1
|
Ishimaru Y, Kessoku T, Nonaka M, Kitajima Y, Hyogo H, Nakajima T, Imajo K, Kubotsu Y, Isoda H, Kawanaka M, Yoneda M, Anzai K, Nakajima A, Furukawa K, Kawaguchi A, Takahashi H. Effects of ipragliflozin on skeletal muscle adiposity in patients with diabetes and metabolic dysfunction-associated steatotic liver disease. Intern Med 2024:4456-24. [PMID: 39496446 DOI: 10.2169/internalmedicine.4456-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Objective Myosteatosis affects the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) and may be a potential therapeutic target. This study aimed to examine the effects of ipragliflozin on myosteatosis in patients with type 2 diabetes mellitus (T2D) and MASLD. Methods Patients were treated with ipragliflozin (IPR group) or a control (CTR group) for 72 weeks in a randomized trial. Changes in myosteatosis of the lumbar skeletal muscles were evaluated using computed tomography (CT). The response of myosteatosis to treatment and the baseline characteristics of the patients were analyzed. Patients 44 participants (IPR group, 23; CTR group, 21) with MASLD complicated by T2D Results Myosteatosis increased in the CTR group (n=23) but remained unchanged in the IPR group (n=21). The changes were apparent at 24 weeks (P=0.004), but were not significant after 24 weeks. A hierarchical cluster analysis was performed to identify clusters with and without improvement in myosteatosis. The clusters with decreasing intramuscular adipose tissue content (IMAC) at 48 and 72 weeks were not treated, but they had lower visceral fat area and severe liver steatosis at baseline. Improvements in glycemic control and resistance to decreasing abdominal skeletal muscle area from baseline to 24 weeks affected the decrease in IMAC at 48 and 72 weeks. Conclusion Ipragliflozin had a limited effect on skeletal muscle adiposity in patients with T2D and MASLD. Regardless of the treatment, a specific phenotype of adiposity and hepatic steatosis before treatment is associated with the long-term outcomes of myosteatosis. Maintaining skeletal muscle mass and better glycemic control during treatment are essential for the future improvement of myosteatosis.
Collapse
Affiliation(s)
- Yuko Ishimaru
- Clinical Research Center, Saga University Hospital, Faculty of Medicine, Saga University, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Japan
- Department of Palliative Medicine, International University Health and Welfare Narita Hospital, Japan
| | - Michihiro Nonaka
- Department of Gastroenterology, International University Health and Welfare School of Medicine, Japan
| | - Yoichiro Kitajima
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Japan
- Department of Clinical Gastroenterology, Eguchi Hospital, Japan
| | - Hideyuki Hyogo
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Japan
- Hyogo Life Care Clinic Hiroshima, Japan
| | | | - Kento Imajo
- Department of Gastroenterology, Shin-yurigaoka General Hospital, Japan
| | - Yoshihito Kubotsu
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Japan
| | - Hiroshi Isoda
- Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Japan
| | - Miwa Kawanaka
- Department of Internal Medicine 2, Kawasaki Medical Center, Kawasaki Medical School, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Japan
| | - Kyoji Furukawa
- Biostatistics Center, Kurume University Graduate School of Medicine, Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga University, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Japan
- Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Japan
| |
Collapse
|
2
|
Zhang Y, Zhang K, Huang S, Li W, He P. A review on associated factors and management measures for sarcopenia in type 2 diabetes mellitus. Medicine (Baltimore) 2024; 103:e37666. [PMID: 38640276 PMCID: PMC11029968 DOI: 10.1097/md.0000000000037666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/28/2024] [Accepted: 02/29/2024] [Indexed: 04/21/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia, insulin resistance, and insufficient insulin secretion. Sarcopenia, as a new complication of diabetes, is characterized by the loss of muscle mass and the progressive decline of muscle strength and function in T2DM patients, which has a serious impact on the physical and mental health of patients. Insulin resistance, mitochondrial dysfunction, and chronic inflammation are common mechanisms of diabetes and sarcopenia. Reasonable exercise training, nutrition supplement, and drug intervention may improve the quality of life of patients with diabetes combined with sarcopenia. This article reviews the relevant factors and management measures of sarcopenia in T2DM patients, in order to achieve early detection, diagnosis, and intervention.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kemeng Zhang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sui Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhan Li
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping He
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Afsar B, Afsar RE. Sodium-glucose co-transporter 2 inhibitors and Sarcopenia: A controversy that must be solved. Clin Nutr 2023; 42:2338-2352. [PMID: 37862820 DOI: 10.1016/j.clnu.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Diabetes mellitus is a risk factor for muscle loss and sarcopenia. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) or "gliflozins" are one of the newest anti-hyperglycemic drugs. They reduce blood glucose levels by inhibiting renal glucose reabsorption in the early proximal convoluted tubule. Various randomized trials showed that SGLT2i have cardio-protective and reno-protective action. SGLT2i also affect body composition. They usually decrease body fat percentage, visceral and subcutaneous adipose tissue. However, regarding the muscle mass, there are conflicting findings some studies showing detrimental effects and others showed neutral or beneficial effects. This issue is extremely important not only because of the wide use of SGLT2i around globe; but also skeletal muscle mass consumes large amounts of calories during exercise and is an important determinant of resting metabolic rate and skeletal muscle loss hinders energy consumption leading to obesity. In this systematic review, we extensively reviewed the experimental and clinical studies regarding the impact of SGLT2i on muscle mass and related metabolic alterations. Importantly, studies are heterogeneous and there is unmet need to highlight the alterations in muscle during SGLT2i use.
