1
|
Jang W, Ha DJ, Nahm CH, Park J, Kim SJ, Lee JE, Moon Y. Identification of a novel splice variant in SEC23B gene in a patient with concomitant presence of congenital dyserythropoietic anemia II and Gilbert's syndrome. Hematology 2024; 29:2343163. [PMID: 38655690 DOI: 10.1080/16078454.2024.2343163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Congenital dyserythropoietic anemia Ⅱ (CDA Ⅱ) is a rare inherited disorder of defective erythropoiesis caused by SEC23B gene mutation. CDA Ⅱ is often misdiagnosed as a more common type of clinically related anemia, or it remains undiagnosed due to phenotypic variability caused by the coexistence of inherited liver diseases, including Gilbert's syndrome (GS) and hereditary hemochromatosis. METHODS We describe the case of a boy with genetically undetermined severe hemolytic anemia, hepatosplenomegaly, and gallstones whose diagnosis was achieved by targeted next generation sequencing. RESULTS Molecular analysis revealed a maternally inherited novel intronic variant and a paternally inherited missense variant, c.[994-3C > T];[1831C > T] in the SEC23B gene, confirming diagnosis of CDA Ⅱ. cDNA analysis verified that the splice acceptor site variant results in two mutant transcripts, one with an exon 9 skip and one in which exons 9 and 10 are deleted. SEC23B mRNA levels in the patient were lower than those in healthy controls. The patient was also homozygous for the UGT1A1*6 allele, consistent with GS. CONCLUSION Identification of the novel splice variant in this study further expands the spectrum of known SEC23B gene mutations. Molecular genetic approaches can lead to accurate diagnosis and management of CDA Ⅱ patients, particularly for those with GS coexisting.
Collapse
Affiliation(s)
- Woori Jang
- Department of Laboratory Medicine, College of Medicine, Inha University, Incheon, Korea
- Northwest Gyeonggi Regional Center for Rare Disease, Incheon, Korea
| | - Dong Jun Ha
- Department of Pediatrics, College of Medicine, Inha University, Incheon, Korea
| | - Chung Hyun Nahm
- Department of Laboratory Medicine, College of Medicine, Inha University, Incheon, Korea
| | - Jisun Park
- Department of Pediatrics, College of Medicine, Inha University, Incheon, Korea
- Northwest Gyeonggi Regional Center for Rare Disease, Incheon, Korea
| | - Su Jin Kim
- Department of Pediatrics, College of Medicine, Inha University, Incheon, Korea
- Northwest Gyeonggi Regional Center for Rare Disease, Incheon, Korea
| | - Ji-Eun Lee
- Department of Pediatrics, College of Medicine, Inha University, Incheon, Korea
- Northwest Gyeonggi Regional Center for Rare Disease, Incheon, Korea
| | - Yeonsook Moon
- Department of Laboratory Medicine, College of Medicine, Inha University, Incheon, Korea
- Northwest Gyeonggi Regional Center for Rare Disease, Incheon, Korea
| |
Collapse
|
2
|
Yilmaz M, Bebek O, Colak Y, Türkyılmaz A. Somatic STK11 mosaicism in a Turkish patient with Peutz-Jeghers syndrome. Fam Cancer 2024; 23:641-645. [PMID: 38822937 DOI: 10.1007/s10689-024-00405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disorder, caused by germline variants in the serine/threonine kinase 11 (STK11) gene. However, mosaic variants in STK11 gene have been rarely described. A 25-year-old woman diagnosed with PJS due to multiple hamartomatous polyps in the gastrointestinal tract was referred to our clinic. In the molecular diagnosis, the patient was evaluated using the STK11 gene sequence analysis and multiplex ligation-dependent probe amplification (MLPA) method, which suggested no pathogenic variant to account for the clinical picture. Given that the clinical findings of the patient were consistent with those of PJS, the raw data from next-generation sequencing (NGS) were re-examined for mosaicism which led to the detection of a novel mosaic c.920 + 1G > T variant in STK11 gene with a rate of 23% (1860x). Deep read-level NGS was performed on buccal mucosa and polyp samples to determine mosaicism levels in other tissues. Variant frequencies were 29% (710x) and 31% (1301x), respectively. Mosaicism should be considered in cases with clear clinical diagnostic criteria, such as PJS, where the pathogenic variant cannot be detected by sequence analysis and MLPA methods. Identification of mosaicism in these patients is very important as it can have an impact on patient follow-up and genetic counseling for relatives.
