1
|
Khanna V, Singh K. MicroRNAs as promising drug delivery target to ameliorate chronic obstructive pulmonary disease using nano-carriers: a comprehensive review. Mol Cell Biochem 2024:10.1007/s11010-024-05110-0. [PMID: 39254870 DOI: 10.1007/s11010-024-05110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deteriorating condition triggered by various factors, such as smoking, free radicals, and air pollution. This worsening disease is characterized by narrowing and thickening of airways, painful cough, and dyspnea. In COPD, numerous genes as well as microRNA (miRNA) play a significant role in the pathogenesis of the disease. Many in vivo and in vitro studies suggest that upregulation or suppression of certain miRNAs are effective treatment options for COPD. They have been proven to be more beneficial than the current symptomatic treatments, such as bronchodilators and corticosteroids. MiRNAs play a crucial role in immune cell development and regulate inflammatory responses in various tissues. MiRNA treatment thus allows for precision therapy with improved outcomes. Nanoparticle drug delivery systems such as polymeric nanoparticles, inorganic nanoparticles, dendrimers, polymeric micelles, and liposomes are an efficient method to ensure the biodistribution of the miRNAs to the target site. Identification of the right nanoparticle depending on the requirements and compatibility is essential for achieving maximum therapeutic effect. In this review, we offer a thorough comprehension of the pathology and genetics of COPD and the significance of miRNAs concerning various pathologies of the lung, as potential targets for treating the disease. The present review offers the latest insights into the nanoparticle drug delivery systems that can efficiently carry and deliver miRNA or antagomirs to the specific target site and hence help in effective management of COPD.
Collapse
Affiliation(s)
- Vamika Khanna
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
2
|
Dume B, Licarete E, Banciu M. Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102256. [PMID: 39045515 PMCID: PMC11264197 DOI: 10.1016/j.omtn.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.
Collapse
Affiliation(s)
- Bogdan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Han L, Li P, He Q, Yang C, Jiang M, Wang Y, Cao Y, Han X, Liu X, Wu W. Revisiting Skeletal Muscle Dysfunction and Exercise in Chronic Obstructive Pulmonary Disease: Emerging Significance of Myokines. Aging Dis 2023:AD.2023.1125. [PMID: 38270119 DOI: 10.14336/ad.2023.1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/25/2023] [Indexed: 01/26/2024] Open
Abstract
Skeletal muscle dysfunction (SMD) is the most significant extrapulmonary complication and an independent prognostic indicator in patients with chronic obstructive pulmonary disease (COPD). Myokines, such as interleukin (IL)-6, IL-15, myostatin, irisin, and insulin-like growth factor (IGF)-1, play important roles in skeletal muscle mitochondrial function, protein synthesis and breakdown balance, and regeneration of skeletal muscles in COPD. As the main component of pulmonary rehabilitation, exercise can improve muscle strength, muscle endurance, and exercise capacity in patients with COPD, as well as improve the prognosis of SMD and COPD by regulating the expression levels of myokines. The mechanisms by which exercise regulates myokine levels are related to microRNAs. IGF-1 expression is upregulated by decreasing the expression of miR-1 or miR-29b. Myostatin downregulation and irisin upregulation are associated with increased miR-27a expression and decreased miR-696 expression, respectively. These findings suggest that myokines are potential targets for the prevention and treatment of SMD in COPD. A comprehensive analysis of the role and regulatory mechanisms of myokines can facilitate the development of new exercise-based therapeutic approaches for patients with COPD.
