfism. Therefore, these results indicate that several genotypes of the virus are circulating in commercial poultry flocks, suggesting that biosecurity measures on farms should be improved, in addition to carrying out new or improved vaccination plans.
Collapse
|
5
|
El-Shall NA, El-Hamid HSA, Elkady MF, Ellakany HF, Elbestawy AR, Gado AR, Geneedy AM, Hasan ME, Jaremko M, Selim S, El-Tarabily KA, El-Hack MEA. Epidemiology, pathology, prevention, and control strategies of inclusion body hepatitis and hepatitis-hydropericardium syndrome in poultry: A comprehensive review. Front Vet Sci 2022; 9:963199. [PMID: 36304412 PMCID: PMC9592805 DOI: 10.3389/fvets.2022.963199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/04/2022] Open
Abstract
Infection with fowl adenoviruses (FAdVs) can result in a number of syndromes in the production of chicken, including inclusion body hepatitis (IBH), hepatitis-hydropericardium syndrome (HHS), and others, causing enormous economic losses around the globe. FAdVs are divided into 12 serotypes and five species (A-E; 1-8a and 8b-11). Most avian species are prone to infection due to the widespread distribution of FAdV strains. The genus aviadenovirus, which is a member of the adenoviridae family, is responsible for both IBH and HHS. The most popular types of transmission are mechanical, vertical, and horizontal. Hepatitis with basophilic intranuclear inclusion bodies distinguishes IBH, but the buildup of translucent or straw-colored fluid in the pericardial sac distinguishes HHS. IBH and HHS require a confirmatory diagnosis because their clinical symptoms and postmortem abnormalities are not unique to those conditions. Under a microscope, the presence of particular lesions and inclusion bodies may provide clues. Traditional virus isolation in avian tissue culture is more delicate than in avian embryonated eggs. Additionally, aviadenovirus may now be quickly and precisely detected using molecular diagnostic tools. Preventive techniques should rely on efficient biosecurity controls and immunize breeders prior to production in order to protect progeny. This current review gives a general overview of the current local and global scenario of IBH, and HHS brought on by FAdVs and covers both their issues and preventative vaccination methods.
Collapse
Affiliation(s)
- Nahed A. El-Shall
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hatem S. Abd El-Hamid
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Magdy F. Elkady
- Poultry Disease Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hany F. Ellakany
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed R. Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed R. Gado
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Amr M. Geneedy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed E. Hasan
- Bioinformatic Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El Sadat City, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | | |
Collapse
|
6
|
Tsiouris V, Mantzios T, Kiskinis K, Guérin JL, Croville G, Brellou GD, Apostolopoulou EP, Petridou EJ, Georgopoulou I. First Detection and Identification of FAdV-8b as the Causative Agent of an Outbreak of Inclusion Body Hepatitis in a Commercial Broiler Farm in Greece. Vet Sci 2022; 9:vetsci9040160. [PMID: 35448658 PMCID: PMC9027271 DOI: 10.3390/vetsci9040160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Inclusion body hepatitis (IBH) is an economically important disease of chickens, with a worldwide distribution, caused by Fowl Aviadenoviruses (FAdVs). Currently, the increased number of cases, the virulence of the isolate strains, as well as the lack of cross-species protection highlight that detailed in-field data are fundamental for the development of successful control strategies. This case report provides a detailed clinicopathological investigation of an unusual IBH outbreak in a commercial broiler farm in the region of Macedonia, Greece. The farm consisted of 64,000 birds, originated from the same breeder stock and placed in three different houses (Flock A–C). At 20 days of age, a sudden increase in daily mortality was recorded in Flock A. It is worth mentioning that, although all flocks were serologically (indirect ELISA) and molecularly (RT-PCR) positive for FAdV, the mortality rate, attributed to IBH, was much higher in Flock A compared to others. The clinical manifestation included non-specific symptoms such as depression, inappetence, yellowish mucoid diarrhea, and lack of uniformity. At necropsy, typically, enlarged, pale, and friable livers were dominant, while sporadically lesions were recorded in the pancreas, kidneys, skeletal muscles, and lymphoid organs. The histopathological examination of liver samples showed multifocal inflammation, necrosis, and the presence of basophilic/ eosinophilic inclusion bodies in hepatocytes. In addition, the loss of the architecture of pancreatic lobules and the presence of fibrosis and foci of mononuclear cell aggregates were suggestive of chronic pancreatic inflammation. PCR analysis confirmed the presence of FAdV, belonging to species E, serotype FAdV-8b. Performance and financial calculations revealed that IBH increased Feed Conversion Ratio (FCR), feed cost/chick as well as feed cost/kg live weight, whereas the Livability (%) and the European Production Efficiency Factor (EPEF) were decreased in the most severely affected flocks (Flock A). This study is the first report of the detection and identification of FAdV serotypes associated with IBH in commercial broiler flocks in Greece. However, there is still a lack of information about the circulating FAdV serotypes in the country, and therefore epidemiological studies are needed to establish control strategies for IBH.
