1
|
Chen D, Chen H, Dai G, Zhang H, Liu Y, Shen W, Zhu B, Cui C, Tan C. Genome-wide identification and expression analysis of the anthocyanin-related genes during seed coat development in six Brassica species. BMC Genomics 2023; 24:103. [PMID: 36894869 PMCID: PMC9999611 DOI: 10.1186/s12864-023-09170-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Yellow seed is one favorite trait for the breeding of Brassica oilseed crops, but the performance of seed coat color is very complicated due to the involvement of various pigments. The change of seed coat color of Brassica crops is related to the specific synthesis and accumulation of anthocyanin, and the expression level of structural genes in anthocyanin synthesis pathway is specifically regulated by transcription factors. Despite some previous reports on the regulations of seed coat color from linkage marker development, gene fine-mapping and multi-omics association analysis, the trait of Brassica crops is affected by the evolutionary events such as genome triploidization, the regulatory mechanism is still largely unknown. In this study, we identified genes related to anthocyanin synthesis in six Brassica crops in U-triangle at the genome-wide level and performed collinearity analysis. A total of 1119 anthocyanin-related genes were identified, the collinear relationship of anthocyanin-related genes on subgenomic chromosomes was the best in B. napus (AACC) and the worst in B. carinata (BBCC). The comparisons of gene expressions for anthocyanin metabolic pathways in seed coats during seed development revealed differences in its metabolism among these species. Interestingly, the R2R3-MYB transcription factors MYB5 and TT2 were differentially expressed at all eight stages of seed coat development, indicating that they might be the key genes that caused the variation of the seed coat color. The expression curve and trend analyses of the seed coat development period showed that the main reason for the unexpressed copies of MYB5 and TT2 was likely gene silencing caused by gene structural variation. These results were valuable for the genetic improvement of Brassica seed coat color, and also provided new insights into gene multicopy evolution in Brassica polyploids.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haidong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haimei Zhang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chendu, 610066, China.
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Yang W, Chen L, Zhao J, Wang J, Li W, Yang T, Dong J, Ma Y, Zhou L, Chen J, Wu W, Zhang S, Liu B. Genome-Wide Association Study of Pericarp Color in Rice Using Different Germplasm and Phenotyping Methods Reveals Different Genetic Architectures. FRONTIERS IN PLANT SCIENCE 2022; 13:841191. [PMID: 35356125 PMCID: PMC8959774 DOI: 10.3389/fpls.2022.841191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 05/08/2023]
Abstract
Pericarp colors (PC) in rice are determined by the types and content of flavonoids in the pericarp. The flavonoid compounds have strong antioxidant activities and are beneficial to human health. However, the genetic basis of PC in rice is still not well-understood. In this study, a genome-wide association study (GWAS) of PC was performed in a diverse rice collection consisting of 442 accessions using different phenotyping methods in two locations over 2 years. In the whole population consisting of white and colored pericarp rice, a total of 11 quantitative trait loci (QTLs) were identified using two phenotyping methods. Among these QTLs, nine were identified using the phenotypes represented by the presence and absence of pigmentation in pericarp, while 10 were identified using phenotypes of the degree of PC (DPC), in which eight are common QTLs identified using the two phenotyping methods. Using colored rice accessions and phenotypes based on DPC, four QTLs were identified, and they were totally different from the QTLs identified using the whole population, suggesting the masking effects of major genes on minor genes. Compared with the previous studies, 10 out of the 15 QTLs are first reported in this study. Based on the differential expression analysis of the predicted genes within the QTL region by both RNA-seq and real-time PCR (RT-PCR) and the gene functions in previous studies, LOC_Os01g49830, encoding a RAV transcription factor was considered as the candidate gene underlying qPC-1, a novel QTL with a large effect in this study. Our results provide a new insight into the genetic basis of PC in rice and contribute to developing the value-added rice with optimized flavonoid content through molecular breeding.
