1
|
Beauchemin N, Charland P, Karran A, Boasen J, Tadson B, Sénécal S, Léger PM. Enhancing learning experiences: EEG-based passive BCI system adapts learning speed to cognitive load in real-time, with motivation as catalyst. Front Hum Neurosci 2024; 18:1416683. [PMID: 39435350 PMCID: PMC11491376 DOI: 10.3389/fnhum.2024.1416683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Computer-based learning has gained popularity in recent years, providing learners greater flexibility and freedom. However, these learning environments do not consider the learner's mental state in real-time, resulting in less optimized learning experiences. This research aimed to explore the effect on the learning experience of a novel EEG-based Brain-Computer Interface (BCI) that adjusts the speed of information presentation in real-time during a learning task according to the learner's cognitive load. We also explored how motivation moderated these effects. In accordance with three experimental groups (non-adaptive, adaptive, and adaptive with motivation), participants performed a calibration task (n-back), followed by a memory-based learning task concerning astrological constellations. Learning gains were assessed based on performance on the learning task. Self-perceived mental workload, cognitive absorption and satisfaction were assessed using a post-test questionnaire. Between-group analyses using Mann-Whitney tests suggested that combining BCI and motivational factors led to more significant learning gains and an improved learning experience. No significant difference existed between the BCI without motivational factor and regular non-adaptive interface for overall learning gains, self-perceived mental workload, and cognitive absorption. However, participants who undertook the experiment with an imposed learning pace reported higher overall satisfaction with their learning experience and a higher level of temporal stress. Our findings suggest BCI's potential applicability and feasibility in improving memorization-based learning experiences. Further work should seek to optimize the BCI adaptive index and explore generalizability to other learning contexts.
Collapse
Affiliation(s)
- Noémie Beauchemin
- Tech3Lab, HEC Montréal, Information Technology Department, Montreal, QC, Canada
| | - Patrick Charland
- Didactics Department, Université du Québec à Montréal, Montreal, QC, Canada
| | - Alexander Karran
- Tech3Lab, HEC Montréal, Information Technology Department, Montreal, QC, Canada
| | - Jared Boasen
- Tech3Lab, HEC Montréal, Information Technology Department, Montreal, QC, Canada
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Bella Tadson
- Tech3Lab, HEC Montréal, Information Technology Department, Montreal, QC, Canada
| | - Sylvain Sénécal
- Tech3Lab, HEC Montréal, Information Technology Department, Montreal, QC, Canada
| | | |
Collapse
|
2
|
van Stuijvenberg OC, Samlal DPS, Vansteensel MJ, Broekman MLD, Jongsma KR. The ethical significance of user-control in AI-driven speech-BCIs: a narrative review. Front Hum Neurosci 2024; 18:1420334. [PMID: 39006157 PMCID: PMC11240287 DOI: 10.3389/fnhum.2024.1420334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
AI-driven brain-computed interfaces aimed at restoring speech for individuals living with locked-in-syndrome are paired with ethical implications for user's autonomy, privacy and responsibility. Embedding options for sufficient levels of user-control in speech-BCI design has been proposed to mitigate these ethical challenges. However, how user-control in speech-BCIs is conceptualized and how it relates to these ethical challenges is underdetermined. In this narrative literature review, we aim to clarify and explicate the notion of user-control in speech-BCIs, to better understand in what way user-control could operationalize user's autonomy, privacy and responsibility and explore how such suggestions for increasing user-control can be translated to recommendations for the design or use of speech-BCIs. First, we identified types of user control, including executory control that can protect voluntariness of speech, and guidance control that can contribute to semantic accuracy. Second, we identified potential causes for a loss of user-control, including contributions of predictive language models, a lack of ability for neural control, or signal interference and external control. Such a loss of user control may have implications for semantic accuracy and mental privacy. Third we explored ways to design for user-control. While embedding initiation signals for users may increase executory control, they may conflict with other aims such as speed and continuity of speech. Design mechanisms for guidance control remain largely conceptual, similar trade-offs in design may be expected. We argue that preceding these trade-offs, the overarching aim of speech-BCIs needs to be defined, requiring input from current and potential users. Additionally, conceptual clarification of user-control and other (ethical) concepts in this debate has practical relevance for BCI researchers. For instance, different concepts of inner speech may have distinct ethical implications. Increased clarity of such concepts can improve anticipation of ethical implications of speech-BCIs and may help to steer design decisions.
Collapse
Affiliation(s)
- O C van Stuijvenberg
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - D P S Samlal
- Department of Philosophy, Utrecht University, Utrecht, Netherlands
- Department of Anatomy, University Medical Center, Utrecht University, Utrecht, Netherlands
| | - M J Vansteensel
- University Medical Center Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - M L D Broekman
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - K R Jongsma
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
3
|
Kelly AR, Glover DJ. Information Transmission through Biotic-Abiotic Interfaces to Restore or Enhance Human Function. ACS APPLIED BIO MATERIALS 2024; 7:3605-3628. [PMID: 38729914 DOI: 10.1021/acsabm.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Advancements in reliable information transfer across biotic-abiotic interfaces have enabled the restoration of lost human function. For example, communication between neuronal cells and electrical devices restores the ability to walk to a tetraplegic patient and vision to patients blinded by retinal disease. These impactful medical achievements are aided by tailored biotic-abiotic interfaces that maximize information transfer fidelity by considering the physical properties of the underlying biological and synthetic components. This Review develops a modular framework to define and describe the engineering of biotic and abiotic components as well as the design of interfaces to facilitate biotic-abiotic information transfer using light or electricity. Delineating the properties of the biotic, interface, and abiotic components that enable communication can serve as a guide for future research in this highly interdisciplinary field. Application of synthetic biology to engineer light-sensitive proteins has facilitated the control of neural signaling and the restoration of rudimentary vision after retinal blindness. Electrophysiological methodologies that use brain-computer interfaces and stimulating implants to bypass spinal column injuries have led to the rehabilitation of limb movement and walking ability. Cellular interfacing methodologies and on-chip learning capability have been made possible by organic transistors that mimic the information processing capacity of neurons. The collaboration of molecular biologists, material scientists, and electrical engineers in the emerging field of biotic-abiotic interfacing will lead to the development of prosthetics capable of responding to thought and experiencing touch sensation via direct integration into the human nervous system. Further interdisciplinary research will improve electrical and optical interfacing technologies for the restoration of vision, offering greater visual acuity and potentially color vision in the near future.
