1
|
Liu Y, Yang Z, Feng L, Xia Y, Wei G, Lu W. Advance in Nanomedicine for Improving Mucosal Penetration and Effective Therapy of Cervical Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303772. [PMID: 37340569 DOI: 10.1002/smll.202303772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 06/22/2023]
Abstract
Insufficient intratumor drug distribution and serious adverse effects are often associated with systemic chemotherapy for cervical cancer. Considering the location of cervical cancer, access to the cervix through the vagina may provide an alternative administration route for high drug amounts at the tumor site, minimal systemic exposure as well as convenience of non-invasive self-medication. Enormous progress has been made in nanomedicine to improve mucosal penetration and enhance the effectiveness of therapy for cervical cancer. This review article first introduce the physiological state of cervicovaginal cavity and the characteristics of intravaginal environment in cervical cancers. Based on introduction to the physiological state of cervicovaginal cavity and the characteristics of intravaginal environment in cervical cancers, both "first mucus-adhering then mucosal penetration" and "first mucus-penetrating then mucosal penetration" strategies are discussed with respect to mechanism, application condition, and examples. Finally, existing challenges and future directions are envisioned in the rational design, facile synthesis, and comprehensive utilization of nanomedicine for local therapy of cervical cancer. This review is expected to provide useful reference information for future research on nanomedicine for intravaginally administered formulations for topical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Ziyi Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Linglin Feng
- Shanghai Institute of Planned Parenthood Research, Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai, 200032, China
| | - Yu Xia
- Yangtze River Pharmaceutical Group Co., Ltd., Taizhou, Jiangsu, 225300, China
| | - Gang Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| |
Collapse
|
2
|
Saha I, Halder J, Rajwar TK, Mahanty R, Pradhan D, Dash P, Das C, Rai VK, Kar B, Ghosh G, Rath G. Novel Drug Delivery Approaches for the Localized Treatment of Cervical Cancer. AAPS PharmSciTech 2024; 25:85. [PMID: 38605158 DOI: 10.1208/s12249-024-02801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) is the fourth leading cancer type in females globally. Being an ailment of the birth canal, primitive treatment strategies, including surgery, radiation, or laser therapy, bring along the risk of infertility, neonate mortality, premature parturition, etc. Systemic chemotherapy led to systemic toxicity. Therefore, delivering a smaller cargo of therapeutics to the local site is more beneficial in terms of efficacy as well as safety. Due to the regeneration of cervicovaginal mucus, conventional dosage forms come with the limitations of leaking, the requirement of repeated administration, and compromised vaginal retention. Therefore, these days novel strategies are being investigated with the ability to combat the limitations of conventional formulations. Novel carriers can be engineered to manipulate bioadhesive properties and sustained release patterns can be obtained thus leading to the maintenance of actives at therapeutic level locally for a longer period. Other than the purpose of CC treatment, these delivery systems also have been designed as postoperative care where a certain dose of antitumor agent will be maintained in the cervix postsurgical removal of the tumor. Herein, the most explored localized delivery systems for the treatment of CC, namely, nanofibers, nanoparticles, in situ gel, liposome, and hydrogel, have been discussed in detail. These carriers have exceptional properties that have been further modified with the aid of a wide range of polymers in order to serve the required purpose of therapeutic effect, safety, and stability. Further, the safety of these delivery systems toward vital organs has also been discussed.
Collapse
Affiliation(s)
- Ivy Saha
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Jitu Halder
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Ritu Mahanty
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Priyanka Dash
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Chandan Das
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
3
|
Junqueira LA, Raposo FJ, Vitral GSF, Tabriz AG, Douroumis D, Raposo NRB, Brandão MAF. Three-Dimensionally Printed Vaginal Rings: Perceptions of Women and Gynecologists in a Cross-Sectional Survey. Pharmaceutics 2023; 15:2302. [PMID: 37765271 PMCID: PMC10537249 DOI: 10.3390/pharmaceutics15092302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Three-dimensional printing technologies can be implemented for the fabrication of personalized vaginal rings (VRs) as an alternative approach to traditional manufacturing. Although several studies have demonstrated the potential of additive manufacturing, there is a lack of knowledge concerning the opinions of patients and clinicians. This study aimed to investigate the perception of women and gynecologists regarding VRs with personalized shapes. The devices were printed with different designs (traditional, "Y", "M", and flat circle) by Fused Deposition Modeling for a cross-sectional survey with 155 participants. Their anticipated opinion was assessed through a questionnaire after a visual/tactile analysis of the VRs. The findings revealed that most women would feel comfortable using some of the 3D-printed VR designs and demonstrated good acceptability for the traditional and two innovative designs. However, women presented multiple preferences when the actual geometry was assessed, which directly related to their age, previous use of the vaginal route, and perception of comfort. In turn, gynecologists favored prescribing traditional and flat circle designs. Overall, although there was a difference in the perception between women and gynecologists, they had a positive opinion of the 3D-printed VRs. Finally, the personalized VRs could lead to an increase in therapeutic adherence, by meeting women's preferences.