Collapse
Affiliation(s)
- Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Wei Wu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- *Correspondence: Shaohong Zhang,
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Bin Liu,
| |
Collapse
|
3
|
Islam MZ, Shim M, Jeong S, Lee Y. Effects of soaking and sprouting on bioactive compounds of black and red pigmented rice cultivars. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mohammad Zahirul Islam
- Department of Food Science and Biotechnology Gachon University Seongnam 13120 Republic of Korea
| | - Min‐Jung Shim
- Department of Food Science and Biotechnology Gachon University Seongnam 13120 Republic of Korea
| | - Su‐Yeon Jeong
- Department of Food Science and Biotechnology Gachon University Seongnam 13120 Republic of Korea
| | - Young‐Tack Lee
- Department of Food Science and Biotechnology Gachon University Seongnam 13120 Republic of Korea
| |
Collapse
|
4
|
Mbanjo EGN, Kretzschmar T, Jones H, Ereful N, Blanchard C, Boyd LA, Sreenivasulu N. The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Front Genet 2020; 11:229. [PMID: 32231689 PMCID: PMC7083195 DOI: 10.3389/fgene.2020.00229] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
Improving the nutritional quality of rice grains through modulation of bioactive compounds and micronutrients represents an efficient means of addressing nutritional security in societies which depend heavily on rice as a staple food. White rice makes a major contribution to the calorific intake of Asian and African populations, but its nutritional quality is poor compared to that of pigmented (black, purple, red orange, or brown) variants. The compounds responsible for these color variations are the flavonoids anthocyanin and proanthocyanidin, which are known to have nutritional value. The rapid progress made in the technologies underlying genome sequencing, the analysis of gene expression and the acquisition of global 'omics data, genetics of grain pigmentation has created novel opportunities for applying molecular breeding to improve the nutritional value and productivity of pigmented rice. This review provides an update on the nutritional value and health benefits of pigmented rice grain, taking advantage of both indigenous and modern knowledge, while also describing the current approaches taken to deciphering the genetic basis of pigmentation.
Collapse
Affiliation(s)
- Edwige Gaby Nkouaya Mbanjo
- International Rice Research Institute, Los Baños, Philippines
- International Institute for Tropical Agriculture, Ibadan, Oyo, Nigeria
| | - Tobias Kretzschmar
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Huw Jones
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Nelzo Ereful
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Christopher Blanchard
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Lesley Ann Boyd
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | | |
Collapse
|
5
|
Lachagari VBR, Gupta R, Lekkala SP, Mahadevan L, Kuriakose B, Chakravartty N, Mohan Katta AVSK, Santhosh S, Reddy AR, Thomas G. Whole Genome Sequencing and Comparative Genomic Analysis Reveal Allelic Variations Unique to a Purple Colored Rice Landrace ( Oryza sativa ssp. indica cv. Purpleputtu). FRONTIERS IN PLANT SCIENCE 2019; 10:513. [PMID: 31134103 PMCID: PMC6516047 DOI: 10.3389/fpls.2019.00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 05/27/2023]
Abstract
Purpleputtu (Oryza sativa ssp. indica cv. Purpleputtu) is a unique rice landrace from southern India that exhibits predominantly purple color. This study reports the underlying genetic complexity of the trait, associated domestication and de-domestication processes during its coevolution with present day cultivars. Along-with genome level allelic variations in the entire gene repertoire associated with the purple, red coloration of grain and other plant parts. Comparative genomic analysis using 'a panel of 108 rice lines' revealed a total of 3,200,951 variants including 67,774 unique variations in Purpleputtu (PP) genome. Multiple sequence alignment uncovered a 14 bp deletion in Rc (Red colored, a transcription factor of bHLH class) locus of PP, a key regulatory gene of anthocyanin biosynthetic pathway. Interestingly, this deletion in Rc gene is a characteristic feature of the present-day white pericarped rice cultivars. Phylogenetic analysis of Rc locus revealed a distinct clade showing proximity to the progenitor species Oryza rufipogon and O. nivara. In addition, PP genome exhibits a well conserved 4.5 Mbp region on chromosome 5 that harbors several loci associated with domestication of rice. Further, PP showed 1,387 unique when SNPs compared to 3,023 lines of rice (SNP-Seek database). The results indicate that PP genome is rich in allelic diversity and can serve as an excellent resource for rice breeding for a variety of agronomically important traits such as disease resistance, enhanced nutritional values, stress tolerance, and protection from harmful UV-B rays.