Collapse
Affiliation(s)
- Alexander R Kelly
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Döbler NA, Carbon CC. Adapting Ourselves, Instead of the Environment: An Inquiry into Human Enhancement for Function and Beyond. Integr Psychol Behav Sci 2024; 58:589-637. [PMID: 37597122 PMCID: PMC11052783 DOI: 10.1007/s12124-023-09797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2023] [Indexed: 08/21/2023]
Abstract
Technology enables humans not only to adapt their environment to their needs but also to modify themselves. Means of Human Enhancement - embodied technologies to improve the human body's capabilities or to create a new one - are the designated means of adapting ourselves instead of the environment. The debate about these technologies is typically fought on ethical soil. However, alarmist, utopian, and science fiction scenarios distract from the fact that Human Enhancement is a historical and pervasive phenomenon incorporated into many everyday practices. In the vein of disentangling conceptual difficulties, we claim that means of Human Enhancement are either physiologically or psychologically embodied, rendering the merging with the human user their most defining aspect. To fulfill its purpose, an enhancement must pass the test-in-the-world, i.e., assisting with effective engagement with a dynamic world. Even if failing in this regard: Human Enhancement is the fundamental and semi-targeted process of changing the users relationship with the world through the physical or psychological embodiment of a hitherto external object and/or change of one's body. This can potentially change the notion of being human. Drawing on a rich body of theoretical and empirical literature, we aim to provide a nuanced analysis of the transformative nature of this phenomenon in close proximity to human practice. Stakeholders are invited to apply the theory presented here to interrogate their perspective on technology in general and Human Enhancement in particular.
Collapse
Affiliation(s)
- Niklas Alexander Döbler
- Department for General Psychology and Methodology, University of Bamberg, Bamberg, Germany.
- Research group EPÆG (Ergonomics, Psychological Æsthetics, Gestalt), Bamberg, Germany.
- Bamberg Graduate School of Affective and Cognitive Sciences (BaGrACS), Bamberg, Germany.
| | - Claus-Christian Carbon
- Department for General Psychology and Methodology, University of Bamberg, Bamberg, Germany
- Research group EPÆG (Ergonomics, Psychological Æsthetics, Gestalt), Bamberg, Germany
- Bamberg Graduate School of Affective and Cognitive Sciences (BaGrACS), Bamberg, Germany
| |
Collapse
|
5
|
Soldado-Magraner J, Antonietti A, French J, Higgins N, Young MJ, Larrivee D, Monteleone R. Applying the IEEE BRAIN neuroethics framework to intra-cortical brain-computer interfaces. J Neural Eng 2024; 21:022001. [PMID: 38537269 DOI: 10.1088/1741-2552/ad3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Objective. Brain-computer interfaces (BCIs) are neuroprosthetic devices that allow for direct interaction between brains and machines. These types of neurotechnologies have recently experienced a strong drive in research and development, given, in part, that they promise to restore motor and communication abilities in individuals experiencing severe paralysis. While a rich literature analyzes the ethical, legal, and sociocultural implications (ELSCI) of these novel neurotechnologies, engineers, clinicians and BCI practitioners often do not have enough exposure to these topics.Approach. Here, we present the IEEE Neuroethics Framework, an international, multiyear, iterative initiative aimed at developing a robust, accessible set of considerations for diverse stakeholders.Main results. Using the framework, we provide practical examples of ELSCI considerations for BCI neurotechnologies. We focus on invasive technologies, and in particular, devices that are implanted intra-cortically for medical research applications.Significance. We demonstrate the utility of our framework in exposing a wide range of implications across different intra-cortical BCI technology modalities and conclude with recommendations on how to utilize this knowledge in the development and application of ethical guidelines for BCI neurotechnologies.
Collapse
Affiliation(s)
- Joana Soldado-Magraner
- Department of Electrical and Computer Engineering and the Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Alberto Antonietti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano 20131, Italy
| | - Jennifer French
- Neurotech Network, St. Petersburg, FL 33733, United States of America
| | - Nathan Higgins
- School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Michael J Young
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Denis Larrivee
- Mind and Brain Institute, University of Navarra Medical School, Pamplona, Navarra 31008, Spain
- Loyola University, Chicago, IL 60611, United States of America
| | - Rebecca Monteleone
- Disability Studies Program, University of Toledo, Toledo, OH 43606, United States of America
| |
Collapse
|
6
|
van Stuijvenberg OC, Broekman MLD, Wolff SEC, Bredenoord AL, Jongsma KR. Developer perspectives on the ethics of AI-driven neural implants: a qualitative study. Sci Rep 2024; 14:7880. [PMID: 38570593 PMCID: PMC10991497 DOI: 10.1038/s41598-024-58535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/01/2024] [Indexed: 04/05/2024] Open
Abstract
Convergence of neural implants with artificial intelligence (AI) presents opportunities for the development of novel neural implants and improvement of existing neurotechnologies. While such technological innovation carries great promise for the restoration of neurological functions, they also raise ethical challenges. Developers of AI-driven neural implants possess valuable knowledge on the possibilities, limitations and challenges raised by these innovations; yet their perspectives are underrepresented in academic literature. This study aims to explore perspectives of developers of neurotechnology to outline ethical implications of three AI-driven neural implants: a cochlear implant, a visual neural implant, and a motor intention decoding speech-brain-computer-interface. We conducted semi-structured focus groups with developers (n = 19) of AI-driven neural implants. Respondents shared ethically relevant considerations about AI-driven neural implants that we clustered into three themes: (1) design aspects; (2) challenges in clinical trials; (3) impact on users and society. Developers considered accuracy and reliability of AI-driven neural implants conditional for users' safety, authenticity, and mental privacy. These needs were magnified by the convergence with AI. Yet, the need for accuracy and reliability may also conflict with potential benefits of AI in terms of efficiency and complex data interpretation. We discuss strategies to mitigate these challenges.