Collapse
Affiliation(s)
- Laura Andrade Junqueira
- Center for Research and Innovation in Health Sciences, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (L.A.J.); (F.J.R.); (M.A.F.B.)
| | - Francisco José Raposo
- Center for Research and Innovation in Health Sciences, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (L.A.J.); (F.J.R.); (M.A.F.B.)
| | - Geraldo Sérgio Farinazzo Vitral
- Woman Health Investigation Group, Department of Surgery, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Atabak Ghanizadeh Tabriz
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK; (A.G.T.); (D.D.)
| | - Dennis Douroumis
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK; (A.G.T.); (D.D.)
| | - Nádia Rezende Barbosa Raposo
- Center for Research and Innovation in Health Sciences, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (L.A.J.); (F.J.R.); (M.A.F.B.)
| | - Marcos Antônio Fernandes Brandão
- Center for Research and Innovation in Health Sciences, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (L.A.J.); (F.J.R.); (M.A.F.B.)
| |
Collapse
|
4
|
Yeruva T, Yang S, Doski S, Duncan GA. Hydrogels for Mucosal Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:1684-1700. [PMID: 37126538 DOI: 10.1021/acsabm.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mucosal tissues are often a desirable site of drug action to treat disease and engage the immune system. However, systemically administered drugs suffer from limited bioavailability in mucosal tissues where technologies to enable direct, local delivery to these sites would prove useful. In this Spotlight on Applications article, we discuss hydrogels as an attractive means for local delivery of therapeutics to address a range of conditions affecting the eye, nose, oral cavity, gastrointestinal, urinary bladder, and vaginal tracts. Considering the barriers to effective mucosal delivery, we provide an overview of the key parameters in the use of hydrogels for these applications. Finally, we highlight recent work demonstrating their use for inflammatory and infectious diseases affecting these tissues.
Collapse
Affiliation(s)
- Taj Yeruva
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Shadin Doski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Almotairy A, Alyahya M, Althobaiti A, Almutairi M, Bandari S, Ashour EA, Repka MA. Disulfiram 3D printed film produced via hot-melt extrusion techniques as a potential anticervical cancer candidate. Int J Pharm 2023; 635:122709. [PMID: 36801364 PMCID: PMC10023499 DOI: 10.1016/j.ijpharm.2023.122709] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Cervical cancer is known globally as one of the most common health problems in women. Indeed, one of the most convenient approaches for its treatment is an appropriate bioadhesive vaginal film. This approach provides a local treatment modality, which inevitably decreases dosing frequency and improves patient compliance. Recently, disulfiram (DSF) has been investigated and demonstrated to possess anticervical cancer activity; therefore, it is employed in this work. The current study aimed to produce a novel, personalized three-dimensional (3D) printed DSF extended-release film using the hot-melt extrusion (HME) and 3D printing technologies. The optimization of the formulation composition and the HME and 3D printing processing temperatures was an important factor for overcoming the DSF heat-sensitivity issue. In addition, the 3D printing speed was specifically the most crucial parameter for alleviating heat-sensitivity concerns, which led to the production of films (F1 and F2) with an acceptable DSF content and good mechanical properties. The bioadhesion film study using sheep cervical tissue indicated a reasonable adhesive peak force (N) of 0.24 ± 0.08 for F1 and 0.40 ± 0.09 for F2, while the work of adhesion (N.mm) for F1 and F2 was 0.28 ± 0.14 and 0.54 ± 0.14, respectively. Moreover, the cumulative in vitro release data indicated that the printed films released DSF for up to 24 h. HME-coupled 3D printing successfully produced a patient-centric and personalized DSF extended-release vaginal film with a reduced dose and longer dosing interval.
Collapse
Affiliation(s)
- Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy Taibah University, Al Madinah AlMunawarah 30001, Saudi Arabia
| | - Mohammed Alyahya
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulmajeed Althobaiti
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
6
|
Akamatsu Y, Tanaka T, Endo N. Effects of intravaginal administration of prostaglandin F 2α on luteolysis and subsequent estrus in Shiba goats (Capra hircus). Anim Sci J 2023; 94:e13898. [PMID: 38061882 DOI: 10.1111/asj.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
This study examined the effects of intravaginal administration of prostaglandin F2α (PGF2α ) on luteolysis and subsequent estrus in cycling goats. Goats with functional corpus lutea received one of five treatments: 2 mg of PG intramuscularly (IM2 × 1; n = 6), 2 mg of PGF2α intravaginally (IVG2 × 1; n = 7), 4 mg of PGF2α intravaginally (IVG4 × 1; n = 7), and 1 or 2 mg of PGF2α intravaginally 8 h apart (IVG1 × 2 group; n = 6 and IVG2 × 2; n = 8). Blood samples were collected at 24-h intervals from 0 to 7 days after PGF2α administration. Estrus was checked twice daily during the experiment. The proportion of goats with complete luteolysis (reduction of progesterone concentrations to <1 ng/mL until 48 h after treatment) in the IVG2 × 1 group (28.6%) was significantly lower than in the other groups (IM2 × 1; 100%, IVG4 × 1; 57.1%, IVG1 × 2; 87.5%, IVG2 × 2; 100%, respectively). For goats completing luteolysis, there was no significant difference in the onset and duration of estrus among the groups. These results suggest that intravaginal administration of PGF2α can be applied as an alternative to intramuscular administration.
Collapse
Affiliation(s)
- Yumi Akamatsu
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomomi Tanaka
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Natsumi Endo
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
7
|
Ghosh S, Jayaram P, Kabekkodu SP, Satyamoorthy K. Targeted drug delivery in cervical cancer: Current perspectives. Eur J Pharmacol 2022; 917:174751. [PMID: 35021110 DOI: 10.1016/j.ejphar.2022.174751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Cervical cancer is preventable yet one of the most prevalent cancers among women around the globe. Though regular screening has resulted in the decline in incidence, the disease claims a high number of lives every year, especially in the developing countries. Owing to rather aggressive and non-specific nature of the conventional chemotherapeutics, there is a growing need for newer treatment modalities. The advent of nanotechnology has assisted in this through the use of nanocarriers for targeted drug delivery. A number of nanocarriers are continuously being developed and studied for their application in drug delivery. The present review summarises the different drug delivery approaches and nanocarriers that can be useful, their advantages and limitation.