Collapse
Affiliation(s)
- Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Sahu P, Donovan C, Paudel KR, Pickles S, Chimankar V, Kim RY, Horvart JC, Dua K, Ieni A, Nucera F, Bielefeldt-Ohmann H, Mazilli S, Caramori G, Lyons JG, Hansbro PM. Pre-clinical lung squamous cell carcinoma mouse models to identify novel biomarkers and therapeutic interventions. Front Oncol 2023; 13:1260411. [PMID: 37817767 PMCID: PMC10560855 DOI: 10.3389/fonc.2023.1260411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Primary lung carcinoma or lung cancer (LC) is classified into small-cell or non-small-cell (NSCLC) lung carcinoma. Lung squamous cell carcinoma (LSCC) is the second most common subtype of NSCLC responsible for 30% of all LCs, and its survival remains low with only 24% of patients living for five years or longer post-diagnosis primarily due to the advanced stage of tumors at the time of diagnosis. The pathogenesis of LSCC is still poorly understood and has hampered the development of effective diagnostics and therapies. This review highlights the known risk factors, genetic and epigenetic alterations, miRNA biomarkers linked to the development and diagnosis of LSCC and the lack of therapeutic strategies to target specifically LSCC. We will also discuss existing animal models of LSCC including carcinogen induced, transgenic and xenograft mouse models, and their advantages and limitations along with the chemopreventive studies and molecular studies conducted using them. The importance of developing new and improved mouse models will also be discussed that will provide further insights into the initiation and progression of LSCC, and enable the identification of new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Priyanka Sahu
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Sophie Pickles
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Vrushali Chimankar
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Richard Y. Kim
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Jay C. Horvart
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Sarah Mazilli
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - J. Guy Lyons
- Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Sydney, Australia, and Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Philip M. Hansbro
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| |
Collapse
|
5
|
Qian Y, Sun Y, Chen Y, Mao Z, Shi Y, Wu D, Gu B, Liu Z, Zhang Q. Nrf2 regulates downstream genes by targeting miR-29b in severe asthma and the role of grape seed proanthocyanidin extract in a murine model of steroid-insensitive asthma. PHARMACEUTICAL BIOLOGY 2022; 60:347-358. [PMID: 35171066 PMCID: PMC8856085 DOI: 10.1080/13880209.2022.2032205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 11/14/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Grape seed proanthocyanidin extract (GSPE) is effective in treating severe asthma (SA). OBJECTIVE To examine the relationship between Nrf2-miR-29b axis and SA, and to detect whether preventive use of GSPE relieves SA via it. MATERIALS AND METHODS We recruited 10 healthy controls, 10 patients with non-severe asthma (nSA), and 9 patients with SA from February 2017 to December 2017. Peripheral blood mononuclear cells from these volunteers were extracted. A murine model of steroid-insensitive asthma was established in six-week-old female BALB/c mice that were sensitised and challenged with OVA, Al(OH)3 and LPS for 31 days. Mice in the treated groups were injected with DXM (5 mg/kg/d), with or without GSPE (100 mg/kg/d). Control group received PBS. We performed quantitative real-time PCR, western blot and luciferase reporter assay in animal and cell models. RESULTS SA group demonstrated significantly lower concentrations of Nrf2 protein, Nrf2 mRNA, and miR-29b than nSA group and control group. Conversely, higher levels of platelet derived growth factor C (PDGFC), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), and collagen type III alpha 1 (COL3A1) were measured in SA than in the other two groups. PDGFC, PIK3R1, and COL3A1 were the target genes of miR-29b. GSPE + DXM significantly elevated the expression of Nrf2 (+188%), Nrf2 mRNA (+506%), and miR-29b (+201%), and significantly reduced the expression of PDGFC (-72%), PIK3R1 (-40%), and COL3A1 (-65%) compared with OVA + LPS. CONCLUSIONS Nrf2-miR-29b axis is involved in the pathogenesis of SA. GSPE, as an adjuvant drug, maybe a potential therapeutic agent for SA.
Collapse
Affiliation(s)
- Yan Qian
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yun Sun
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yi Chen
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Zhengdao Mao
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yujia Shi
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Di Wu
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Bin Gu
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Zhiguang Liu
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Qian Zhang
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
6
|
Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021; 9:1823. [PMID: 34944639 PMCID: PMC8698532 DOI: 10.3390/biomedicines9121823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.
Collapse
Affiliation(s)
- Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Sami Ullah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Thomas M. H. Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
7
|
Kim RY, Sunkara KP, Bracke KR, Jarnicki AG, Donovan C, Hsu AC, Ieni A, Beckett EL, Galvão I, Wijnant S, Ricciardolo FL, Di Stefano A, Haw TJ, Liu G, Ferguson AL, Palendira U, Wark PA, Conickx G, Mestdagh P, Brusselle GG, Caramori G, Foster PS, Horvat JC, Hansbro PM. A microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Sci Transl Med 2021; 13:eaav7223. [PMID: 34818056 DOI: 10.1126/scitranslmed.aav7223] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Krishna P Sunkara
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia.,Graduate School of Health, Discipline of Pharmacy, University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Intensive Care Unit, John Hunter Hospital, Newcastle, New South Wales 2308, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Andrew G Jarnicki
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria 3010, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina 98100, Italy
| | - Emma L Beckett
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sara Wijnant
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Fabio Lm Ricciardolo
- Rare Lung Disease Unit, Department of Clinical and Biological Sciences, University of Torino, San Luigi Gonzaga University Hospital Orbassano, Torino 10043, Italy
| | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, SpA Società Benefit, Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Veruno, Novara 28100, Italy
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Angela L Ferguson
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia.,Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2006, Australia
| | - Umamainthan Palendira
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Griet Conickx
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium.,Ablynx N.V., a Sanofi company, Ghent 9052, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina 98100, Italy
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| |
Collapse
|
8
|
Hayek H, Kosmider B, Bahmed K. The role of miRNAs in alveolar epithelial cells in emphysema. Biomed Pharmacother 2021; 143:112216. [PMID: 34649347 PMCID: PMC9275516 DOI: 10.1016/j.biopha.2021.112216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease becoming one of the leading causes of mortality and morbidity globally. The significant risk factors for COPD are exposure to harmful particles such as cigarette smoke, biomass smoke, and air pollution. Pulmonary emphysema belongs to COPD and is characterized by a unique alveolar destruction pattern resulting in marked airspace enlargement. Alveolar type II (ATII) cells have stem cell potential; they proliferate and differentiate to alveolar type I cells to restore the epithelium after damage. Oxidative stress causes premature cell senescence that can contribute to emphysema development. MiRNAs regulate gene expression, are essential for maintaining ATII cell homeostasis, and their dysregulation contributes to this disease development. They also serve as biomarkers of lung diseases and potential therapeutics. In this review, we summarize recent findings on miRNAs’ role in alveolar epithelial cells in emphysema.