Collapse
Affiliation(s)
- Vasileios Tsiouris
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (V.T.); (K.K.); (I.G.)
| | - Tilemachos Mantzios
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (V.T.); (K.K.); (I.G.)
- Correspondence: ; Tel.: +30-2310994551
| | - Konstantinos Kiskinis
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (V.T.); (K.K.); (I.G.)
| | - Jean-Luc Guérin
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (J.-L.G.); (G.C.)
| | - Guillaume Croville
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (J.-L.G.); (G.C.)
| | - Georgia D. Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (G.D.B.); (E.P.A.)
| | - Emmanouela P. Apostolopoulou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (G.D.B.); (E.P.A.)
| | - Evanthia J. Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Georgopoulou
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (V.T.); (K.K.); (I.G.)
| |
Collapse
|
7
|
Species Fowl aviadenovirus B Consists of a Single Serotype despite Genetic Distance of FAdV-5 Isolates. Viruses 2022; 14:v14020248. [PMID: 35215844 PMCID: PMC8880664 DOI: 10.3390/v14020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/08/2023] Open
Abstract
Fowl adenoviruses (FAdVs) are infectious agents, mainly of chickens, which cause economic losses to the poultry industry. Only a single serotype, namely FAdV-5, constitutes the species Fowl aviadenovirus B (FAdV-B); however, recently, phylogenetic analyses have identified divergent strains of the species, implicating a more complex scenario and possibly a novel serotype. Therefore, field isolates of the species were collected to investigate the contemporary diversification within FAdV-B, including traditional serotyping. Full genomes of fourteen FAdV-B strains were sequenced and four strains, possessing discriminatory mutations in the antigenic domains, were compared using virus cross-neutralization. Essentially, strains with identical antigenic signatures to that of the first described divergent strain were found in the complete new dataset. While chicken antiserum against FAdV-5 reference strain 340 could not neutralize any of the newly isolated viruses, low homologous/heterologous titer ratios were measured reciprocally. Although they argue against a new serotype, our results indicate the emergence of escape variants in FAdV-B. Charge-influencing amino acid substitutions accounted for only a few mutations between the strains; still, these enabled one-way cross-neutralization only. These findings underline the continued merit of the cross-neutralization test as the gold standard for serotyping, complementary to advancing sequence data, and provide a snapshot of the actual diversity and evolution of species FAdV-B.
Collapse
|
8
|
Abghour S, Mouahid M, Darkaoui S, Berrada J, Zro K, Kichou F. Pathogenicity of field strain of fowl aviadenovirus serotype 11 isolated from chickens with inclusion body hepatitis in Morocco. PLoS One 2021; 16:e0261284. [PMID: 34914781 PMCID: PMC8675708 DOI: 10.1371/journal.pone.0261284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
Outbreaks of inclusion body hepatitis have emerged in Morocco since 2013 and has resulted in significant economic losses to poultry farms. Three isolates of the causative virus, Fowl adenonovirus (FAdV)were characterized from chickens with IBH, but their pathogenicity has never been investigated. In this work, the pathogenicity of an isolate FAdV 11 (MOR300315 strain) was evaluated by inoculating a group of 40 SPF chickens at 3 days of age by oral route. A group of 40 chicks injected with phosphate-buffered saline solution was used as a control group. The infected chickens showed decreased weight gain from 3dpi. Necropsy displayed pallor and enlargement in liver, swelling and slight hemorrhage in kidney and spleen at 6 dpi. Histopathological changes were mainly characterized by severe and extensive hepatic necrosis associated with the presence of basophilic intra-nuclear inclusion bodies within hepatocytes. The FAdV was reisolated in chicken embryo fibroblast cell culture from liver tissue homogenate of infected chicken from 3 to 6 dpi. Viral DNA was detected by PCR in liver, kidney, spleen and cloacal swabs from 3 to 13 dpi. Antibody response against inoculated FAdV was appeared from 9 dpi. These results confirmed that the FAdV 11 strain is pathogenic in chicken. This study is the first experimental infection of FAdV 11 in chicken in Morocco, which increase our understanding of its pathogenicity in chickens and indicate that preventive measures against FAdV infection in poultry farms should be implemented in Morocco.