Collapse
Affiliation(s)
- V. B. Reddy Lachagari
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - Ravi Gupta
- Medgenome Labs Ltd., Bengaluru, India
- SciGenom Labs Pvt. Ltd., Cochin, India
| | - Sivarama Prasad Lekkala
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - Lakshmi Mahadevan
- Medgenome Labs Ltd., Bengaluru, India
- SciGenom Labs Pvt. Ltd., Cochin, India
| | - Boney Kuriakose
- SciGenom Research Foundation, Cheruthuruthy, India
- AgriGenome Labs Pvt. Ltd., Kakkanad, India
| | - Navajeet Chakravartty
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - A. V. S. K. Mohan Katta
- AgriGenome Labs Pvt. Ltd., Biotechnology Incubation Center, MN iHub, Genome Valley, Hyderabad, India
| | - Sam Santhosh
- SciGenom Research Foundation, Cheruthuruthy, India
| | - Arjula R. Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - George Thomas
- SciGenom Research Foundation, Cheruthuruthy, India
- AgriGenome Labs Pvt. Ltd., Kakkanad, India
| |
Collapse
|
6
|
Kumar D, Sarmah BK, Das PK. Ethylene mediates repression of anthocyanin accumulation in black rice pericarps in the absence of light. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:34-38. [PMID: 30856405 DOI: 10.1016/j.jplph.2019.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 05/24/2023]
Abstract
The antioxidant properties of black rice are attributed to the high anthocyanin content in the pericarp. Light-dependent regulation of anthocyanin biosynthesis and the associated regulatory genes have been extensively studied in many plant species, including rice. Light is considered indispensable for anthocyanin accumulation in plants. Here, we report that anthocyanin biosynthesis and accumulation in the dark is negatively regulated by ethylene, as the ethylene biosynthesis inhibitor aminoethoxyvinylglycine hydrochloride (AVG)-treated samples in the dark exhibited significantly higher transcript levels of biosynthesis genes, including CHI, DFR, ANS, ANR, F3H, F'3H, CHS and UGFT, compared to untreated controls. Upregulation of these biosynthesis genes was accompanied by simultaneous de-repression of the R2-R3 domain and bHLH-containing transcription factors Kala3 and Kala4 at the transcript level. Additionally, bHLH152, which shows high similarity to Arabidopsis PIF3, is involved in the regulation of anthocyanin. These findings highlight the role of ethylene in modulating tissue-specific regulation of anthocyanin biosynthesis genes in the dark.
Collapse
Affiliation(s)
- Dhananjay Kumar
- Department of Agricultural Biotechnology, Assam Agricultural University Jorhat-785013, India.
| | | | - Prasanta Kumar Das
- Department of Agricultural Biotechnology, Assam Agricultural University Jorhat-785013, India; DBT-AAU Centre, Assam Agricultural University Jorhat, 785013, India.
| |
Collapse
|
7
|
Zhang Y, Dong D, Li D, Lu L, Li J, Zhang Y, Chen L. Computational Method for the Identification of Molecular Metabolites Involved in Cereal Hull Color Variations. Comb Chem High Throughput Screen 2019; 21:760-770. [DOI: 10.2174/1386207322666190129105441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 11/22/2022]
Abstract
Background:
Cereal hull color is an important quality specification characteristic. Many
studies were conducted to identify genetic changes underlying cereal hull color diversity. However,
these studies mainly focused on the gene level. Recent studies have suggested that metabolomics can
accurately reflect the integrated and real-time cell processes that contribute to the formation of
different cereal colors.
Methods:
In this study, we exploited published metabolomics databases and applied several
advanced computational methods, such as minimum redundancy maximum relevance (mRMR),
incremental forward search (IFS), random forest (RF) to investigate cereal hull color at the metabolic
level. First, the mRMR was applied to analyze cereal hull samples represented by metabolite
features, yielding a feature list. Then, the IFS and RF were used to test several feature sets,
constructed according to the aforementioned feature list. Finally, the optimal feature sets and RF
classifier were accessed based on the testing results.
Results and Conclusion:
A total of 158 key metabolites were found to be useful in distinguishing
white cereal hulls from colorful cereal hulls. A prediction model constructed with these metabolites
and a random forest algorithm generated a high Matthews coefficient correlation value of 0.701.
Furthermore, 24 of these metabolites were previously found to be relevant to cereal color. Our study
can provide new insights into the molecular basis of cereal hull color formation.