Collapse
Affiliation(s)
- Hassan Hayek
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA; Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA; Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA; Department of Biomedical Education and Data Science, Temple University, Philadelphia, PA 19140, USA
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA; Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
9
|
Bobba CM, Fei Q, Shukla V, Lee H, Patel P, Putman RK, Spitzer C, Tsai M, Wewers MD, Lee RJ, Christman JW, Ballinger MN, Ghadiali SN, Englert JA. Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat Commun 2021; 12:289. [PMID: 33436554 PMCID: PMC7804938 DOI: 10.1038/s41467-020-20449-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Mechanical ventilation generates injurious forces that exacerbate lung injury. These forces disrupt lung barrier integrity, trigger proinflammatory mediator release, and differentially regulate genes and non-coding oligonucleotides including microRNAs. In this study, we identify miR-146a as a mechanosensitive microRNA in alveolar macrophages that has therapeutic potential to mitigate lung injury during mechanical ventilation. We use humanized in-vitro systems, mouse models, and biospecimens from patients to elucidate the expression dynamics of miR-146a needed to decrease lung injury during mechanical ventilation. We find that the endogenous increase in miR-146a following injurious ventilation is not sufficient to prevent lung injury. However, when miR-146a is highly overexpressed using a nanoparticle delivery platform it is sufficient to prevent injury. These data indicate that the endogenous increase in microRNA-146a during mechanical ventilation is a compensatory response that partially limits injury and that nanoparticle delivery of miR-146a is an effective strategy for mitigating lung injury during mechanical ventilation.
Collapse
Affiliation(s)
- Christopher M Bobba
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Qinqin Fei
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Vasudha Shukla
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Hyunwook Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Pragi Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Rachel K Putman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Carleen Spitzer
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - MuChun Tsai
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Mark D Wewers
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - John W Christman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Megan N Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Samir N Ghadiali
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA.
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH, 43210, USA.
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
10
|
Shastri MD, Chong WC, Dua K, Peterson GM, Patel RP, Mahmood MQ, Tambuwala M, Chellappan DK, Hansbro NG, Shukla SD, Hansbro PM. Emerging concepts and directed therapeutics for the management of asthma: regulating the regulators. Inflammopharmacology 2020; 29:15-33. [PMID: 33152094 DOI: 10.1007/s10787-020-00770-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Asthma is a common, heterogeneous and serious disease, its prevalence has steadily risen in most parts of the world, and the condition is often inadequately controlled in many patients. Hence, there is a major need for new therapeutic approaches. Mild-to-moderate asthma is considered a T-helper cell type-2-mediated inflammatory disorder that develops due to abnormal immune responses to otherwise innocuous allergens. Prolonged exposure to allergens and persistent inflammation results in myofibroblast infiltration and airway remodelling with mucus hypersecretion, airway smooth muscle hypertrophy, and excess collagen deposition. The airways become hyper-responsive to provocation resulting in the characteristic wheezing and obstructed airflow experienced by patients. Extensive research has progressed the understanding of the underlying mechanisms and the development of new treatments for the management of asthma. Here, we review the basis of the disease, covering new areas such as the role of vascularisation and microRNAs, as well as associated potential therapeutic interventions utilising reports from animal and human studies. We also cover novel drug delivery strategies that are being developed to enhance therapeutic efficacy and patient compliance. Potential avenues to explore to improve the future of asthma management are highlighted.
Collapse
Affiliation(s)
- Madhur D Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Wai Chin Chong
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia.,Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gregory M Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Rahul P Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Malik Q Mahmood
- Faculty of Health, School of Medicine, Deakin University, Melbourne, Australia
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Belfast, Northern Ireland, UK
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia. .,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia. .,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
11
|
Wu Z, Li W, Li J, Zhang Y, Zhang X, Xu Y, Hu Y, Li Q, Sun Q, Ma Z. Higher expression of miR-150-5p promotes tumorigenesis by suppressing LKB1 in non-small cell lung cancer. Pathol Res Pract 2020; 216:153145. [PMID: 32827803 DOI: 10.1016/j.prp.2020.153145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most malignant tumors that can form in the human. MicroRNAs (MiRNAs) play significant role in tumor progression. Human lung cancer tissues and cell lines were used to determine miR-150-5p respectively, and Liver Kinase B1 (LKB1) expression using quantitative real-time PCR (qRT-PCR). The data analysis website Kaplan-Meier Plotter (database obtained from The Cancer Genome Atlas) was used to perform a survival analysis with LKB1 levels. Using the appropriate assays, the function of miR-150-5p was also detected in cellular proliferation, migration and cell apoptosis as well as cell cycle. Results revealed that miR-150-5p was upregulated in non-small cell lung cancer (NSCLC) tissue and cell lines. In NSCLC, miR-150-5p promoted cellular proliferation and migration, but decreased cellular apoptosis. Conversely, miR-150-5p inhibition suppressed cellular growth. These results further revealed a network of cellular signaling for miR-150-5p to target LKB1. Ectopic expression of LKB1 can mitigate the tumor-promoting function of miR-150-5p. Collectively, these results indicated that miR-150-5p may promote lung cancer by inhibiting the suppressor gene LKB1 in NSCLC.