Collapse
Affiliation(s)
- Mustafa Yilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Ortahisar Trabzon, Trabzon, 61100, Turkey
| | - Ogun Bebek
- Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Yavuzhan Colak
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Ortahisar Trabzon, Trabzon, 61100, Turkey
| | - Ayberk Türkyılmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Ortahisar Trabzon, Trabzon, 61100, Turkey.
| |
Collapse
|
3
|
Bursakov SA, Kovaleva AV, Brigida AV, Zaripov OG. Functional analysis of the GPAT4 gene mutation predicted to affect splicing. Anim Biotechnol 2024; 35:2269210. [PMID: 37906284 DOI: 10.1080/10495398.2023.2269210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The GPAT4 gene is considered as a potential functional candidate for single nucleotide polymorphism (SNP) studies in dairy cattle breeding due to its association with dairy performance in cattle by encoding an enzyme responsible for the presence of diacylglycerols and triacylglycerols in milk. Using the example of the GPAT4 gene, we applied the minigene splicing assay to analyze the functional consequences of its variant that was predicted to affect normal splicing. The results of functional analysis revealed the sequence variations (rs442541537), transfection experiments in a wild type and mutant cell line model system demonstrated that the investigated mutation in the second intron of the GPAT4 gene was responsible for the presence of a second exon in mature messenger RNA (mRNA). The cases of its absence in the spliced mature mRNA transcript resulted in a truncated dysfunctional protein due to the appearance of a stop codon. Thus, the discovered SNP led to alternative splicing in pre-mRNA by the 'cassette exon' ('exon skipping') mechanism. The studied mutation can potentially be a molecular genetic marker for alternative splicing for the GPAT4 gene and, therefore contributes to economic benefits in cattle breeding programs.
Collapse
Affiliation(s)
- Sergey A Bursakov
- Institution of Innovative Biotechnology in Animal Husbandry - A Branch of the Federal Research Center for Animal Husbandry Named After Academy Member L.K. Ernst, Moscow, Russia
- Federal State Budgetary Scientific Institution "All-Russia Research Institute of Agricultural Biotechnology", Moscow, Russia
| | - Anastasia V Kovaleva
- Institution of Innovative Biotechnology in Animal Husbandry - A Branch of the Federal Research Center for Animal Husbandry Named After Academy Member L.K. Ernst, Moscow, Russia
| | - Artyom V Brigida
- Institution of Innovative Biotechnology in Animal Husbandry - A Branch of the Federal Research Center for Animal Husbandry Named After Academy Member L.K. Ernst, Moscow, Russia
| | - Oleg G Zaripov
- Institution of Innovative Biotechnology in Animal Husbandry - A Branch of the Federal Research Center for Animal Husbandry Named After Academy Member L.K. Ernst, Moscow, Russia
| |
Collapse
|
4
|
Fauqueux J, Boussion S, Thuillier C, Meurisse E, Lacombe D, Willems M, Piton A, Ait-Yahya E, Ghoumid J, Smol T. Splice site variants in the canonical donor site of MED13L exon 7 lead to intron retention in patients with MED13L syndrome. J Med Genet 2024; 61:1040-1044. [PMID: 39181712 DOI: 10.1136/jmg-2024-110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Pathogenic variants in the MED13L gene are associated with the autosomal dominant MED13L syndrome, which is characterised by global developmental delay and cardiac malformations. We investigated two heterozygous MED13L variants located at the canonical donor splice site motif of exon 7: c.1009+1G>C and c.1009+5G>C. We report that in silico predictions suggested two possible outcomes: exon 7 skipping, resulting in loss of the phosphodegron motif essential for MED13L regulation, or activation of a cryptic donor site in intron 7, leading to intron retention. RNA analysis confirmed that both variants affected the exon 7 splice donor site, resulting in the retention of 73 bp of intron 7. This retention caused a frameshift and premature translation termination, consistent with haploinsufficiency. Our results highlight the importance of combining predictive and experimental approaches to understand the functional impact of splice site variants. These insights into the molecular consequences of MED13L variants provide a deeper understanding of the genetic basis of MED13L syndrome.