Collapse
Affiliation(s)
- Samira Abghour
- Division of Pharmacy and Veterinary Inputs, ONSSA, Rabat, Morocco
- Hassan 2nd Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | | | - Sami Darkaoui
- Division of Pharmacy and Veterinary Inputs, ONSSA, Rabat, Morocco
| | - Jaouad Berrada
- Hassan 2nd Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Khalil Zro
- Department of Development of Production Sectors, Ministry of Agriculture and Maritime Fisheries, Rabat, Morocco
| | - Faouzi Kichou
- Hassan 2nd Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| |
Collapse
|
9
|
A 10-Year Retrospective Study of Inclusion Body Hepatitis in Meat-Type Chickens in Spain (2011-2021). Viruses 2021; 13:v13112170. [PMID: 34834976 PMCID: PMC8617850 DOI: 10.3390/v13112170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
A surge in fowl adenovirus (FAdV) causing inclusion body hepatitis (IBH) outbreaks has occurred in several countries in the last two decades. In Spain, a sharp increase in case numbers in broilers and broiler breeder pullets arose since 2011, which prompted the vaccination of breeders in some regions. Our retrospective study of IBH cases in Spain from 2011 to 2021 revealed that most cases were reported in broilers (92.21%) and were caused by serotypes FAdV-8b and -11, while cases in broiler breeder pullets were caused by serotypes FAdV-2, -11, and -8b. Vertical transmission was the main route of infection, although horizontal transmission likely happened in some broiler cases. Despite the inconsistent and heterogeneous use of vaccines among regions and over time, the number of cases mirrored the use of vaccines in the country. While IBH outbreaks were recorded year-long, significantly more cases occurred during the cooler and rainier months. The geographic distribution suggested a widespread incidence of IBH and revealed the importance of a highly integrated system. Our findings contribute to a better understanding of FAdV infection dynamics under field conditions and reiterate the importance of surveillance, serological monitoring of breeders, and vaccination of breeders against circulating serotypes to protect progenies.
Collapse
|
10
|
Molecular typing and pathogenicity assessment of fowl adenovirus associated with inclusion body hepatitis in chicken from India. Trop Anim Health Prod 2021; 53:412. [PMID: 34308515 DOI: 10.1007/s11250-021-02851-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Recently, inclusion body hepatitis (IBH) outbreaks have been increasingly reported in different regions of India, particularly in broiler flocks. The present study was undertaken to characterize fowl adenovirus associated with IBH in chicken and assessment of its pathogenicity. Liver samples were collected from fowl adenovirus (FAdV) suspected 100 commercial broiler and six broiler breeder flocks from eleven different States of India from 2016 to 2019. All the samples were subjected to 897-bp FAdV hexon gene-specific PCR for confirmation and primary chicken liver cells were used to isolate the field FAdVs. Sequencing and phylogenetic analysis of 897-bp FAdV hexon gene revealed that all the isolates have showed close evolutionary relationship with fowl adenovirus serotype 11 of species D. For pathogenicity assessment, 0.5 ml of 106.5 TCID50/ml of field FAdV serotype 11 isolate was orally inoculated in 1-day-old SPF chicks and observed for 21 days. This experimental study revealed that there was no mortality in infected chicks and showed clinical signs of dullness, depression and diarrhoea between third and fifth day of oral inoculation. The FAdV was reisolated and confirmed by PCR from experimentally infected chicken. Based on this study, among all serotypes, FAdV serotype 11 is involved in pathogenesis of inclusion body hepatitis in broiler-type chickens in India.