Collapse
Affiliation(s)
- Zong Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wanqiu Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiadong Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xinju Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yikun Xu
- QianWeiChang College, Shanghai University, Shanghai 200444, China
| | - Yanping Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qian Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Qiangling Sun
- Shanghai Chest Hospital, 241 West Huaihai Road, Shanghai, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
|
13
|
Togami K. [Intrapulmonary Pharmacokinetics and Drug Distribution Characteristics for the Treatment of Respiratory Diseases]. YAKUGAKU ZASSHI 2020; 140:345-354. [PMID: 32115551 DOI: 10.1248/yakushi.19-00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to clarify the intrapulmonary pharmacokinetics and distribution characteristics of drugs in order to develop better therapies for respiratory diseases, including respiratory infections and pulmonary fibrosis. The distribution characteristics of three macrolide antimicrobial agents-clarithromycin, azithromycin, and telithromycin-in plasma, lung epithelial lining fluid (ELF), and alveolar macrophages (AMs), were examined for the optimization of antimicrobial therapy. The time course of the uptake of these agents in ELF and AMs, following oral administration to rats, resulted in markedly higher concentrations than that in plasma. The high concentration of the agents in AMs was due to their sustained distribution to ELF via multidrug resistance protein 1 and to high uptake by AMs themselves via active transport mechanisms and trapping and/or binding in acidic organelles. The intrapulmonary pharmacokinetics of aerosolized model compounds administered to animals with bleomycin-induced pulmonary fibrosis via aerosol formulations of model compounds (MicroSprayer) were then evaluated. The concentrations of these compounds in the plasma of pulmonary fibrotic rats were markedly higher than in that of control rats. The expression of epithelial tight junctions decreased in pulmonary fibrotic lesions. The accumulation of extracellular matrix inhibited the intrapulmonary distribution of aerosolized model compounds, indicating that aerosolized drugs are easily absorbed after leakage through damaged alveolar epithelia, but cannot become widely distributed in the lungs because of interruption by the extracellular matrix. This review provides useful findings for the development of therapies for respiratory infections and pulmonary fibrosis.
Collapse
Affiliation(s)
- Kohei Togami
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science
| |
Collapse
|
14
|
Inhalable hybrid nanocarriers for respiratory disorders. TARGETING CHRONIC INFLAMMATORY LUNG DISEASES USING ADVANCED DRUG DELIVERY SYSTEMS 2020. [PMCID: PMC7499343 DOI: 10.1016/b978-0-12-820658-4.00013-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rapid advancements in the field of drug delivery lead to increased use of inhalable formulations as they are cost effective, noninvasive, and targeted and have less systemic side effects and above all better patient compliance. Development of inhalable hybrid systems has offered manifold advantages to this area of drug delivery. Inclusion of polymer and lipid, inorganic and organic substances, and metallic nanoparticles all of them aim to achieve codelivery of drugs which are incompatible in single phase systems. The recent progress in nanotechnology has gained momentum toward delivery of siRNA and miRNA and vaccines to the targeted site. The present work is an attempt to compile all the hybrid and inhalable systems to give readers an overview toward this delivery system as much more work is needed in this field to achieve better resolution of inflammatory disorders.
Collapse
|
15
|
Wadhwa R, Pandey P, Gupta G, Aggarwal T, Kumar N, Mehta M, Satija S, Gulati M, Madan JR, Dureja H, Balusamy SR, Perumalsamy H, Maurya PK, Collet T, Tambuwala MM, Hansbro PM, Chellappan DK, Dua K. Emerging Complexity and the Need for Advanced Drug Delivery in Targeting Candida Species. Curr Top Med Chem 2019; 19:2593-2609. [DOI: 10.2174/1568026619666191026105308] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/15/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Background:Candida species are the important etiologic agents for candidiasis, the most prevalent cause of opportunistic fungal infections. Candida invasion results in mucosal to systemic infections through immune dysfunction and helps in further invasion and proliferation at several sites in the host. The host defence system utilizes a wide array of the cells, proteins and chemical signals that are distributed in blood and tissues which further constitute the innate and adaptive immune system. The lack of antifungal agents and their limited therapeutic effects have led to high mortality and morbidity related to such infections.Methods:The necessary information collated on this review has been gathered from various literature published from 1995 to 2019.Results:This article sheds light on novel drug delivery approaches to target the immunological axis for several Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. rugose, C. hemulonii, etc.).Conclusion:It is clear that the novel drug delivery approaches include vaccines, adoptive transfer of primed immune cells, recombinant cytokines, therapeutic antibodies, and nanoparticles, which have immunomodulatory effects. Such advancements in targeting various underpinning mechanisms using the concept of novel drug delivery will provide a new dimension to the fungal infection clinic particularly due to Candida species with improved patient compliance and lesser side effects. This advancement in knowledge can also be extended to target various other similar microbial species and infections.