Collapse
Affiliation(s)
- Supriti Ghosh
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Thapa R, Gurung S, Parat MO, Parekh HS, Pandey P. Application of Sol–Gels for Treatment of Gynaecological Conditions—Physiological Perspectives and Emerging Concepts in Intravaginal Drug Delivery. Gels 2022; 8:gels8020099. [PMID: 35200479 PMCID: PMC8871440 DOI: 10.3390/gels8020099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Approaches for effective and sustained drug delivery to the female reproductive tract (FRT) for treating a range of gynaecological conditions remain limited. The development of versatile delivery platforms, such as soluble gels (sol–gels) coupled with applicators/devices, holds considerable therapeutic potential for gynaecological conditions. Sol–gel systems, which undergo solution-to-gel transition, triggered by physiological conditions such as changes in temperature, pH, or ion composition, offer advantages of both solution- and gel-based drug formulations. Furthermore, they have potential to be used as a suitable drug delivery vehicle for other novel drug formulations, including micro- and nano-particulate systems, enabling the delivery of drug molecules of diverse physicochemical character. We provide an anatomical and physiological perspective of the significant challenges and opportunities in attaining optimal drug delivery to the upper and lower FRT. Discussion then focuses on attributes of sol–gels that can vastly improve the treatment of gynaecological conditions. The review concludes by showcasing recent advances in vaginal formulation design, and proposes novel formulation strategies enabling the infusion of a wide range of therapeutics into sol–gels, paving the way for patient-friendly treatment regimens for acute and chronic FRT-related conditions such as bacterial/viral infection control (e.g., STDs), contraception, hormone replacement therapy (HRT), infertility, and cancer.
Collapse
Affiliation(s)
- Ritu Thapa
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
| | - Shila Gurung
- School of Health and Allied Sciences, Pokhara University, Pokhara-30, Kaski 33700, Nepal;
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
| | - Harendra S. Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
- Correspondence: (H.S.P.); (P.P.)
| | - Preeti Pandey
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; (R.T.); (M.-O.P.)
- Correspondence: (H.S.P.); (P.P.)
| |
Collapse
|
9
|
Tian C, Jie H, Xia M, Liu Liu, Cao W, Chen J, Xiaoqin C. Physicochemical Evaluation and Pharmacodynamics of Itraconazole-loaded Liquid Crystal Precursor for Vaginal Delivery. Drug Dev Ind Pharm 2021; 47:1223-1234. [PMID: 34779328 DOI: 10.1080/03639045.2021.1988096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To develop liquid crystal (LC) precursor that can be used as a novel vaginal delivery system for Itraconazole (ITZ) and evaluate its pharmacodynamics. Methods: The LC precursor was prepared by using phytantriol (PYT) as lipid matrix and N, N-dimethylformamide (DMAC) as solvent. Swelling studies were performed to assess the phase conversion ability. The formulations were characterized by crossed polarized light microscopy (CPLM), small-angle X-ray scatterin (SAXS). Moreover, the rheological and in vitro drug release behavior were investigated. Then the vaginal retention time of ITZ in the optimal prescription was evaluated. Finally, the pharmacodynamics studies of the ITZ-loaded LC precursor were performed in a mouse model of vulvovaginal candidiasis (VVC). Results: The LC precursor could transform to LC gels after administration into the vagina. Based on PLM and SAXS, the LC gels, formed after phase-conversion, were cubic LC. The LC precursor was Non-Newtonian, while the LC gels exhibited a pseudo-plastic fluid behavior. In vitro release results revealed that F2 (68.0 %) had a higher cumulative drug release than that of F1 (59.17 %) at 72 h. Most of the LC gels could be retained in the vagina of mice for 24 - 36 h. Pharmacodynamics studies showed that there was only mild inflammation or no inflammatory stimulation in the control group. The ITZ-loaded LC precursor significantly improved the symptoms of vaginitis in mice and had a better therapeutic effect than that of positive control group. Conclusions: The ITZ-loaded LC precursor would be a promising formulation for vaginal drug delivery.
Collapse
Affiliation(s)
- Chunling Tian
- Department of Pharmacy, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Huang Jie
- Department of Pharmacy, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengqiu Xia
- Department of Pharmacy, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liu Liu
- Department of Pharmacy, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenxuan Cao
- Department of Pharmacy, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingbao Chen
- Department of Pharmacy, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chu Xiaoqin
- Department of Pharmacy, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China
| |
Collapse
|
10
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
11
|
Enhanced mucosal penetration and efficient inhibition efficacy against cervical cancer of PEGylated docetaxel nanocrystals by TAT modification. J Control Release 2021; 336:572-582. [PMID: 34245785 DOI: 10.1016/j.jconrel.2021.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
To investigate the potential of cell penetrating peptide (CPP) modification on nanomedicine for improving mucosal penetration and effective therapy of cervical cancer, docetaxel nanocrystals modified with trans-activator of transcription (TAT) peptide were designed for treatment of cervical cancer via vaginal administration. Docetaxel nanocrystals were coated by polymerization of dopamine to form polydopamine (PDA) coating which facilitated TAT modification and PEGylation for less mucus entrapment to get PEGylated nanocrystals modified with TAT (NC@PDA-PEG-TAT). Enhanced cellular drug uptake and cytotoxicity of NC@PDA-PEG-TAT was observed in cervical cancer-related TC-1 cells than that of PEGylated nanocrystals (NC@PDA-PEG). Intravaginally administered NC@PDA-PEG-TAT dispersed in poloxamer 407-based thermosensitive gel exhibited prolonged in vivo intravaginal retention, deeper mucosal penetration and more potent inhibition on the growth of murine orthotopic cervical cancer than NC@PDA-PEG, PDA-coated nanocrystals or unmodified nanocrystals. All data suggested the significance of CPP-modification on nanocrystals in the local treatment of vaginal mucosa-related diseases by vaginal administration.