Collapse
Affiliation(s)
- Odile C van Stuijvenberg
- Department of Bioethics and Health Humanities, Julius Center, University Medical Center Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands.
| | - Marike L D Broekman
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA, The Hague, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Samantha E C Wolff
- Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Annelien L Bredenoord
- Erasmus School of Philosophy, Erasmus University Rotterdam, 3062 PA, Rotterdam, The Netherlands
| | - Karin R Jongsma
- Department of Bioethics and Health Humanities, Julius Center, University Medical Center Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
7
|
Poppe C, Elger BS. Brain-Computer Interfaces, Completely Locked-In State in Neurodegenerative Diseases, and End-of-Life Decisions. JOURNAL OF BIOETHICAL INQUIRY 2024; 21:19-27. [PMID: 37466825 PMCID: PMC11052847 DOI: 10.1007/s11673-023-10256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/03/2023] [Indexed: 07/20/2023]
Abstract
In the future, policies surrounding end-of-life decisions will be faced with the question of whether competent people in a completely locked-in state should be enabled to make end-of-life decisions via brain-computer interfaces (BCI). This article raises ethical issues with acting through BCIs in the context of these decisions, specifically self-administration requirements within assisted suicide policies. We argue that enabling patients to end their life even once they have entered completely locked-in state might, paradoxically, prolong and uphold their quality of life.
Collapse
Affiliation(s)
- Christopher Poppe
- Institute for Biomedical Ethics, University of Basel, Bernoullistr. 28, 4056, Basel, Switzerland.
| | - Bernice S Elger
- Institute for Biomedical Ethics, University of Basel, Bernoullistr. 28, 4056, Basel, Switzerland
- Center for Legal Medicine of Geneva and Lausanne, Geneva, Switzerland
| |
Collapse
|
8
|
Savić AM, Novičić M, Ðorđević O, Konstantinović L, Miler-Jerković V. Novel electrotactile brain-computer interface with somatosensory event-related potential based control. Front Hum Neurosci 2023; 17:1096814. [PMID: 37033908 PMCID: PMC10078957 DOI: 10.3389/fnhum.2023.1096814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Objective A brain computer interface (BCI) allows users to control external devices using non-invasive brain recordings, such as electroencephalography (EEG). We developed and tested a novel electrotactile BCI prototype based on somatosensory event-related potentials (sERP) as control signals, paired with a tactile attention task as a control paradigm. Approach A novel electrotactile BCI comprises commercial EEG device, an electrical stimulator and custom software for EEG recordings, electrical stimulation control, synchronization between devices, signal processing, feature extraction, selection, and classification. We tested a novel BCI control paradigm based on tactile attention on a sensation at a target stimulation location on the forearm. Tactile stimuli were electrical pulses delivered at two proximal locations on the user's forearm for stimulating branches of radial and median nerves, with equal probability of the target and distractor stimuli occurrence, unlike in any other ERP-based BCI design. We proposed a compact electrical stimulation electrodes configuration for delivering electrotactile stimuli (target and distractor) using 2 stimulation channels and 3 stimulation electrodes. We tested the feasibility of a single EEG channel BCI control, to determine pseudo-online BCI performance, in ten healthy subjects. For optimizing the BCI performance we compared the results for two classifiers, sERP averaging approaches, and novel dedicated feature extraction/selection methods via cross-validation procedures. Main results We achieved a single EEG channel BCI classification accuracy in the range of 75.1 to 88.1% for all subjects. We have established an optimal combination of: single trial averaging to obtain sERP, feature extraction/selection methods and classification approach. Significance The obtained results demonstrate that a novel electrotactile BCI paradigm with equal probability of attended (target) and unattended (distractor) stimuli and proximal stimulation sites is feasible. This method may be used to drive restorative BCIs for sensory retraining in stroke or brain injury, or assistive BCIs for communication in severely disabled users.
Collapse
Affiliation(s)
- Andrej M. Savić
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
- *Correspondence: Andrej M. Savić,
| | - Marija Novičić
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| | - Olivera Ðorđević
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Rehabilitation “Dr. Miroslav Zotović”, Belgrade, Serbia
| | - Ljubica Konstantinović
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Rehabilitation “Dr. Miroslav Zotović”, Belgrade, Serbia
| | - Vera Miler-Jerković
- Innovation Center of the School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Might artificial intelligence become part of the person, and what are the key ethical and legal implications? AI & SOCIETY 2022. [DOI: 10.1007/s00146-022-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractThis paper explores and ultimately affirms the surprising claim that artificial intelligence (AI) can become part of the person, in a robust sense, and examines three ethical and legal implications. The argument is based on a rich, legally inspired conception of persons as free and independent rightholders and objects of heightened protection, but it is construed so broadly that it should also apply to mainstream philosophical conceptions of personhood. The claim is exemplified by a specific technology, devices that connect human brains with computers and operate by AI-algorithms. Under philosophically reasonable and empirically realistic conditions, these devices and the AI running them become parts of the person, in the same way as arms, hearts, or mental capacities are. This transformation shall be called empersonification. It has normative and especially legal consequences because people have broader and stronger duties regarding other persons (and parts of them) than regarding things. Three consequences with practical implications are: (i) AI-devices cease to exist as independent legal entities and come to enjoy the special legal protection of persons; (ii) therefore, third parties such as manufacturers or authors of software lose (intellectual) property rights in device and software; (iii) persons become responsible for the outputs of the empersonified AI-devices to the same degree that they are for desires or intentions arising from the depths of their unconscious. More generally, empersonification marks a new step in the long history of human–machine interaction that deserves critical ethical reflection and calls for a stronger value-aligned development of these technologies.