Collapse
Affiliation(s)
- Ridhima Wadhwa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak 124001, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302 017, Jaipur, India
| | - Taru Aggarwal
- Amity Institute of Biotechnology, Amity University, Noida 201303, India
| | - Nitesh Kumar
- Amity Institute for Advanced Research & Studies (M&D), Amity University, Noida 201303, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Delhi G.T. Road (NH-1), Phagwara-144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Delhi G.T. Road (NH-1), Phagwara-144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Delhi G.T. Road (NH-1), Phagwara-144411, Punjab, India
| | - Jyotsna R. Madan
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Kondhwa, Pune, 411048, Maharashtra, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Sri R. Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05006, Korea
| | - Haribalan Perumalsamy
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea
| | - Pawan K. Maurya
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh District 123031, Haryana, India
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Philip M. Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- School of Pharmaceutical Sciences, Shoolini University, Bajhol, Sultanpur, Solan, Himachal Pradesh 173 229, Australia
| |
Collapse
|
16
|
Dua K, Wadhwa R, Singhvi G, Rapalli V, Shukla SD, Shastri MD, Gupta G, Satija S, Mehta M, Khurana N, Awasthi R, Maurya PK, Thangavelu L, S R, Tambuwala MM, Collet T, Hansbro PM, Chellappan DK. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev Res 2019; 80:714-730. [DOI: 10.1002/ddr.21571] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/11/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology Sydney Ultimo New South Wales Australia
- Centenary InstituteRoyal Prince Alfred Hospital Camperdown New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and PharmacyUniversity of Newcastle Callaghan New South Wales Australia
| | - Ridhima Wadhwa
- Faculty of Life Sciences and BiotechnologySouth Asian University New Delhi India
| | - Gautam Singhvi
- Department of PharmacyBirla Institute of Technology and Science (BITS) Pilani India
| | | | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and PharmacyUniversity of Newcastle Callaghan New South Wales Australia
| | - Madhur D. Shastri
- School of Health Sciences, College of Health and MedicineUniversity of Tasmania Launceston Australia
| | - Gaurav Gupta
- School of PharmacySuresh Gyan Vihar University Jaipur India
| | - Saurabh Satija
- School of Pharmaceutical SciencesLovely Professional University Phagwara Punjab India
| | - Meenu Mehta
- School of Pharmaceutical SciencesLovely Professional University Phagwara Punjab India
| | - Navneet Khurana
- School of Pharmaceutical SciencesLovely Professional University Phagwara Punjab India
| | - Rajendra Awasthi
- Amity Institute of PharmacyAmity University Noida Uttar Pradesh India
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of Haryana Mahendergarh Haryana India
| | - Lakshmi Thangavelu
- Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental CollegeSaveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | - Rajeshkumar S
- Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental CollegeSaveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical SciencesUlster University, Coleraine London United Kingdom of Great Britain and Northern Ireland
| | - Trudi Collet
- Inovative Medicines Group, Institute of Health and Biomedical InnovationQueensland University of Technology Brisbane Queensland Australia
| | - Philip M. Hansbro
- Centenary InstituteRoyal Prince Alfred Hospital Camperdown New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and PharmacyUniversity of Newcastle Callaghan New South Wales Australia
- School of Life SciencesUniversity of Technology Sydney Sydney New South Wales Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical University Kuala Lumpur Malaysia
| |
Collapse
|
17
|
Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact 2019; 308:206-215. [PMID: 31136735 PMCID: PMC7094617 DOI: 10.1016/j.cbi.2019.05.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Oligonucleotide-based therapies are advanced novel interventions used in the management of various respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). These agents primarily act by gene silencing or RNA interference. Better methodologies and techniques are the need of the hour that can deliver these agents to tissues and cells in a target specific manner by which their maximum potential can be reached in the management of chronic inflammatory diseases. Nanoparticles play an important role in the target-specific delivery of drugs. In addition, oligonucleotides also are extensively used for gene transfer in the form of polymeric, liposomal and inorganic carrier materials. Therefore, the current review focuses on various novel dosage forms like nanoparticles, liposomes that can be used efficiently for the delivery of various oligonucleotides such as siRNA and miRNA. We also discuss the future perspectives and targets for oligonucleotides in the management of respiratory diseases.