Collapse
Affiliation(s)
- Baris Afsar
- Suleyman Demirel University, School of Medicine, Department of Nephrology, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Suleyman Demirel University, School of Medicine, Department of Nephrology, Isparta, Turkey
| |
Collapse
|
4
|
Xia C, Han Y, Yin C, Geng R, Liu Z, Du Y, Yu M. Relationship between sodium-glucose cotransporter-2 inhibitors and muscle atrophy in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1220516. [PMID: 37780608 PMCID: PMC10541228 DOI: 10.3389/fendo.2023.1220516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Aim This study aims to assess the association between sodium-glucose cotransporter type-2 inhibitor (SGLT-2i) treatment and muscle atrophy in patients with type 2 diabetes mellitus (T2DM). Methods We searched six databases from 1 January 2012 to 1 May 2023, without language restrictions. The primary outcome was muscle. Secondary outcomes were weight loss, weakness, malaise, or fatigue. Subgroup analyses were performed according to different definitions of muscle, treatment duration, and measurement methods. The quality of the studies was assessed using the Cochrane tool. The quality of the evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) tool. Results Nineteen randomized controlled trials (RCTs) involving 1,482 participants were included. Compared with the control group, a meta-analysis showed that T2DM participants in the group treated with SGLT-2i demonstrated statistically significant reductions in lean body mass of 0.66 (95% confidence interval (CI), -1.05 to -0.27; p = 0.0009) and skeletal muscle mass of 0.35 (95% CI, -0.66 to -0.04; p = 0.03). No deaths or serious adverse events were reported. The quality of evidence in the included trials was low. Conclusions SGLT-2i may lead to a reduction in muscle strength in the treatment of T2DM compared to the control group. However, there is still a lack of high-quality evidence to evaluate muscle atrophy caused by SGLT-2i. Systematic review registration https://inplasy.com/inplasy-2022-12-0061/, identifier 2022120061.
Collapse
Affiliation(s)
- Chengdong Xia
- Department of Endocrinology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufeng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunhui Yin
- Shandong First Medical University, Jinan, China
| | - Ruyue Geng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenfei Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongle Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingkun Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Iqbal N, Ambery P, Logue J, Mallappa A, David Sjöström C. Perspectives In Weight Control In Diabetes - Sglt2 Inhibitors And Glp-1-Glucagon Dual Agonism. Diabetes Res Clin Pract 2023; 199:110669. [PMID: 37075928 DOI: 10.1016/j.diabres.2023.110669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023]
Abstract
Treatment of people with type 2 diabetes mellitus (T2D) and obesity should include glycemic control and sustained weight loss. However, organ protection and/or risk reduction for co-morbidities have also emerged as important goals. Here, we define this combined treatment approach as 'weight loss plus' and describe it as a metabolic concept where increased energy expenditure is central to outcomes. We suggest there are currently two drug classes - sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 (GLP-1)-glucagon dual agonists - that can facilitate this 'weight loss plus' approach. We describe evidence supporting that both classes address the underlying pathophysiology of T2D and facilitate normalization of metabolism through increased periods of energy expenditure, which effect other organ systems and may facilitate long-term cardio-renal benefits. These benefits have been demonstrated in trials of SGLT2is, and appear, to some degree, to be independent of glycemia and substantial weight loss. The combined effect of caloric restriction and metabolic correction facilitated by SGLT2i and GLP-1-glucagon dual agonists can be conceptualized as mimicking dietary restriction and physical activity, a phenomenon not previously observed with drugs whose benefits predominantly arise from absolute weight loss, and which may be key to achieving a 'weight loss plus' approach to treatment.