Collapse
|
10
|
Schönau A, Goering S, Versalovic E, Montes N, Brown T, Dasgupta I, Klein E. Asking questions that matter – Question prompt lists as tools for improving the consent process for neurotechnology clinical trials. Front Hum Neurosci 2022; 16:983226. [PMID: 35966997 PMCID: PMC9372354 DOI: 10.3389/fnhum.2022.983226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Implantable neurotechnology devices such as Brain Computer Interfaces (BCIs) and Deep Brain Stimulators (DBS) are an increasing part of treating or exploring potential treatments for neurological and psychiatric disorders. While only a few devices are approved, many promising prospects for future devices are under investigation. The decision to participate in a clinical trial can be challenging, given a variety of risks to be taken into consideration. During the consent process, prospective participants might lack the language to consider those risks, feel unprepared, or simply not know what questions to ask. One tool to help empower participants to play a more active role during the consent process is a Question Prompt List (QPL). QPLs are communication tools that can prompt participants and patients to articulate potential concerns. They offer a structured list of disease, treatment, or research intervention-specific questions that research participants can use as support for question asking. While QPLs have been studied as tools for improving the consent process during cancer treatment, in this paper, we suggest they would be helpful in neurotechnology research, and offer an example of a QPL as a template for an informed consent tool in neurotechnology device trials.
Collapse
Affiliation(s)
- Andreas Schönau
- Department of Philosophy, University of Washington, Seattle, WA, United States
- *Correspondence: Andreas Schönau,
| | - Sara Goering
- Department of Philosophy, University of Washington, Seattle, WA, United States
| | - Erika Versalovic
- Department of Philosophy, University of Washington, Seattle, WA, United States
| | - Natalia Montes
- Department of Philosophy, University of Washington, Seattle, WA, United States
| | - Tim Brown
- Department of Philosophy, University of Washington, Seattle, WA, United States
| | | | - Eran Klein
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
11
|
Kostick-Quenet K, Kalwani L, Koenig B, Torgerson L, Sanchez C, Munoz K, Hsu RL, Sierra-Mercado D, Robinson JO, Outram S, Pereira S, McGuire A, Zuk P, Lazaro-Munoz G. Researchers' Ethical Concerns About Using Adaptive Deep Brain Stimulation for Enhancement. Front Hum Neurosci 2022; 16:813922. [PMID: 35496073 PMCID: PMC9050172 DOI: 10.3389/fnhum.2022.813922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
The capacity of next-generation closed-loop or adaptive deep brain stimulation devices (aDBS) to read (measure neural activity) and write (stimulate brain regions or circuits) shows great potential to effectively manage movement, seizure, and psychiatric disorders, and also raises the possibility of using aDBS to electively (non-therapeutically) modulate mood, cognition, and prosociality. What separates aDBS from most neurotechnologies (e.g. transcranial stimulation) currently used for enhancement is that aDBS remains an invasive, surgically-implanted technology with a risk-benefit ratio significantly different when applied to diseased versus non-diseased individuals. Despite a large discourse about the ethics of enhancement, no empirical studies yet examine perspectives on enhancement from within the aDBS research community. We interviewed 23 aDBS researchers about their attitudes toward expanding aDBS use for enhancement. A thematic content analysis revealed that researchers share ethical concerns related to (1) safety and security; (2) enhancement as unnecessary, unnatural or aberrant; and (3) fairness, equality, and distributive justice. Most (70%) researchers felt that enhancement applications for DBS will eventually be technically feasible and that attempts to develop such applications for DBS are already happening (particularly for military purposes). However, researchers unanimously (100%) felt that DBS ideally should not be considered for enhancement until researchers better understand brain target localization and functioning. While many researchers acknowledged controversies highlighted by scholars and ethicists, such as potential impacts on personhood, authenticity, autonomy and privacy, their ethical concerns reflect considerations of both gravity and perceived near-term likelihood.
Collapse
Affiliation(s)
- Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Lavina Kalwani
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Rice University, Houston, TX, United States
| | - Barbara Koenig
- Anthropology & Bioethics Department of Social & Behavioral Sciences, Institute for Health & Aging, University of California, San Francisco, San Francisco, CA, United States
| | - Laura Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Clarissa Sanchez
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Katrina Munoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Rebecca L. Hsu
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Demetrio Sierra-Mercado
- Department of Anatomy & Neurobiology School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Jill Oliver Robinson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Simon Outram
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Amy McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Peter Zuk
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
| | - Gabriel Lazaro-Munoz
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Martini M, Kemper C. [Cybersecurity of brain-computer interfaces]. INTERNATIONAL CYBERSECURITY LAW REVIEW 2022; 3:191-243. [PMID: 37521509 PMCID: PMC8929247 DOI: 10.1365/s43439-022-00046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/29/2022] [Indexed: 11/27/2022]
Abstract
Brain-computer interfaces inspire visions of superhuman powers, enabling users to control protheses and other devices solely with their thoughts. But the rapid development and commercialization of this technology also brings security risks. Attacks on brain-computer interfaces may cause harrowing consequences for users, from eavesdropping on neurological data to manipulating brain activity. At present, data protection law, the regulation of medical devices, and the new rules on the sale of goods with digital elements all govern aspects of cybersecurity. There are, nevertheless, significant gaps. The article analyzes how the legal system currently addresses the risks of cyberattacks on brain-computer interfaces-and how policymakers could address such risks in the future.
Collapse
Affiliation(s)
- Mario Martini
- Deutsche Universität für Verwaltungswissenschaften (DUV), Speyer, Deutschland
- Deutsches Forschungsinstitut für öffentliche Verwaltung (FÖV), Speyer, Deutschland
| | - Carolin Kemper
- Deutsches Forschungsinstitut für öffentliche Verwaltung (FÖV), Speyer, Deutschland
| |
Collapse
|
13
|
Le Bars S, Chokron S, Balp R, Douibi K, Waszak F. Theoretical Perspective on an Ideomotor Brain-Computer Interface: Toward a Naturalistic and Non-invasive Brain-Computer Interface Paradigm Based on Action-Effect Representation. Front Hum Neurosci 2021; 15:732764. [PMID: 34776904 PMCID: PMC8581635 DOI: 10.3389/fnhum.2021.732764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Recent years have been marked by the fulgurant expansion of non-invasive Brain-Computer Interface (BCI) devices and applications in various contexts (medical, industrial etc.). This technology allows agents "to directly act with thoughts," bypassing the peripheral motor system. Interestingly, it is worth noting that typical non-invasive BCI paradigms remain distant from neuroscientific models of human voluntary action. Notably, bidirectional links between action and perception are constantly ignored in BCI experiments. In the current perspective article, we proposed an innovative BCI paradigm that is directly inspired by the ideomotor principle, which postulates that voluntary actions are driven by the anticipated representation of forthcoming perceptual effects. We believe that (1) adapting BCI paradigms could allow simple action-effect bindings and consequently action-effect predictions and (2) using neural underpinnings of those action-effect predictions as features of interest in AI methods, could lead to more accurate and naturalistic BCI-mediated actions.