Collapse
|
18
|
Zhang X, Zhang X, Liu X, Qi P, Wang H, Ma Z, Chai Y. MicroRNA-296, a suppressor non-coding RNA, downregulates SGLT2 expression in lung cancer. Int J Oncol 2018; 54:199-208. [PMID: 30365049 DOI: 10.3892/ijo.2018.4599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/28/2018] [Indexed: 11/05/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common types of cancer worldwide and has the highest mortality rate in China. MicroRNAs (miRNAs or miRs) are involved in tumorigenesis and their important role in cancer is becoming increasingly apparent. The expression of miR‑296‑5p in particular has been shown to be significantly downregulated in lung cancer. Sodium-glucose co-transporter-2 [SGLT2, also known as solute carrier family 5 member 2 (SLC5A2)] is an oncogene that promotes tumorigenesis. In this study, we aimed to determine the role of miR‑296‑5p in lung cancer and whether this involves the targeting of SGLT2. For this purpose, we examined miR‑296‑5p and SGLT2 expression in human lung cancer samples and cell lines by RT-qPCR and western blot analysis. In addition, the data analysis website TCGA was used for survival analysis with respect to SGLT2 expression. The effects of miR‑296‑5p were also examined on cell proliferation and cell cycle progression using respective assays. The results demonstrate that miR‑296‑5p is significantly downregulated in NSCLC tissues. Additionally, it is demonstrated that SGLT2 is directly targeted by miR‑296‑5p. Furthermore, our data reveal that the knockdown of SGLT2 using siRNA inhibits cell proliferation and impedes cell cycle progression. Collectively, data suggest that miR‑296‑5p not only inhibits NSCLC by downregulating SGLT2 expression, but also acts as a novel regulator of aberrant lung cancer cells to limit lung cancer progression.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xinju Zhang
- Laboratory for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Xiaomin Liu
- Laboratory for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Pengfei Qi
- Laboratory for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Huimin Wang
- Laboratory for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Zhongliang Ma
- Laboratory for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
19
|
Fragmented particles containing octreotide acetate prepared by spray drying technique for dry powder inhalation. Drug Deliv Transl Res 2018; 8:693-701. [PMID: 29600480 DOI: 10.1007/s13346-018-0515-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Dry powder inhalers (DPIs) have been proposed as an alternative administration route for protein and peptide drugs. However, DPI particles are easy to aggregate due to the strong interactions between the particles, leading to poor aerosolization performance. In this study, fragmented particles containing octreotide acetate (OA) were prepared by spray drying technique for dry powder inhalation, which were expected to decrease the particle-particle interaction by reducing the contact sites. Mannitol and ammonium carbonate were used as protein stabilizer and fragment-forming agent, respectively. The obtained fragmented particles presented larger particle size, lower density, better dispersibility, and well in vitro aerodynamic behavior (emitted dose > 97%, fine particle fraction ≈ 40%). The circular dichroism spectrum results indicated that OA maintained the stability throughout the spray drying process. The relative bioavailability of dry powder inhalation (DPI) compared with subcutaneous injection of commercial product was up to 88.0%, demonstrating the feasibility of DPI for OA delivery. These results confirmed that the proposed fragmented particles had great potential for pulmonary delivery of protein and peptide drugs in a painless, rapid, and convenient manner.
Collapse
|
20
|
Miao C, Chang J, Zhang G. Recent research progress of microRNAs in hypertension pathogenesis, with a focus on the roles of miRNAs in pulmonary arterial hypertension. Mol Biol Rep 2018; 45:2883-2896. [DOI: 10.1007/s11033-018-4335-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
|
21
|
Singhvi G, Manchanda P, Krishna Rapalli V, Kumar Dubey S, Gupta G, Dua K. MicroRNAs as biological regulators in skin disorders. Biomed Pharmacother 2018; 108:996-1004. [PMID: 30372911 DOI: 10.1016/j.biopha.2018.09.090] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022] Open
Abstract
microRNAs are being investigated as promising therapeutic targets and biomarkers for different disease conditions. miRNAs serve as essential regulators of cell differentiation, proliferation and survival. The involvement of miRNAs in the functioning and regulation of the skin cells and skin diseases is a rapidly advancing area in dermatological research. miRNAs have been identified to play a key role in the pathogenesis, diagnosis, and treatment of the skin diseases. Skin is one of the largest organs of the body, primarily functioning as the first line of defence against external insults including bacteria, virus and other pathogens. Various miRNAs have been identified to demonstrate significant effects in various skin inflammatory conditions such as wounds, cancer, psoriasis, scleroderma, dermatomyositis. The current review explores the possible roles of the miRNAs in skin disorders and reports relating to the clinical trials involving skin diseases and miRNAs. The review has also compiled the information of the databases available, which correlates the miRNAs with different diseases and give details about targeting interactions of miRNA.