Collapse
Affiliation(s)
- Yunhua Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Dong Dong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Dai Li
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, United States
| | - JiaRui Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - YuHang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
8
|
Oh JH, Lee YJ, Byeon EJ, Kang BC, Kyeoung DS, Kim CK. Whole-genome resequencing and transcriptomic analysis of genes regulating anthocyanin biosynthesis in black rice plants. 3 Biotech 2018; 8:115. [PMID: 29430376 PMCID: PMC5801106 DOI: 10.1007/s13205-018-1140-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
Anthocyanins are involved in many diverse functions in rice, but their benefits have yet to be clearly demonstrated. Our objective in this study was to identify anthocyanin-related genes in black rice plants. We identified anthocyanin-related genes in black rice plants using a combination of whole-genome resequencing, RNA-sequencing (RNA-seq), microarray experiments, and reverse-transcriptase polymerase chain reaction (RT-PCR). Using multi-layer screening from 30 rice accessions, we identified 172,922 single-nucleotide polymorphisms (SNPs) and 1276 differentially expressed genes that appear to be related to anthocyanin biosynthesis. We identified 18 putative genes from 172,922 SNPs using intensive selective sweeps. The 18 candidate genes identified from SNPs were not significantly correlated with the RNA-seq expression pattern or other well-known anthocyanin biosynthesis/metabolism genes. We also identified nine putative genes from 1276 differentially expressed genes using RNA-seq transcriptome analysis. In addition, we identified four phylogenetic groups from these nine candidate genes and 51 pathway-network genes. Finally, we verified nine anthocyanin-related genes using a newly designed microarray and semi-quantitative RT-PCR. We suggest that these nine identified genes appear to be related to the regulation of anthocyanin biosynthesis and/or metabolism.
Collapse
Affiliation(s)
- Jae-Hyeon Oh
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, 54874 Korea
| | - Ye-Ji Lee
- Department of Environmental Resources, Sangmyung University, Cheonan, 31066 Korea
| | - Eun-Ju Byeon
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju, 54896 Korea
| | - Byeong-Chul Kang
- Codes Division, Insilicogen Inc., Suwon, 16954 Gyeonggi-do Korea
| | - Dong-Soo Kyeoung
- Codes Division, Insilicogen Inc., Suwon, 16954 Gyeonggi-do Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, 54874 Korea
| |
Collapse
|
9
|
Chen L, Huang Y, Xu M, Cheng Z, Zhang D, Zheng J. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis. PLoS One 2016; 11:e0159238. [PMID: 27415428 PMCID: PMC4944901 DOI: 10.1371/journal.pone.0159238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. RESULTS The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. CONCLUSIONS Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice.
Collapse
Affiliation(s)
- Linghua Chen
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Yining Huang
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- Department of Food and Biology Engineering, Zhangzhou Institute of Technology, Zhangzhou Fujian, China
| | - Ming Xu
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Zuxin Cheng
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Dasheng Zhang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory for Plant Functional Genomics and Resources, Shanghai, China
| | - Jingui Zheng
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| |
Collapse
|
10
|
Shao Y, Bao J. Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chem 2015; 180:86-97. [DOI: 10.1016/j.foodchem.2015.02.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
|
11
|
Whole-genome resequencing and transcriptomic analysis to identify genes involved in leaf-color diversity in ornamental rice plants. PLoS One 2015; 10:e0124071. [PMID: 25897514 PMCID: PMC4405343 DOI: 10.1371/journal.pone.0124071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/25/2015] [Indexed: 12/26/2022] Open
Abstract
Rice field art is a large-scale art form in which people design rice fields using various kinds of ornamental rice plants with different leaf colors. Leaf color-related genes play an important role in the study of chlorophyll biosynthesis, chloroplast structure and function, and anthocyanin biosynthesis. Despite the role of different metabolites in the traditional relationship between leaf and color, comprehensive color-specific metabolite studies of ornamental rice have been limited. We performed whole-genome resequencing and transcriptomic analysis of regulatory patterns and genetic diversity among different rice cultivars to discover new genetic mechanisms that promote enhanced levels of various leaf colors. We resequenced the genomes of 10 rice leaf-color accessions to an average of 40× reads depth and >95% coverage and performed 30 RNA-seq experiments using the 10 rice accessions sampled at three developmental stages. The sequencing results yielded a total of 1,814 × 106 reads and identified an average of 713,114 SNPs per rice accession. Based on our analysis of the DNA variation and gene expression, we selected 47 candidate genes. We used an integrated analysis of the whole-genome resequencing data and the RNA-seq data to divide the candidate genes into two groups: genes related to macronutrient (i.e., magnesium and sulfur) transport and genes related to flavonoid pathways, including anthocyanidin biosynthesis. We verified the candidate genes with quantitative real-time PCR using transgenic T-DNA insertion mutants. Our study demonstrates the potential of integrated screening methods combined with genetic-variation and transcriptomic data to isolate genes involved in complex biosynthetic networks and pathways.