Collapse
Affiliation(s)
- Solène Le Bars
- Altran Lab, Capgemini Engineering, Paris, France.,Université de Paris, INCC UMR 8002, CNRS, Paris, France
| | - Sylvie Chokron
- Université de Paris, INCC UMR 8002, CNRS, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Rodrigo Balp
- Altran Lab, Capgemini Engineering, Paris, France
| | | | | |
Collapse
|
14
|
Abstract
Implantable brain-computer interfaces (BCIs) are being developed to restore speech capacity for those who are unable to speak. Patients with locked-in syndrome or amyotrophic lateral sclerosis could be able to use covert speech – vividly imagining saying something without actual vocalisation – to trigger neural controlled systems capable of synthesising speech. User control has been identified as particularly pressing for this type of BCI. The incorporation of machine learning and statistical language models into the decoding process introduces a contribution to (or ‘shaping of’) the output that is beyond the user’s control. Whilst this type of ‘shared control’ of BCI action is not unique to speech BCIs, the automated shaping of what a user ‘says’ has a particularly acute ethical dimension, which may differ from parallel concerns surrounding automation in movement BCIs. This paper provides an analysis of the control afforded to the user of a speech BCI of the sort under development, as well as the relationships between accuracy, control, and the user’s ownership of the speech produced. Through comparing speech BCIs with BCIs for movement, we argue that, whilst goal selection is the more significant locus of control for the user of a movement BCI, control over process will be more significant for the user of the speech BCI. The design of the speech BCI may therefore have to trade off some possible efficiency gains afforded by automation in order to preserve sufficient guidance control necessary for users to express themselves in ways they prefer. We consider the implications for the speech BCI user’s responsibility for produced outputs and their ownership of token outputs. We argue that these are distinct assessments. Ownership of synthetic speech concerns whether the content of the output sufficiently represents the user, rather than their morally relevant, causal role in producing that output.
Collapse
|
15
|
Lopez-Sola E, Moreno-Bote R, Arsiwalla XD. Sense of agency for mental actions: Insights from a belief-based action-effect paradigm. Conscious Cogn 2021; 96:103225. [PMID: 34689073 DOI: 10.1016/j.concog.2021.103225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023]
Abstract
A substantial body of research has converged on the idea that the sense of agency arises from the integration of multiple sources of information. In this study, we investigated whether a measurable sense of agency can be detected for mental actions, without the contribution of motor components. We used a fake action-effect paradigm, where participants were led to think that a motor action or a particular thought could trigger a sound. Results showed that the sense of agency, when measured through explicit reports, was of comparable strength for motor and mental actions. The intentional binding effect, a phenomenon typically associated with the experience of agency, was also observed for both motor and mental actions. Taken together, our results provide novel insights into the specific role of intentional cues in instantiating a sense of agency, even in the absence of motor signals.
Collapse
Affiliation(s)
| | - Rubén Moreno-Bote
- Center for Brain and Cognition and Department of Information and Communications Technologies, Pompeu Fabra University, Barcelona, Spain
| | | |
Collapse
|
16
|
Portillo-Lara R, Tahirbegi B, Chapman CAR, Goding JA, Green RA. Mind the gap: State-of-the-art technologies and applications for EEG-based brain-computer interfaces. APL Bioeng 2021; 5:031507. [PMID: 34327294 PMCID: PMC8294859 DOI: 10.1063/5.0047237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/14/2022] Open
Abstract
Brain-computer interfaces (BCIs) provide bidirectional communication between the brain and output devices that translate user intent into function. Among the different brain imaging techniques used to operate BCIs, electroencephalography (EEG) constitutes the preferred method of choice, owing to its relative low cost, ease of use, high temporal resolution, and noninvasiveness. In recent years, significant progress in wearable technologies and computational intelligence has greatly enhanced the performance and capabilities of EEG-based BCIs (eBCIs) and propelled their migration out of the laboratory and into real-world environments. This rapid translation constitutes a paradigm shift in human-machine interaction that will deeply transform different industries in the near future, including healthcare and wellbeing, entertainment, security, education, and marketing. In this contribution, the state-of-the-art in wearable biosensing is reviewed, focusing on the development of novel electrode interfaces for long term and noninvasive EEG monitoring. Commercially available EEG platforms are surveyed, and a comparative analysis is presented based on the benefits and limitations they provide for eBCI development. Emerging applications in neuroscientific research and future trends related to the widespread implementation of eBCIs for medical and nonmedical uses are discussed. Finally, a commentary on the ethical, social, and legal concerns associated with this increasingly ubiquitous technology is provided, as well as general recommendations to address key issues related to mainstream consumer adoption.