Collapse
|
11
|
Brown Jordan A, Blake L, Bisnath J, Ramgattie C, Carrington CV, Oura CAL. Identification of four serotypes of fowl adenovirus in clinically affected commercial poultry co-infected with chicken infectious anaemia virus in Trinidad and Tobago. Transbound Emerg Dis 2019; 66:1341-1348. [PMID: 30817083 DOI: 10.1111/tbed.13162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Fowl adenovirus (FAdV), which causes the high-impact diseases such as inclusion body hepatitis and hepatitis-hydropericardium syndrome, is of major concern to the poultry industry internationally. This study was carried out in direct response to mortality rates of up to 75% in commercial broiler flocks in Trinidad, West Indies. Symptoms in 3- to 8-week-old broilers and 13- to 18-week-old pullets pointed to infection with an immunosuppressive viral pathogen. The objectives of the study were to determine whether the infectious agent FAdV, along with other viral pathogens, was responsible for the clinical disease, and to obtain information on the serotypes of FAdV that were infecting the birds. Tissue samples from clinically affected birds from eight different farms were tested for chicken infectious anaemia virus (CIAV) and infectious bursal disease virus (IBDV) by real-time reverse transcription polymerase chain reaction (PCR) and for FAdV by conventional PCR. The birds tested positive for FAdV and CIAV, but negative for IBDV. The gene corresponding to the L1 loop of the hexon protein for FAdV was amplified and sequenced. Phylogenetic analysis of seven FAdV strains inferred that four serotypes were likely to be circulating in the chickens. Well supported genetic relatedness was observed for serotype 8a (97.8%), 8b (97.8%), 9 (95.8%) and 11 (98.8%-99.5%). This is the first published report from Trinidad and Tobago on the presence and circulation of pathogenic FAdV strains, in combination with CIAV, in poultry. The data demonstrate a possible need for the introduction of serotype-specific vaccines against FAdV, as well as vaccines against CIAV, in broilers in the region and emphasize the importance of maintaining high levels of biosecurity on farms to prevent the spread of these potentially devastating viruses between farms.
Collapse
Affiliation(s)
- Arianne Brown Jordan
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies (St. Augustine), Mount Hope, Republic of Trinidad and Tobago
| | - Lemar Blake
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies (St. Augustine), Mount Hope, Republic of Trinidad and Tobago
| | - Judy Bisnath
- Poultry Surveillance Unit, Animal Production and Health Services Division, Ministry of Agriculture, Land and Fisheries, National Animal Disease Centre, Centeno, Republic of Trinidad and Tobago
| | - Chad Ramgattie
- Poultry Surveillance Unit, Animal Production and Health Services Division, Ministry of Agriculture, Land and Fisheries, National Animal Disease Centre, Centeno, Republic of Trinidad and Tobago
| | - Christine V Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies (St. Augustine), Mount Hope, Republic of Trinidad and Tobago
| | - Christopher A L Oura
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies (St. Augustine), Mount Hope, Republic of Trinidad and Tobago
| |
Collapse
|
12
|
Redondo H, Fragoso JS, Tahala MA, Bensassi Y, Gil I, Elbachir E, Rodríguez MJ, Abad Moreno JC. Characterization of strain of fowl adenoviruses circulating in Morocco. Poult Sci 2018; 97:4057-4062. [PMID: 29982730 DOI: 10.3382/ps/pey271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
Infection of fowl with adenoviruses raises concerns for poultry production, thus making the detection of adenovirus infection crucial. Fowl adenovirus is the causal agent of inclusion body hepatitis (IBH) and other avian syndromes that affect the production; since the epidemiological point of view it is important to differentiate the serotype of the virus. Between September 2016 and February 2017 several cases of IBH in broiler flocks were reported in Morocco. Molecular detection of the fowl adenovirus and sequencing also allowed determining the strain of the virus. The strain detected was identified as fowl adenovirus closely related to serotype 11 and 8a based on nucleotide sequence analyses of hexon gene loop 1. This is the first time that FadV has been detected in Morocco.
Collapse
Affiliation(s)
- Helena Redondo
- Inmunología y Genética Aplicada, S.A. (INGENASA), 28037 Madrid, Spain
| | | | - Mohamed Ait Tahala
- Cabinet veterinaire Al Houria, Boulevard de la liberté, 83350 Agadir, Morocco
| | - Younous Bensassi
- MSD Animal Health, Boulevard Zerektouni, 20601 Casablanca, Morocco
| | - Irene Gil
- Inmunología y Genética Aplicada, S.A. (INGENASA), 28037 Madrid, Spain
| | - Erraji Elbachir
- Cabinet veterinaire Tiznit, Boulevard Mohammed Elfhadi, 85000 Tiznit, Morocco
| | | | | |
Collapse
|