Collapse
Affiliation(s)
- Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Prachi Manchanda
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Vamshi Krishna Rapalli
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW, 2305, Australia
| |
Collapse
|
22
|
Ng ZY, Wong JY, Panneerselvam J, Madheswaran T, Kumar P, Pillay V, Hsu A, Hansbro N, Bebawy M, Wark P, Hansbro P, Dua K, Chellappan DK. Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B Biointerfaces 2018; 172:51-59. [PMID: 30134219 DOI: 10.1016/j.colsurfb.2018.08.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023]
Abstract
Curcumin a component of turmeric, which is derived from Curcuma longa is used as a colouring agent and as a dietary spice for centuries. Extensive studies have been done on the anti-inflammatory activity of curcumin along with its molecular mechanism involving different signalling pathways. However, the physicochemical and biological properties such as poor solubility and rapid metabolism of curcumin have led to low bioavailability and hence limits its application. Current therapies for asthma such as bronchodilators and inhaled corticosteroids (ICS) are aimed at controlling disease symptoms and prevent asthma exacerbation. However, this approach requires lifetime therapy and is associated with a constellation of side effects. This creates a clear unmet medical need and there is an urgent demand for new and more-effective treatments. The present study is aimed to formulate liposomes containing curcumin and evaluate for its anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation on BCi-NS1.1 cell line. Curcumin and salbutamol liposomes were formulated using lipid hydration method. The prepared liposomes were characterized in terms of particle size, zeta potential, encapsulation efficiency and in-vitro release profile. The liposomes were tested on BCI-NS1.1 cell line to evaluate its anti-inflammatory properties. The various pro-inflammatory markers studied were Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-1β (IL-1β) and Tumour Necrosis Factor-a (TNF-a). Additionally, molecular mechanics simulations were used to elucidate the positioning, energy minimization, and aqueous dispersion of the liposomal architecture involving lecithin and curcumin. The prepared curcumin formulation showed an average size and zeta potential of 271.3 ± 3.06 nm and -61.0 mV, respectively. The drug encapsulation efficiency of liposomal curcumin is 81.1%. Both curcumin-loaded liposomes formulation (1 μg/mL, 5 μg/mL) resulted in significant (p < 0.05) reduction in the level of pro-inflammatory marker expression such as IL-6, IL-8, IL-1β and TNF-a compared to positive control group. Liposomal curcumin with the dose of 1 μg/mL reduced the inflammatory markers more effectively compared to that of 5 μg/mL. Liposomal curcumin could be a promising intervention for asthma therapy showing their efficacy in suppressing the important pro-inflammatory markers involved in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Zhao Yin Ng
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jin-Ying Wong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, International Medical University, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, International Medical University, Kuala Lumpur, Malaysia
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alan Hsu
- Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Nicole Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, NSW 2007, Australia
| | - Peter Wark
- Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Philip Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, NSW 2007, Australia
| | | |
Collapse
|
23
|
Hansbro PM, Kim RY, Starkey MR, Donovan C, Dua K, Mayall JR, Liu G, Hansbro NG, Simpson JL, Wood LG, Hirota JA, Knight DA, Foster PS, Horvat JC. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2018; 278:41-62. [PMID: 28658552 DOI: 10.1111/imr.12543] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe, steroid-resistant asthma is clinically and economically important since affected individuals do not respond to mainstay corticosteroid treatments for asthma. Patients with this disease experience more frequent exacerbations of asthma, are more likely to be hospitalized, and have a poorer quality of life. Effective therapies are urgently required, however, their development has been hampered by a lack of understanding of the pathological processes that underpin disease. A major obstacle to understanding the processes that drive severe, steroid-resistant asthma is that the several endotypes of the disease have been described that are characterized by different inflammatory and immunological phenotypes. This heterogeneity makes pinpointing processes that drive disease difficult in humans. Clinical studies strongly associate specific respiratory infections with severe, steroid-resistant asthma. In this review, we discuss key findings from our studies where we describe the development of representative experimental models to improve our understanding of the links between infection and severe, steroid-resistant forms of this disease. We also discuss their use in elucidating the mechanisms, and their potential for developing effective therapeutic strategies, for severe, steroid-resistant asthma. Finally, we highlight how the immune mechanisms and therapeutic targets we have identified may be applicable to obesity-or pollution-associated asthma.