Collapse
Affiliation(s)
- Roberto Portillo-Lara
- Department of Bioengineering, Imperial College London, Royal School of Mines, London SW7 2AZ, United Kingdom
| | - Bogachan Tahirbegi
- Department of Bioengineering, Imperial College London, Royal School of Mines, London SW7 2AZ, United Kingdom
| | - Christopher A. R. Chapman
- Department of Bioengineering, Imperial College London, Royal School of Mines, London SW7 2AZ, United Kingdom
| | - Josef A. Goding
- Department of Bioengineering, Imperial College London, Royal School of Mines, London SW7 2AZ, United Kingdom
| | - Rylie A. Green
- Department of Bioengineering, Imperial College London, Royal School of Mines, London SW7 2AZ, United Kingdom
| |
Collapse
|
17
|
Camargo-Vargas D, Callejas-Cuervo M, Mazzoleni S. Brain-Computer Interfaces Systems for Upper and Lower Limb Rehabilitation: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:4312. [PMID: 34202546 PMCID: PMC8271710 DOI: 10.3390/s21134312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022]
Abstract
In recent years, various studies have demonstrated the potential of electroencephalographic (EEG) signals for the development of brain-computer interfaces (BCIs) in the rehabilitation of human limbs. This article is a systematic review of the state of the art and opportunities in the development of BCIs for the rehabilitation of upper and lower limbs of the human body. The systematic review was conducted in databases considering using EEG signals, interface proposals to rehabilitate upper/lower limbs using motor intention or movement assistance and utilizing virtual environments in feedback. Studies that did not specify which processing system was used were excluded. Analyses of the design processing or reviews were excluded as well. It was identified that 11 corresponded to applications to rehabilitate upper limbs, six to lower limbs, and one to both. Likewise, six combined visual/auditory feedback, two haptic/visual, and two visual/auditory/haptic. In addition, four had fully immersive virtual reality (VR), three semi-immersive VR, and 11 non-immersive VR. In summary, the studies have demonstrated that using EEG signals, and user feedback offer benefits including cost, effectiveness, better training, user motivation and there is a need to continue developing interfaces that are accessible to users, and that integrate feedback techniques.
Collapse
Affiliation(s)
- Daniela Camargo-Vargas
- Software Research Group, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150002, Colombia;
| | - Mauro Callejas-Cuervo
- School of Computer Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150002, Colombia
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy;
| |
Collapse
|
18
|
Goering S, Brown T, Klein E. Neurotechnology ethics and relational agency. PHILOSOPHY COMPASS 2021; 16:e12734. [PMID: 34531923 PMCID: PMC8443241 DOI: 10.1111/phc3.12734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Novel neurotechnologies, like deep brain stimulation and brain-computer interface, offer great hope for treating, curing, and preventing disease, but raise important questions about effects these devices may have on human identity, authenticity, and autonomy. After briefly assessing recent narrative work in these areas, we show that agency is a phenomenon key to all three goods and highlight the ways in which neural devices can help to draw attention to the relational nature of our agency. Drawing on insights from disability theory, we argue that neural devices provide a kind of agential assistance, similar to that provided by caregivers, family, and others. As such, users and devices participate in a kind of co-agency. We conclude by suggesting the need for developing relational agency-competencies-skills for reflecting on the influence of devices on agency, for adapting to novel circumstances ushered in by devices, and for incorporating the feedback of loved ones and others about device effects on agency.
Collapse
Affiliation(s)
- Sara Goering
- Department of Philosophy and Center for Neurotechnology, University of Washington, Seattle, Washington, USA
| | - Timothy Brown
- Department of Philosophy and Center for Neurotechnology, University of Washington, Seattle, Washington, USA
| | - Eran Klein
- Department of Philosophy and Center for Neurotechnology, University of Washington, Seattle, Washington, USA
- Department of Neurology, Oregon Health and Sciences University, Portland, Oregon, USA
| |
Collapse
|
19
|
Abstract
Neural devices have the capacity to enable users to regain abilities lost due to disease or injury - for instance, a deep brain stimulator (DBS) that allows a person with Parkinson's disease to regain the ability to fluently perform movements or a Brain Computer Interface (BCI) that enables a person with spinal cord injury to control a robotic arm. While users recognize and appreciate the technologies' capacity to maintain or restore their capabilities, the neuroethics literature is replete with examples of concerns expressed about agentive capacities: A perceived lack of control over the movement of a robotic arm might result in an altered sense of feeling responsible for that movement. Clinicians or researchers being able to record and access detailed information of a person's brain might raise privacy concerns. A disconnect between previous, current, and future understandings of the self might result in a sense of alienation. The ability to receive and interpret sensory feedback might change whether someone trusts the implanted device or themselves. Inquiries into the nature of these concerns and how to mitigate them has produced scholarship that often emphasizes one issue - responsibility, privacy, authenticity, or trust - selectively. However, we believe that examining these ethical dimensions separately fails to capture a key aspect of the experience of living with a neural device. In exploring their interrelations, we argue that their mutual significance for neuroethical research can be adequately captured if they are described under a unified heading of agency. On these grounds, we propose an "Agency Map" which brings together the diverse neuroethical dimensions and their interrelations into a comprehensive framework. With this, we offer a theoretically-grounded approach to understanding how these various dimensions are interwoven in an individual's experience of agency.
Collapse
Affiliation(s)
| | | | | | | | - Eran Klein
- University of Washington
- Oregon Health and Science University
| | | |
Collapse
|
20
|
Schönau A. The Spectrum of Responsibility Ascription for End Users of Neurotechnologies. NEUROETHICS-NETH 2021; 14:423-435. [DOI: 10.1007/s12152-021-09460-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Caspar EA, De Beir A, Lauwers G, Cleeremans A, Vanderborght B. How using brain-machine interfaces influences the human sense of agency. PLoS One 2021; 16:e0245191. [PMID: 33411838 PMCID: PMC7790430 DOI: 10.1371/journal.pone.0245191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022] Open
Abstract
Brain-machine interfaces (BMI) allows individuals to control an external device by controlling their own brain activity, without requiring bodily or muscle movements. Performing voluntary movements is associated with the experience of agency ("sense of agency") over those movements and their outcomes. When people voluntarily control a BMI, they should likewise experience a sense of agency. However, using a BMI to act presents several differences compared to normal movements. In particular, BMIs lack sensorimotor feedback, afford lower controllability and are associated with increased cognitive fatigue. Here, we explored how these different factors influence the sense of agency across two studies in which participants learned to control a robotic hand through motor imagery decoded online through electroencephalography. We observed that the lack of sensorimotor information when using a BMI did not appear to influence the sense of agency. We further observed that experiencing lower control over the BMI reduced the sense of agency. Finally, we observed that the better participants controlled the BMI, the greater was the appropriation of the robotic hand, as measured by body-ownership and agency scores. Results are discussed based on existing theories on the sense of agency in light of the importance of BMI technology for patients using prosthetic limbs.