Collapse
|
12
|
Transcriptomics analyses of genes regulating anthocyanin production in black rice. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-014-9108-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Galland M, Boutet-Mercey S, Lounifi I, Godin B, Balzergue S, Grandjean O, Morin H, Perreau F, Debeaujon I, Rajjou L. Compartmentation and Dynamics of Flavone Metabolism in Dry and Germinated Rice Seeds. ACTA ACUST UNITED AC 2014; 55:1646-59. [DOI: 10.1093/pcp/pcu095] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Liu Z, Liu Y, Pu Z, Wang J, Zheng Y, Li Y, Wei Y. Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnol Lett 2013; 35:1765-80. [PMID: 23881316 DOI: 10.1007/s10529-013-1277-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/21/2013] [Indexed: 01/02/2023]
Abstract
Flavonoids are plant secondary metabolites that contribute to the adaptation of plants to environmental stresses, including resistance to abiotic and biotic stress. Flavonoids are also beneficial for human health and depress the progression of some chronic diseases. The biosynthesis of flavonoids, which belong to a large family of phenolic compounds, is a complex metabolic process with many pathways that produce different metabolites, controlled by key enzymes. There is limited knowledge about the composition, biosynthesis and regulation of flavonoids in cereals. Improved understanding of the accumulation of flavonoids in cereal grains would help to improve human nutrition through these staple foods. The biosynthesis of flavonoids, scope for altering the flavonoid composition in cereal crops and benefits for human nutrition are reviewed here.
Collapse
Affiliation(s)
- Zehou Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu-Wenjiang, 611130, Sichuan, China,
| | | | | | | | | | | | | |
Collapse
|
15
|
Kim C, Lee YH, Hong JK, Park D, Kim MK, Cho M, Kim Y, Hahn J. Identification and characterization of flowering repressor-related genes in Chinese cabbage. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6203-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Xue LJ, Zhang JJ, Xue HW. Genome-wide analysis of the complex transcriptional networks of rice developing seeds. PLoS One 2012; 7:e31081. [PMID: 22363552 PMCID: PMC3281924 DOI: 10.1371/journal.pone.0031081] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background The development of rice (Oryza sativa) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement. Principal Findings Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of Arabidopsis seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant cultivar Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development. Conclusions These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed.
Collapse
Affiliation(s)
- Liang-Jiao Xue
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Jing Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
17
|
Yoshimura Y, Zaima N, Moriyama T, Kawamura Y. Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry. PLoS One 2012; 7:e31285. [PMID: 22363605 PMCID: PMC3281930 DOI: 10.1371/journal.pone.0031285] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/05/2012] [Indexed: 11/18/2022] Open
Abstract
Black rice (Oryza sativa L. Japonica) contains high levels of anthocyanins in the pericarp and is considered an effective health-promoting food. Several studies have identified the molecular species of anthocyanins in black rice, but information about the localization of each anthocyanin species is limited because methodologies for investigating the localization such as determining specific antibodies to anthocyanin, have not yet been developed Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is a suitable tool for investigating the localization of metabolites. In this study, we identified 7 species of anthocyanin monoglycosides and 2 species of anthocyanin diglycosides in crude extracts from black rice by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. We also analyzed black rice sections by MALDI-IMS and found 2 additional species of anthocyanin pentosides and revealed different localization patterns of anthocyanin species composed of different sugar moieties. Anthocyanin species composed of a pentose moiety (cyanidin-3-O-pentoside and petunidin-3-O-pentoside) were localized in the entire pericarp, whereas anthocyanin species composed of a hexose moiety (cyanidin-3-O-hexoside and peonidin-3-O-hexoside) were focally localized in the dorsal pericarp. These results indicate that anthocyanin species composed of different sugar moieties exhibit different localization patterns in the pericarp of black rice. This is the first detailed investigation into the localization of molecular species of anthocyanins by MALDI-IMS.
Collapse
Affiliation(s)
- Yukihiro Yoshimura
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kinki University, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kinki University, Nara, Japan
- * E-mail:
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kinki University, Nara, Japan
| | - Yukio Kawamura
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kinki University, Nara, Japan
| |
Collapse
|
18
|
Computational identification of Chinese cabbage anthocyaninspecific genes. BIOCHIP JOURNAL 2011. [DOI: 10.1007/s13206-011-5212-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|