Collapse
Affiliation(s)
- Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jeremy A Hirota
- James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
24
|
Therapeutic prospects of microRNAs in cancer treatment through nanotechnology. Drug Deliv Transl Res 2017; 8:97-110. [DOI: 10.1007/s13346-017-0440-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Zhao Y, Ponnusamy M, Zhang L, Zhang Y, Liu C, Yu W, Wang K, Li P. The role of miR-214 in cardiovascular diseases. Eur J Pharmacol 2017; 816:138-145. [PMID: 28842125 DOI: 10.1016/j.ejphar.2017.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/02/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death throughout the world. The increase in new patients every year leads to a demand for the identification of valid and novel prognostic and diagnostic biomarkers for the prevention and treatment of cardiovascular diseases. MicroRNAs (miRNAs) are critical endogenous small noncoding RNAs that negatively modulate gene expression by regulating its translation. miRNAs are implicated in most physiological processes of the heart and in the pathological progression of cardiovascular diseases. miR-214 is a deregulated miRNA in many pathological conditions, and it contributes to the pathogenesis of multiple human disorders, including cancer and cardiovascular diseases. miR-214 has dual functions in different cardiac pathological circumstances. However, it is considered as a promising marker in the prognosis, diagnosis and treatment of cardiovascular diseases. In this review, we discuss the role of miR-214 in various cardiac disease conditions, including ischaemic heart diseases, cardiac hypertrophy, pulmonary arterial hypertension (PAH), angiogenesis following vascular injury and heart failure.
Collapse
Affiliation(s)
- Yanfang Zhao
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Lei Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Wanpeng Yu
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Peifeng Li
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
26
|
Dua K, Shukla SD, Hansbro PM. Aspiration techniques for bronchoalveolar lavage in translational respiratory research: Paving the way to develop novel therapeutic moieties. J Biol Methods 2017; 4:e73. [PMID: 31453230 PMCID: PMC6706109 DOI: 10.14440/jbm.2017.174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/04/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Bronchoalveolar lavage (BAL) is a simple, yet informative tool in understanding the immunopathology of various lung diseases via quantifying various inflammatory cells, cytokines and growth factors. At present, this traditional method is often blended with several robust and sophisticated molecular and biological techniques sustaining the significance and longevity of this technique. Crucially, the existence of slightly distinct approaches and variables employed at different laboratories around the globe in performing BAL aspiration indeed demands an utmost need to optimize and develop an effective, cost-effective and a reproducible technique. This mini review will be of importance to the biological translational scientist, particularly respiratory researchers in understanding the fundamentals and approaches to apply and consider with BAL aspiration techniques. This will ensure generating a meaningful and clinically relevant data which in turn accelerate the development of new and effective therapeutic moieties for major respiratory conditions.
Collapse
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
27
|
Dua K, Hansbro NG, Hansbro PM. Steroid resistance and concomitant respiratory infections: A challenging battle in pulmonary clinic. EXCLI JOURNAL 2017; 16:981-985. [PMID: 28900378 PMCID: PMC5579404 DOI: 10.17179/excli2017-425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/17/2017] [Indexed: 12/02/2022]
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology,Sydney, Ultimo NSW 2007, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Nicole G. Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Philip M. Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| |
Collapse
|
28
|
Wang P, Liu X, Shao Y, Wang H, Liang C, Han B, Ma Z. MicroRNA-107-5p suppresses non-small cell lung cancer by directly targeting oncogene epidermal growth factor receptor. Oncotarget 2017; 8:57012-57023. [PMID: 28915650 PMCID: PMC5593621 DOI: 10.18632/oncotarget.18505] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are dysregulated in cancers, including human non-small cell lung cancer (NSCLC). The function of MicroRNA-107-5p (miR-107-5p) in NSCLC is not fully elucidated. Epidermal growth factor receptor (EGFR) is a cancer-driven gene in tumorigenesis. In this study, we found that miR-107-5p was significantly decreased in NSCLC tissues and NSCLC cell lines. Moreover, our results indicated that miR-107-5p could suppress cell proliferation, inhibit metastasis, impede cell cycle, and promote apoptosis via directly targeting EGFR. We also investigated roles of miR-107-5p in vivo. The results showed that it could inhibit tumor growth. Therefore, our study demonstrated that miR-107-5p not only suppressed the progression in NSCLC cells by inhibiting the expression of EGFR, but also could be a promising and a new potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Ping Wang
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaomin Liu
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Shao
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huimin Wang
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chen Liang
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongliang Ma
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
29
|
Dua K, Shukla SD, de Jesus Andreoli Pinto T, Hansbro PM. Nanotechnology: Advancing the translational respiratory research. Interv Med Appl Sci 2017; 9:39-41. [PMID: 28932494 PMCID: PMC5598120 DOI: 10.1556/1646.9.2017.1.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Considering the various limitations associated with the conventional dosage forms, nanotechnology is gaining increased attention in drug delivery particularly in respiratory medicine and research because of its advantages like targeting effects, improved pharmacotherapy, and patient compliance. This paper provides a quick snapshot about the recent trends and applications of nanotechnology to various translational and formulation scientists working on various respiratory diseases, which can help paving a new path in developing effective drug delivery system.
Collapse
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | | | - Philip Michael Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
30
|
Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases? Drug Deliv Transl Res 2016; 7:179-187. [DOI: 10.1007/s13346-016-0349-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|