Collapse
Affiliation(s)
- Emilie A. Caspar
- CO3 lab, Center for Research in Cognition and Neuroscience, Université libre de Bruxelles, Brussels, Belgium
| | - Albert De Beir
- Vrij Universiteit Brussels, Brussels, Belgium
- Flanders Make, Lommel, Belgium
| | - Gil Lauwers
- Vrij Universiteit Brussels, Brussels, Belgium
| | - Axel Cleeremans
- CO3 lab, Center for Research in Cognition and Neuroscience, Université libre de Bruxelles, Brussels, Belgium
| | - Bram Vanderborght
- Vrij Universiteit Brussels, Brussels, Belgium
- Flanders Make, Lommel, Belgium
| |
Collapse
|
22
|
Abstract
Technologies controlled directly by the brain are being developed, evolving based on insights gained from neuroscience, and rehabilitative medicine. Besides neuro-controlled prosthetics aimed at restoring function lost somehow, technologies controlled via brain-computer interfaces (BCIs) may also extend a user’s horizon of action, freed from the need for bodily movement. Whilst BCI-mediated action ought to be, on the whole, treated as conventional action, law and policy ought to be amended to accommodate BCI action by broadening the definition of action as “willed bodily movement”. Moreover, there are some dimensions of BCI mediated action that are significantly different to conventional cases. These relate to control. Specifically, to limits in both controllability of BCIs via neural states, and in foreseeability of outcomes from such actions. In some specific type of case, BCI-mediated action may be due to different ethical evaluation from conventional action.
Collapse
Affiliation(s)
- Stephen Rainey
- The Oxford Uehiro Centre for Practical Ethics, University of Oxford
| | - Hannah Maslen
- The Oxford Uehiro Centre for Practical Ethics, University of Oxford
| | - Julian Savulescu
- The Oxford Uehiro Centre for Practical Ethics, University of Oxford
| |
Collapse
|
23
|
Rainey S, Martin S, Christen A, Mégevand P, Fourneret E. Brain Recording, Mind-Reading, and Neurotechnology: Ethical Issues from Consumer Devices to Brain-Based Speech Decoding. SCIENCE AND ENGINEERING ETHICS 2020; 26:2295-2311. [PMID: 32356091 PMCID: PMC7417394 DOI: 10.1007/s11948-020-00218-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/16/2020] [Indexed: 05/19/2023]
Abstract
Brain reading technologies are rapidly being developed in a number of neuroscience fields. These technologies can record, process, and decode neural signals. This has been described as 'mind reading technology' in some instances, especially in popular media. Should the public at large, be concerned about this kind of technology? Can it really read minds? Concerns about mind-reading might include the thought that, in having one's mind open to view, the possibility for free deliberation, and for self-conception, are eroded where one isn't at liberty to privately mull things over. Themes including privacy, cognitive liberty, and self-conception and expression appear to be areas of vital ethical concern. Overall, this article explores whether brain reading technologies are really mind reading technologies. If they are, ethical ways to deal with them must be developed. If they are not, researchers and technology developers need to find ways to describe them more accurately, in order to dispel unwarranted concerns and address appropriately those that are warranted.
Collapse
Affiliation(s)
- Stephen Rainey
- Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK
| | - Stéphanie Martin
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andy Christen
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Mégevand
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eric Fourneret
- Braintech Lab (U 1205), Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
24
|
Mudgal SK, Sharma SK, Chaturvedi J, Sharma A. Brain computer interface advancement in neurosciences: Applications and issues. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2020.100694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
25
|
Brain-Computer Interfaces and the Translation of Thought into Action. NEUROETHICS-NETH 2020. [DOI: 10.1007/s12152-020-09433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Ivanković V, Savić L. Does Mental Discipline Partially Restore the Responsibility of BCI Users? AJOB Neurosci 2020; 11:67-70. [PMID: 32043926 DOI: 10.1080/21507740.2019.1704922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Lovro Savić
- Ethox Centre, Wellcome Centre for Ethics and Humanities, and Green Templeton College, University of Oxford
| |
Collapse
|
27
|
Steinert S, Friedrich O. Wired Emotions: Ethical Issues of Affective Brain-Computer Interfaces. SCIENCE AND ENGINEERING ETHICS 2020; 26:351-367. [PMID: 30868377 PMCID: PMC6978299 DOI: 10.1007/s11948-019-00087-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 01/24/2019] [Indexed: 05/28/2023]
Abstract
Ethical issues concerning brain-computer interfaces (BCIs) have already received a considerable amount of attention. However, one particular form of BCI has not received the attention that it deserves: Affective BCIs that allow for the detection and stimulation of affective states. This paper brings the ethical issues of affective BCIs in sharper focus. The paper briefly reviews recent applications of affective BCIs and considers ethical issues that arise from these applications. Ethical issues that affective BCIs share with other neurotechnologies are presented and ethical concerns that are specific to affective BCIs are identified and discussed.
Collapse
Affiliation(s)
- Steffen Steinert
- Department of Values, Technology and Innovation, Faculty of Technology, Policy and Management, Delft University of Technology, Delft, The Netherlands
| | - Orsolya Friedrich
- Institute of Ethics, History and Theory of Medicine, Ludwig-Maximilians-Universität München, Lessingstr. 2, 80336 Munich, Germany
| |
Collapse
|
28
|
Kögel J, Jox RJ, Friedrich O. What is it like to use a BCI? - insights from an interview study with brain-computer interface users. BMC Med Ethics 2020; 21:2. [PMID: 31906947 PMCID: PMC6945485 DOI: 10.1186/s12910-019-0442-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/23/2019] [Indexed: 11/25/2022] Open
Abstract
Background The neurotechnology behind brain-computer interfaces (BCIs) raises various ethical questions. The ethical literature has pinpointed several issues concerning safety, autonomy, responsibility and accountability, psychosocial identity, consent, privacy and data security. This study aims to assess BCI users’ experiences, self-observations and attitudes in their own right and looks for social and ethical implications. Methods We conducted nine semi-structured interviews with BCI users, who used the technology for medical reasons. The transcribed interviews were analyzed according to the Grounded Theory coding method. Results BCI users perceive themselves as active operators of a technology that offers them social participation and impacts their self-definition. Each of these aspects bears its own opportunities and risks. BCIs can contribute to retaining or regaining human capabilities. At the same time, BCI use contains elements that challenge common experiences, for example when the technology is in conflict with the affective side of BCI users. The potential benefits of BCIs are regarded as outweighing the risks in that BCI use is considered to promote valuable qualities and capabilities. BCI users appreciate the opportunity to regain lost capabilities as well as to gain new ones. Conclusions BCI users appreciate the technology for various reasons. The technology is highly appreciated in cases where it is beneficial in terms of agency, participation and self-definitions. Rather than questioning human nature, the technology can retain and restore characteristics and abilities which enrich our lives.