Collapse
|
12
|
Vaginal drug delivery approaches for localized management of cervical cancer. Adv Drug Deliv Rev 2021; 174:114-126. [PMID: 33857555 DOI: 10.1016/j.addr.2021.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Cervical cancer or cervical intraepithelial neoplasia (CIN) remain a major public health problem among women globally. Traditional methods such as surgery are often associated with possible complications which may impact future pregnancies and childbirth especially for young female patients. Vagina with a high contact surface is a suitable route for the local and systemic delivery of drugs but its abundant mucus in continuous exchange presents a barrier for the popularization of conventional vaginal formulations including suppositories, gel, patch, creams and so on. So the development of new pharmaceutical forms based on nanotechnology became appealing owing to its several advantages such as mucosa penetration, bioadhesion, controlled drug release, and decreased adverse effects. This review provided an overview of the development of topical treatment of cervical cancer or CIN through vaginal drug delivery ranging from conventional vaginal formulations to new nanocarriers to the newly developed phototherapy and gene therapy, analyzing the problems faced by current methods used, and advising the developing trend in future. The methods of establishing preclinical animal model are also discussed.
Collapse
|
13
|
Emulsion-Based Multicompartment Vaginal Drug Carriers: From Nanoemulsions to Nanoemulgels. Int J Mol Sci 2021; 22:ijms22126455. [PMID: 34208652 PMCID: PMC8233730 DOI: 10.3390/ijms22126455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023] Open
Abstract
In order to overcome the limitations associated with vaginal administration of drugs, e.g., the short contact time of the drug form with the mucosa or continuous carrier wash-out, the development of new carriers for gynecological use is necessary. Furthermore, high individual anatomical and physiological variability resulting in unsatisfactory therapeutic efficacy of lipophilic active substances requires application of multicompartment drug delivery systems. This manuscript provides an up-to-date comprehensive review of the literature on emulsion-based vaginal dosage forms (EVDF) including macroemulsions, microemulsions, nanoemulsions, multiple emulsions and self-emulsifying drug delivery systems. The first part of the paper discusses (i) the influence of anatomical-physiological conditions on therapeutic efficacy of drug forms after local and systemic administration, (ii) characterization of EVDF components and the manufacturing techniques of these dosage forms and (iii) methods used to evaluate the physicochemical and pharmaceutical properties of emulsion-based vaginal dosage forms. The second part of the paper presents (iv) the results of biological and in vivo studies as well as (v) clinical evaluation of EVDF safety and therapeutic efficacy across different indications.
Collapse
|
14
|
Quarterman JC, Geary SM, Salem AK. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur J Pharm Biopharm 2021; 159:21-35. [PMID: 33338604 PMCID: PMC7856224 DOI: 10.1016/j.ejpb.2020.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
In the field of drug delivery, the most commonly used treatments have traditionally been systemically delivered using oral or intravenous administration. The problems associated with this type of delivery is that the drug concentration is controlled by first pass metabolism, and therefore may not always remain within the therapeutic window. Implantable drug delivery systems (IDDSs) are an excellent alternative to traditional delivery because they offer the ability to precisely control the drug release, deliver drugs locally to the target tissue, and avoid the toxic side effects often experienced with systemic administration. Since the creation of the first FDA-approved IDDS in 1990, there has been a surge in research devoted to fabricating and testing novel IDDS formulations. The versatility of these systems is evident when looking at the various biomedical applications that utilize IDDSs. This review provides an overview of the history of IDDSs, with examples of the different types of IDDS formulations, as well as looking at current and future biomedical applications for such systems. Though there are still obstacles that need to be overcome, ever-emerging new technologies are making the manufacturing of IDDSs a rewarding therapeutic endeavor with potential for further improvements.
Collapse
Affiliation(s)
- Juliana C Quarterman
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Sean M Geary
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States.
| |
Collapse
|
15
|
Matsumoto S, Tanaka T, Endo N. Intravaginal administration of estradiol benzoate capsule for estrus synchronization in goats. J Reprod Dev 2021; 67:83-88. [PMID: 33518696 PMCID: PMC8075725 DOI: 10.1262/jrd.2020-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrus synchronization requires multiple treatments of hormonal drugs, requiring considerable time and cost. The aim of the present study was to develop an estrus synchronization protocol using intravaginal administration of estradiol benzoate (EB) capsules in goats. Two types of capsules were prepared: an EB capsule that melted immediately after administration and a sustained-release (SR) EB capsule that dissolved slowly and reached a peak after 24 h. Goats with functional corpus lutea were intramuscularly treated with prostaglandin F2α (PG). At 24 h after PG administration, goats were administered 1 mg of EB solution intramuscularly (PG + 24IM; n = 6) or 1 mg of EB capsule intravaginally (PG + 24EB; n = 6). The SR EB capsule was administered intravaginally at the time of PG administration (PG + SR; n = 6). The control group (n = 6) received only PG. All groups showed estrus within 72 h after PG administration. The onset of estrus did not differ significantly between the PG + 24IM and PG + SR groups but was earlier than in the control group. Estradiol concentration in the PG + SR group peaked at 11.5 ± 6.1 h after EB and PG administration. Peak estradiol concentrations were not significantly different between the PG + 24IM and PG + SR groups (78.0 ± 25.8 and 64.0 ± 38.1 pg/ml, respectively), and were higher than the PG + 24EB and control groups (27.3 ± 8.8 and 14.6 ± 6.1 pg/ml, respectively). These results suggest that intravaginal administration of an EB capsule with a sustained-drug release base is applicable for estrus synchronization, as an alternative to intramuscular administration.