Collapse
Affiliation(s)
- Nayyar Iqbal
- Late-Stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Philip Ambery
- Late-Stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jennifer Logue
- Early-stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ashwini Mallappa
- Late-Stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - C David Sjöström
- Late-Stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
6
|
Beneficial effects of SGLT2 inhibitor on metabolic inflexibility and visceral fat amount in animal model of obese type 2 diabetes. Heliyon 2022; 8:e11012. [PMID: 36281369 PMCID: PMC9587290 DOI: 10.1016/j.heliyon.2022.e11012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/24/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Background Obesity and type 2 diabetes mellitus (T2DM) are often accompanied with a disrupted diurnal rhythm of eating and sustained anabolic state, leading to metabolic inflexibility. In the present study, we plan to investigate effects of a sodium glucose co-transporter 2 (SGLT2) inhibitor, canagliflozin (CANA), on such a metabolic inflexibility, especially on fat metabolism, in the obese type 2 diabetic rats. Materials and methods Five-week-old male SDT (Spontaneously Diabetic Torii) fatty rats as a model of obesity and T2DM and Sprague-Dawley (SD) rats were treated by either CANA (10 mg/kg) or saline (vehicle) orally for 14 days. Then, after the measurement of respiratory quotient (RQ) and visceral and subcutaneous fat volumes, rats were euthanized and blood and tissue samples were collected. Results The treatment by CANA significantly enhanced β-ketone concentration in the blood during light period in the SDT fatty rats with no effect on blood glucose concentration. The CANA treatment significantly reduced visceral fat volume in the SDT fatty rats. A diurnal rhythm of RQ was severely disrupted and persistently high throughout the day in the vehicle-treated SDT fatty rats. By the administration of CANA clearly restored the disrupted diurnal rhythm of RQ with a revival of the nadir during light period. Quantitative real-time RT-PCR revealed a significant increase of AMP-activated protein kinase and decrease of acetyl-CoA carboxylase-1 expression in the liver, and a significant increase of hormone sensitive lipase and uncoupling protein-2 expression in the white adipose tissue by the treatment of CANA in the SDT fatty rats. Conclusion CANA as a SGLT2i reduced visceral fat amount via the enhancement of fat oxidation during the light period, leading to an amelioration of metabolic inflexibility in an obese diabetic model. A novel mechanism of CANA prompts the possibility that this new class of anti-diabetic agent could be a promising anti-obesity agent as well. SGLT2i reduced visceral fat independent of its effect on urinary glucose excretion. SGLT2i increased blood ketone concentration during light period. Concomitantly, RQ during light period was decreased, reviving a diurnal RQ rhythm. Changes in relevant molecules were observed towards fat oxidation. SGLT2i effectively corrected metabolic inflexibility in an obese diabetic model.
Collapse
|
7
|
Voorrips SN, Saucedo-Orozco H, Sánchez-Aguilera PI, De Boer RA, Van der Meer P, Westenbrink BD. Could SGLT2 Inhibitors Improve Exercise Intolerance in Chronic Heart Failure? Int J Mol Sci 2022; 23:8631. [PMID: 35955784 PMCID: PMC9369142 DOI: 10.3390/ijms23158631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the constant improvement of therapeutical options, heart failure (HF) remains associated with high mortality and morbidity. While new developments in guideline-recommended therapies can prolong survival and postpone HF hospitalizations, impaired exercise capacity remains one of the most debilitating symptoms of HF. Exercise intolerance in HF is multifactorial in origin, as the underlying cardiovascular pathology and reactive changes in skeletal muscle composition and metabolism both contribute. Recently, sodium-related glucose transporter 2 (SGLT2) inhibitors were found to improve cardiovascular outcomes significantly. Whilst much effort has been devoted to untangling the mechanisms responsible for these cardiovascular benefits of SGLT2 inhibitors, little is known about the effect of SGLT2 inhibitors on exercise performance in HF. This review provides an overview of the pathophysiological mechanisms that are responsible for exercise intolerance in HF, elaborates on the potential SGLT2-inhibitor-mediated effects on these phenomena, and provides an up-to-date overview of existing studies on the effect of SGLT2 inhibitors on clinical outcome parameters that are relevant to the assessment of exercise capacity. Finally, current gaps in the evidence and potential future perspectives on the effects of SGLT2 inhibitors on exercise intolerance in chronic HF are discussed.
Collapse
Affiliation(s)
- Suzanne N. Voorrips
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.S.-O.); (P.I.S.-A.); (R.A.D.B.); (P.V.d.M.)
| | | | | | | | | | - B. Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.S.-O.); (P.I.S.-A.); (R.A.D.B.); (P.V.d.M.)
| |
Collapse
|