Collapse
Affiliation(s)
- Johannes Kögel
- Institute of Ethics, History and Theory of Medicine, LMU Munich, Lessingstr. 2, 80336, Munich, Germany.
| | - Ralf J Jox
- Clinical Ethics Unit and Institute of Humanities in Medicine, Lausanne University Hospital and Faculty of Biology and Medicine, University of Lausanne, Avenue de Provence 82, CH-1007, Lausanne, Switzerland
| | - Orsolya Friedrich
- Institute of Philosophy, Faculty of Cultural and Social Sciences, FernUniversität in Hagen, Universitätsstr. 33, 58097, Hagen, Germany
| |
Collapse
|
29
|
Buller T. How to Do Things with BCIs. AJOB Neurosci 2020; 11:70-72. [PMID: 32043934 DOI: 10.1080/21507740.2019.1704930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
30
|
Kuersten A. Legal Ramifications of Brain-Computer-Interface Technology. AJOB Neurosci 2020; 11:61-63. [PMID: 32043931 DOI: 10.1080/21507740.2019.1704931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
31
|
Sample M, Aunos M, Blain-Moraes S, Bublitz C, Chandler JA, Falk TH, Friedrich O, Groetzinger D, Jox RJ, Koegel J, McFarland D, Neufield V, Rodriguez-Arias D, Sattler S, Vidal F, Wolbring G, Wolkenstein A, Racine E. Brain-computer interfaces and personhood: interdisciplinary deliberations on neural technology. J Neural Eng 2019; 16:063001. [PMID: 31394509 DOI: 10.1088/1741-2552/ab39cd] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Scientists, engineers, and healthcare professionals are currently developing a variety of new devices under the category of brain-computer interfaces (BCIs). Current and future applications are both medical/assistive (e.g. for communication) and non-medical (e.g. for gaming). This array of possibilities has been met with both enthusiasm and ethical concern in various media, with no clear resolution of these conflicting sentiments. APPROACH To better understand how BCIs may either harm or help the user, and to investigate whether ethical guidance is required, a meeting entitled 'BCIs and Personhood: A Deliberative Workshop' was held in May 2018. MAIN RESULTS We argue that the hopes and fears associated with BCIs can be productively understood in terms of personhood, specifically the impact of BCIs on what it means to be a person and to be recognized as such by others. SIGNIFICANCE Our findings suggest that the development of neural technologies raises important questions about the concept of personhood and its role in society. Accordingly, we propose recommendations for BCI development and governance.
Collapse
Affiliation(s)
- Matthew Sample
- Pragmatic Health Ethics Research Unit, Institut de recherches cliniques de Montréal, Montréal, Canada. McGill University, Montréal, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gilbert F, Brown, Dasgupta, Martens, Klein, Goering. An Instrument to Capture the Phenomenology of Implantable Brain Device Use. NEUROETHICS-NETH 2019. [DOI: 10.1007/s12152-019-09422-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Thompson K. Committing Crimes with BCIs: How Brain-Computer Interface Users can Satisfy Actus Reus and be Criminally Responsible. NEUROETHICS-NETH 2019. [DOI: 10.1007/s12152-019-09416-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Dresler M, Sandberg A, Bublitz C, Ohla K, Trenado C, Mroczko-Wąsowicz A, Kühn S, Repantis D. Hacking the Brain: Dimensions of Cognitive Enhancement. ACS Chem Neurosci 2019; 10:1137-1148. [PMID: 30550256 PMCID: PMC6429408 DOI: 10.1021/acschemneuro.8b00571] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
In an increasingly complex information society, demands for cognitive functioning are growing steadily. In recent years, numerous strategies to augment brain function have been proposed. Evidence for their efficacy (or lack thereof) and side effects has prompted discussions about ethical, societal, and medical implications. In the public debate, cognitive enhancement is often seen as a monolithic phenomenon. On a closer look, however, cognitive enhancement turns out to be a multifaceted concept: There is not one cognitive enhancer that augments brain function per se, but a great variety of interventions that can be clustered into biochemical, physical, and behavioral enhancement strategies. These cognitive enhancers differ in their mode of action, the cognitive domain they target, the time scale they work on, their availability and side effects, and how they differentially affect different groups of subjects. Here we disentangle the dimensions of cognitive enhancement, review prominent examples of cognitive enhancers that differ across these dimensions, and thereby provide a framework for both theoretical discussions and empirical research.
Collapse
Affiliation(s)
- Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour , Radboud University Medical Centre , Nijmegen 6525 EN , The Netherlands
| | - Anders Sandberg
- Future of Humanity Institute , Oxford University , Oxford OX1 1PT , United Kingdom
| | | | - Kathrin Ohla
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3) , Forschungszentrum Jülich , Jülich 52428 , Germany
| | - Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology , Heinrich Heine University Düsseldorf , Düsseldorf 40225 , Germany
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors , TU Dortmund , Dortmund 44139 , Germany
| | | | - Simone Kühn
- Max Planck Institute for Human Development , Berlin 14195 , Germany
- Department of Psychiatry and Psychotherapy , University Clinic Hamburg Eppendorf , Hamburg 20246 , Germany
| | - Dimitris Repantis
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin 12203 , Germany
| |
Collapse
|