Collapse
Affiliation(s)
- Sayaka Matsumoto
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Tomomi Tanaka
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Natsumi Endo
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
16
|
Abstract
While contraceptive drugs have enabled many people to decide when they want to have a baby, more than 100 million unintended pregnancies each year in the world may indicate the contraceptive requirement of many people has not been well addressed yet. The vagina is a well-established and practical route for the delivery of various pharmacological molecules, including contraceptives. This review aims to present an overview of different contraceptive methods focusing on the vaginal route of delivery for contraceptives, including current developments, discussing the potentials and limitations of the modern methods, designs, and how well each method performs for delivering the contraceptives and preventing pregnancy.
Collapse
|
17
|
Abidin IZ, Rezoagli E, Simonassi-Paiva B, Fehrenbach GW, Masterson K, Pogue R, Cao Z, Rowan N, Murphy EJ, Major I. A Bilayer Vaginal Tablet for the Localized Delivery of Disulfiram and 5-Fluorouracil to the Cervix. Pharmaceutics 2020; 12:pharmaceutics12121185. [PMID: 33291349 PMCID: PMC7762309 DOI: 10.3390/pharmaceutics12121185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022] Open
Abstract
This study was performed to develop an adjuvant therapy in the form of a self-administered vaginal tablet regimen for the localized delivery of chemotherapeutic drugs. This therapy will help to reduce relapse by eradicating cancerous cells in the margin of cervical tumors. The vaginal tablet is a very common formulation that is easy to manufacture, easy to place in the vagina, and has a low cost of manufacture, making them ideal for use in developing countries. A combination of disulfiram and 5-fluorouracil, which are both off-patent drugs and provide different modes of action, were evaluated. The tablets developed were evaluated for weight variation, thickness, hardness, friability, swelling index, differential scanning calorimetry (DSC), particle morphology, in vitro drug release, and cytotoxicity on Ca-Ski cells. Both layers were designed to release both drugs concurrently for a synergistic effect. The polymer–polymer interaction between the layers was able to reduce the loss of formulation due to chitosan. While the bilayer tablet had satisfactory performance in the physicochemical tests, in vitro cell culture with Ca-Ski also showed a synergistic effect using a combination of drugs at a low dose. However, the formulation only had 24-h dose release before degradation. Further drug combinations should be evaluated in subsequent studies.
Collapse
Affiliation(s)
- Ismin Zainol Abidin
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, N37 HD68 Athlone, Ireland; (I.Z.A.); (Z.C.)
| | - Emanuele Rezoagli
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, N37 HD68 Athlone, Ireland; (E.R.); (B.S.-P.); (G.W.F.); (K.M.); (R.P.); (N.R.); (E.J.M.)
- Department of Medicine and Surgery, University of Milan-Bicocca, 1–20126 Monza, Italy
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Bianca Simonassi-Paiva
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, N37 HD68 Athlone, Ireland; (E.R.); (B.S.-P.); (G.W.F.); (K.M.); (R.P.); (N.R.); (E.J.M.)
| | - Gustavo Waltzer Fehrenbach
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, N37 HD68 Athlone, Ireland; (E.R.); (B.S.-P.); (G.W.F.); (K.M.); (R.P.); (N.R.); (E.J.M.)
| | - Kevin Masterson
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, N37 HD68 Athlone, Ireland; (E.R.); (B.S.-P.); (G.W.F.); (K.M.); (R.P.); (N.R.); (E.J.M.)
| | - Robert Pogue
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, N37 HD68 Athlone, Ireland; (E.R.); (B.S.-P.); (G.W.F.); (K.M.); (R.P.); (N.R.); (E.J.M.)
- Post-Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia 70790-160, Brazil
| | - Zhi Cao
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, N37 HD68 Athlone, Ireland; (I.Z.A.); (Z.C.)
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, N37 HD68 Athlone, Ireland; (E.R.); (B.S.-P.); (G.W.F.); (K.M.); (R.P.); (N.R.); (E.J.M.)
| | - Emma J. Murphy
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, N37 HD68 Athlone, Ireland; (E.R.); (B.S.-P.); (G.W.F.); (K.M.); (R.P.); (N.R.); (E.J.M.)
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, N37 HD68 Athlone, Ireland; (I.Z.A.); (Z.C.)
- Correspondence: ; Tel.: +353-906-48-3084
| |
Collapse
|
18
|
Irvin-Choy NS, Nelson KM, Gleghorn JP, Day ES. Design of nanomaterials for applications in maternal/fetal medicine. J Mater Chem B 2020; 8:6548-6561. [PMID: 32452510 PMCID: PMC7429305 DOI: 10.1039/d0tb00612b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pregnancy complications are commonplace and the challenges of treatment during pregnancy with few options available pose a risk to the health of both the mother and baby. Patients suffering from conditions such as preeclampsia, placenta accreta, and intrauterine growth restriction have few treatment options apart from emergency caesarean section. Fortunately, researchers are beginning to develop nanomedicine-based therapies that could be utilized to treat conditions affecting the mother, placenta, or fetus to improve the prognosis for mothers and their unborn children. This review summarizes the field's current understanding of nanoparticle biodistribution and therapeutic effect following systemic or vaginal administration and overviews the design parameters researchers should consider when developing nanomedicines for maternal/fetal health. It also describes safety considerations for nanomedicines to limit undesirable maternal or fetal side effects and discusses future work that should be performed to advance nanomedicine for maternal/fetal health. With additional development and implementation, the application of nanomedicine to treat pregnancy complications may mitigate the need for emergency caesarean sections and allow pregnancies to extend to term.
Collapse
Affiliation(s)
- N'Dea S Irvin-Choy
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA.
| | | | | | | |
Collapse
|
19
|
Falavigna M, Pattacini M, Wibel R, Sonvico F, Škalko-Basnet N, Flaten GE. The Vaginal-PVPA: A Vaginal Mucosa-Mimicking In Vitro Permeation Tool for Evaluation of Mucoadhesive Formulations. Pharmaceutics 2020; 12:pharmaceutics12060568. [PMID: 32575388 PMCID: PMC7355897 DOI: 10.3390/pharmaceutics12060568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Drug administration to the vaginal site has gained increasing attention in past decades, highlighting the need for reliable in vitro methods to assess the performance of novel formulations. To optimize formulations destined for the vaginal site, it is important to evaluate the drug retention within the vagina as well as its permeation across the mucosa, particularly in the presence of vaginal fluids. Herewith, the vaginal-PVPA (Phospholipid Vesicle-based Permeation Assay) in vitro permeability model was validated as a tool to evaluate the permeation of the anti-inflammatory drug ibuprofen from liposomal formulations (i.e., plain and chitosan-coated liposomes). Drug permeation was assessed in the presence and absence of mucus and simulated vaginal fluid (SVF) at pH conditions mimicking both the healthy vaginal premenopausal conditions and vaginal infection/pre-puberty/post-menopause state. The permeation of ibuprofen proved to depend on the type of formulation (i.e., chitosan-coated liposomes exhibited lower drug permeation), the mucoadhesive formulation properties and pH condition. This study highlights both the importance of mucus and SVF in the vaginal model to better understand and predict the in vivo performance of formulations destined for vaginal administration, and the suitability of the vaginal-PVPA model for such investigations.
Collapse
Affiliation(s)
- Margherita Falavigna
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Correspondence: (M.F.); (G.E.F.)
| | - Martina Pattacini
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy;
| | - Richard Wibel
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
| | - Fabio Sonvico
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy;
| | - Natasa Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Correspondence: (M.F.); (G.E.F.)
| |
Collapse
|
20
|
Kaur H, Mishra N, Khurana B, Kaur S, Arora D. DoE Based Optimization and Development of Spray-Dried Chitosan-Coated Alginate Microparticles Loaded with Cisplatin for the Treatment of Cervical Cancer. Curr Mol Pharmacol 2020; 14:381-398. [PMID: 32416684 DOI: 10.2174/1874467213666200517120337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The existing parenteral treatment of cervical cancer has high toxicity and poor distribution of drugs at the targeted site. PURPOSE To formulate localized mucoadhesive cisplatin loaded microparticles based formulation to treat cervical cancer so that enhanced therapeutics benefits with low toxicity could be achieved. METHODS Cisplatin loaded chitosan coated spray-dried microparticles were prepared by ionotropic gelation technique and optimized by Central Composite Design. The spray-dried uncoated and chitosan- coated microparticles were characterized for various parameters (Particle size, Morphology, Drug entrapment efficiency). In vitro drug release study was carried out in simulated vaginal fluids by dialysis membrane method. Ex vivo studies were carried out to evaluate the cytotoxic potential of the developed formulation by the MTT assay. A drug permeability study was performed by Franz diffusion cell using the vaginal tissue of Swiss Albino Mice. RESULTS All in vitro characterization parameters were found to be optimum. The in vitro release studies indicated a controlled release following the Higuchi model. The chitosan-coated microparticles were found to be more cytotoxic than uncoated microparticles and plain cisplatin solution. The chitosan-coated microparticles were found to be more permeable than uncoated microparticles. Finally, in vivo tumor regression and histopathological studies confirmed the significant decrease in tumor volume at different time intervals. CONCLUSION Thus, it can be concluded that mucoadhesive spray-dried microparticles could provide a favorable approach for localized delivery of the anticancer drug via vaginal route against cervical cancer with its enhanced effectiveness.
Collapse
Affiliation(s)
- Harpal Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga (Punjab), India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University of Madhya Pradesh (AUMP), Gwalior (Madhya Pradesh), India
| | - Bharat Khurana
- Department of Pharmaceutics, ISF College of Pharmacy, Moga (Punjab), India
| | - Sukhbir Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga (Punjab), India
| | - Daisy Arora
- Department of Pharmaceutics, ISF College of Pharmacy, Moga (Punjab), India
| |
Collapse
|
21
|
Iqbal Z, Dilnawaz F. Nanocarriers For Vaginal Drug Delivery. ACTA ACUST UNITED AC 2020; 13:3-15. [PMID: 30767755 DOI: 10.2174/1872211313666190215141507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Vaginal drug delivery approach represents one of the imperative strategies for local and systemic delivery of drugs. The peculiar dense vascular networks, mucus permeability, and range of physiological characteristics of the vaginal cavity have been exploited for therapeutic benefit. Furthermore, the vaginal drug delivery has been curtailed due to the influence of different physiological factors like acidic pH, constant cervical secretion, microflora, cyclic changes during periods along with turnover of mucus of varying thickness. OBJECTIVE This review highlights advancement of nanomedicine and its prospective progress towards the clinic. METHODS Relevant literature reports and patents related to topics are retrieved and used. RESULT The extensive literature search and patent revealed that nanocarriers are efficacious over conventional treatment approaches. CONCLUSION Recently, nanotechnology based drug delivery approach has promised better therapeutic outcomes by providing enhanced permeation and sustained drug release activity. Different nanoplatforms based on drugs, peptides, proteins, antigens, hormones, nucleic material, and microbicides are gaining momentum for vaginal therapeutics.
Collapse
Affiliation(s)
- Zeenat Iqbal
- Nanomedicine Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Fahima Dilnawaz
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Bhubaneswar -751023, Odisha, India
| |
Collapse
|
22
|
Chatterjee K, Mukherjee S, Vanmanen J, Banerjee P, Fata JE. Dietary Polyphenols, Resveratrol and Pterostilbene Exhibit Antitumor Activity on an HPV E6-Positive Cervical Cancer Model: An in vitro and in vivo Analysis. Front Oncol 2019; 9:352. [PMID: 31143704 PMCID: PMC6521745 DOI: 10.3389/fonc.2019.00352] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Human papilloma virus (HPV)-induced cervical cancer is one of the most frequent cancers in women residing in underdeveloped countries. Natural compounds like polyphenols continue to be of scientific interest as non-toxic effective alternative treatments. Our previous work showed the efficacy of two polyphenols, resveratrol, and pterostilbene on human HeLa cells. Here we explored the in vitro anti-cancer activity and in vivo anti-tumor potential of these two structurally similar compounds on HPV oncogene E6 and E7 positive murine TC1 cells. In vitro analysis confirmed the cytotoxic potential of both resveratrol and pterostilbene compounds with each having a low IC50 value and each showing the ability to downregulate viral oncogene E6. Further in vivo studies on TC1 tumors developing in mice indicated that treatment with either resveratrol or pterostilbene can significantly inhibit tumor development, with both compounds capable of downregulating E6 and VEGF tumor protein levels. Interestingly, the decrease in tumor size in pterostilbene was associated with tumor cell apoptosis, as indicated by an upregulation of activated caspase-3 whereas in resveratrol-treated mice it was accompanied by arrest of cell cycle, as indicated by a downregulation of PCNA. Thus, resveratrol and pterostilbene can serve as potential antineoplastic agents against HPV E6+ tumors and may suppress tumor growth via two different mechanisms.
Collapse
Affiliation(s)
- Kaushiki Chatterjee
- Doctoral Program in Biology, CUNY Graduate Center, New York, NY, United States.,Department of Biology, College of Staten Island, New York, NY, United States
| | - Sumit Mukherjee
- Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, United States.,Department of Chemistry & The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, New York, NY, United States
| | - Jonathan Vanmanen
- Department of Biology, College of Staten Island, New York, NY, United States
| | - Probal Banerjee
- Doctoral Program in Biology, CUNY Graduate Center, New York, NY, United States.,Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, United States.,Department of Chemistry & The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, New York, NY, United States
| | - Jimmie E Fata
- Doctoral Program in Biology, CUNY Graduate Center, New York, NY, United States.,Department of Biology, College of Staten Island, New York, NY, United States.,Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, United States
| |
Collapse
|
23
|
Jie H, Liu L, Shuangying G, Xingqi W, Rongfeng H, Yong Z, Chunling T, Mengqiu X, Xiaoqin C. A Novel Phytantriol-Based In Situ Liquid Crystal Gel for Vaginal Delivery. AAPS PharmSciTech 2019; 20:185. [PMID: 31062112 DOI: 10.1208/s12249-019-1393-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/16/2019] [Indexed: 01/02/2023] Open
Abstract
The purpose of this paper was to evaluate the potential of in situ liquid crystal (LC) gels based on phytantriol (PYT) for vaginal delivery. The PYT-based in situ liquid crystal gels (PILGs) were prepared by a vortex method using PYT, ethanol (ET), and water (in the ratio of 64:16:20, w/w). The internal structures of PILGs and cubic LC gels (formed by PILG phase conversion) were confirmed by crossed polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). And the rheological tests showed that PILGs had small viscosity and excellent fluidity. The viscosities of cubic LC gels were 4~5 orders of magnitude higher than PILGs. In vitro phase conversion experiment showed that PILGs required little vaginal fluid (64.56 μL/100 mg) and time (3.92 s) to transform to LC gels. Furthermore, cubic LC gels could reside in the vaginas for more than 12 h in vivo. The in vitro release revealed that sinomenine hydrochloride (SMH) could be sustained released from the cubic gels over a period of 144 h, which was prior to SMH solution and carbomer gels. An in vivo vaginal mucosa irritation study indicated that PILGs were nonirritant and might be suitable for various vaginal applications. In conclusion, PILGs might represent a potential vaginal delivery strategy to overcome the limitations of traditional treatments.
Collapse
|
24
|
Ci LQ, Huang ZG, Lv FM, Wang J, Feng LL, Sun F, Cao SJ, Liu ZP, Liu Y, Wei G, Lu WY. Enhanced Delivery of Imatinib into Vaginal Mucosa via a New Positively Charged Nanocrystal-Loaded in Situ Hydrogel Formulation for Treatment of Cervical Cancer. Pharmaceutics 2019; 11:E15. [PMID: 30621141 PMCID: PMC6359353 DOI: 10.3390/pharmaceutics11010015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/04/2022] Open
Abstract
The present study was carried out to investigate the potential of cationic functionalization on imatinib nanocrystals to improve the mucoadhesiveness and, thus, delivery to the lesion of cervicovaginal tumors. Amino-group-functionalized imatinib nanocrystals (NC@PDA-NH₂) were prepared with near-spheroid shape, nanoscale size distribution, positive zeta potential, and relatively high drug content with the aid of the polydopamine-coating technique. Efficient interaction between NC@PDA-NH₂ and mucin was proven by mucin adsorption which was related to the positive zeta-potential value of NC@PDA-NH₂ and the change in the size distribution on mixing of NC@PDA-NH₂ and mucin. Cellular uptake, growth inhibition, and apoptosis induction in cervicovaginal cancer-related cells demonstrated the superiority of NC@PDA-NH₂ over unmodified nanocrystals. For practical intravaginal administration, NC@PDA-NH₂ was dispersed in Pluronic F127-based thermosensitive in situ hydrogel, which showed suitable gelation temperature and sustained-release profiles. In comparison with unmodified nanocrystals, NC@PDA-NH₂ exhibited extended residence on ex vivo murine vaginal mucosa, prolonged in vivo intravaginal residence, and enhanced inhibition on the growth of murine orthotopic cervicovaginal model tumors indicated by smaller tumor size, longer median survival time, and more intratumor apoptosis with negligible mucosal toxicity. In conclusion, cationic functionalization endowed NC@PDA-NH₂ significant mucoadhesiveness and, thus, good potential against cervicovaginal cancer via intravaginal administration.
Collapse
Affiliation(s)
- Li-Qian Ci
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhi-Gang Huang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| | - Feng-Mei Lv
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jun Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ling-Lin Feng
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Room 904, No 1 Research Building, 2140 Xietu Road, Shanghai 200032, China.
| | - Feng Sun
- Chinese Academy of Sciences Shanghai Institute of Materia Medica, Shanghai 201203, China.
| | - Shui-Juan Cao
- Experimental Teaching Center, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Zhe-Peng Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| | - Gang Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| | - Wei-Yue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
25
|
Wang X, Fu L, Lin W, Zhang W, Pei Q, Zheng X, Liu S, Zhang T, Xie Z. Vaginal delivery of mucus-penetrating organic nanoparticles for photothermal therapy against cervical intraepithelial neoplasia in mice. J Mater Chem B 2019. [DOI: 10.1039/c9tb00984a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photosensitizer-based photothermal therapy (PTT) may be a good choice for the treatment of severe cervical intraepithelial neoplasia (CIN) compared with conventional thermal ablation.
Collapse
Affiliation(s)
- Xue Wang
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- P. R. China
| | - Li Fu
- Department of Implantology
- Stomatological Hospital
- Jilin University
- Changchun 130021
- P. R. China
| | - Wenhai Lin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- P. R. China
| | - Wei Zhang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- P. R. China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- P. R. China
| | - Xiaohua Zheng
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- P. R. China
| | - Tao Zhang
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- P. R. China
| |
Collapse
|
26
|
Mahjabeen S, Hatipoglu MK, Benbrook DM, Garcia-Contreras L. Pharmacokinetics and Pharmacodynamics of Escalating Doses of SHetA2 After Vaginal Administration to Mice. J Pharm Sci 2018; 107:3179-3186. [PMID: 30196041 PMCID: PMC6342475 DOI: 10.1016/j.xphs.2018.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/25/2022]
Abstract
SHetA2 is a novel compound with strong potential to treat cervical dysplasia, but its low aqueous solubility limits its oral bioavailability. A vaginal suppository achieved SHetA2 cervix concentrations that were severalfold above the predicted therapeutic levels. Thus, we aimed at determining the minimum dose that would achieve SHetA2 therapeutic levels while reducing cyclin D1 levels, the pharmacodynamic end point. The disposition of SHetA2 after vaginal administration of escalating SHetA2 doses and the corresponding reduction in cyclin D1 levels was compared to that after the conventional oral treatment. Vaginal administration of a 15-mg/kg dose achieved an area under the cervix concentration versus time curve (AUCcervix) that was ∼120 times larger than that after a 60 mg/kg administered orally. AUCcervix and Cmax-cervix did not increase proportionally with respect to the dose, with the 30-mg/kg dose resulting in higher AUCcervix and Cmax-cervix (1368.53 μg.mL/h and 155.38 μg/g, respectively) compared to the 15 mg/kg (334.98 μg.mL/h and 121.78 μg/g, respectively) or 60 mg/kg (1178.55 μg.mL/h and 410.38 μg/g, respectively). Likewise, the 30-mg/kg dose caused a larger reduction in cyclin D1 levels than the other doses. Thus, the 30-mg/kg dose was selected for future efficacy studies in a mouse model of cervical neoplasia.
Collapse
Affiliation(s)
- Sanjida Mahjabeen
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901
| | - Manolya Kukut Hatipoglu
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901
| | - Doris M Benbrook
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901
| | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901.
| |
Collapse
|
27
|
Friend DR. Drug delivery in female reproductive health. Drug Deliv Transl Res 2018; 7:773-774. [PMID: 28895053 DOI: 10.1007/s13346-017-0427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Laffleur F. Comparative mucoadhesive study of hyaluronic acid-based conjugates on different mucosae. J Appl Polym Sci 2017. [DOI: 10.1002/app.46071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck; University of Innsbruck; Innsbruck Austria
- Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research at MIT, Langer Lab, 77 Massachusetts Ave; Cambridge Massachusetts 02139
| |
Collapse
|