Collapse
Affiliation(s)
| | - Simon Boussion
- Univ. Lille, ULR7364 RADEME, Lille, France
- CHU Lille, Clinique de Génétique, Lille, France
| | | | | | - Didier Lacombe
- Univ. Bordeaux, UMR1211 - MRGM - Maladies Rares Génétique et Métabolisme, Bordeaux, France
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Marjolaine Willems
- CHU Montpellier, Département de Génétique Médicale, Centre de Référence Anomalies du Développement, Montpellier, France
- Univ. Montpellier, Inserm, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Amélie Piton
- IGBMC, Neurogenetics and Translational Medicine, Illkirch-Graffenstaden, France
- CHU Strasbourg, Laboratoire de Diagnostic Génétique, Strasbourg, France
| | - Emilie Ait-Yahya
- CHU Lille, Unité de Bio-informatique, Plateau de Biologie-Moléculaire, Lille, France
| | - Jamal Ghoumid
- Univ. Lille, ULR7364 RADEME, Lille, France
- CHU Lille, Clinique de Génétique, Lille, France
| | - Thomas Smol
- Univ. Lille, ULR7364 RADEME, Lille, France
- CHU Lille, Institut de Génétique Médicale, Lille, France
| |
Collapse
|
5
|
Zhao M, Cheng X, Chen L, Zeng YH, Lin KJ, Li YL, Zheng ZH, Huang XJ, Zuo DD, Guo XX, Guo J, He D, Liu Y, Lin Y, Wang C, Lv WQ, Su HZ, Yao XP, Ye ZL, Chen XH, Lu YQ, Huang CW, Yang G, Zhang YX, Lin MT, Wang N, Xiong ZQ, Chen WJ. Antisense oligonucleotides enhance SLC20A2 expression and suppress brain calcification in a humanized mouse model. Neuron 2024; 112:3278-3294.e7. [PMID: 39121859 DOI: 10.1016/j.neuron.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Primary familial brain calcification (PFBC) is a genetic neurological disease, yet no effective treatment is currently available. Here, we identified five novel intronic variants in SLC20A2 gene from six PFBC families. Three of these variants increased aberrant SLC20A2 pre-mRNA splicing by altering the binding affinity of splicing machineries to newly characterized cryptic exons, ultimately causing premature termination of SLC20A2 translation. Inhibiting the cryptic-exon incorporation with splice-switching ASOs increased the expression levels of functional SLC20A2 in cells carrying SLC20A2 mutations. Moreover, by knocking in a humanized SLC20A2 intron 2 sequence carrying a PFBC-associated intronic variant, the SLC20A2-KI mice exhibited increased inorganic phosphate (Pi) levels in cerebrospinal fluid (CSF) and progressive brain calcification. Intracerebroventricular administration of ASOs to these SLC20A2-KI mice reduced CSF Pi levels and suppressed brain calcification. Together, our findings expand the genetic etiology of PFBC and demonstrate ASO-mediated splice modulation as a potential therapy for PFBC patients with SLC20A2 haploinsufficiency.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xuewen Cheng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China.
| | - Lei Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Heng Zeng
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Kai-Jun Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Yun-Lu Li
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ze-Hong Zheng
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xue-Jing Huang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Dan-Dan Zuo
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xin-Xin Guo
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Ying Liu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Yu Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Chong Wang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Wen-Qi Lv
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Hui-Zhen Su
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xiang-Ping Yao
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zi-Ling Ye
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xiao-Hong Chen
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ying-Qian Lu
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Chen-Wei Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yu-Xian Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Ting Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Ning Wang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zhi-Qi Xiong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai 201602, China.
| | - Wan-Jin Chen
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| |
Collapse
|
6
|
Sullivan PJ, Quinn JMW, Wu W, Pinese M, Cowley MJ. SpliceVarDB: A comprehensive database of experimentally validated human splicing variants. Am J Hum Genet 2024; 111:2164-2175. [PMID: 39226898 PMCID: PMC11480807 DOI: 10.1016/j.ajhg.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Variants that alter gene splicing are estimated to comprise up to a third of all disease-causing variants, yet they are hard to predict from DNA sequencing data alone. To overcome this, many groups are incorporating RNA-based analyses, which are resource intensive, particularly for diagnostic laboratories. There are thousands of functionally validated variants that induce mis-splicing; however, this information is not consolidated, and they are under-represented in ClinVar, which presents a barrier to variant interpretation and can result in duplication of validation efforts. To address this issue, we developed SpliceVarDB, an online database consolidating over 50,000 variants assayed for their effects on splicing in over 8,000 human genes. We evaluated over 500 published data sources and established a spliceogenicity scale to standardize, harmonize, and consolidate variant validation data generated by a range of experimental protocols. According to the strength of their supporting evidence, variants were classified as "splice-altering" (∼25%), "not splice-altering" (∼25%), and "low-frequency splice-altering" (∼50%), which correspond to weak or indeterminate evidence of spliceogenicity. Importantly, 55% of the splice-altering variants in SpliceVarDB are outside the canonical splice sites (5.6% are deep intronic). These variants can support the variant curation diagnostic pathway and can be used to provide the high-quality data necessary to develop more accurate in silico splicing predictors. The variants are accessible through an online platform, SpliceVarDB, with additional features for visualization, variant information, in silico predictions, and validation metrics. SpliceVarDB is a very large collection of splice-altering variants and is available at https://splicevardb.org.
Collapse
Affiliation(s)
- Patricia J Sullivan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia; UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Julian M W Quinn
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Weilin Wu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Mark Pinese
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Wang X, Zheng R, Dukhinova M, Wang L, Shen Y, Lin Z. Perspectives in the investigation of Cockayne syndrome group B neurological disease: the utility of patient-derived brain organoid models. J Zhejiang Univ Sci B 2024; 25:878-889. [PMID: 39420523 PMCID: PMC11494160 DOI: 10.1631/jzus.b2300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/16/2024] [Indexed: 10/19/2024]
Abstract
Cockayne syndrome (CS) group B (CSB), which results from mutations in the excision repair cross-complementation group 6 (ERCC6) genes, which produce CSB protein, is an autosomal recessive disease characterized by multiple progressive disorders including growth failure, microcephaly, skin photosensitivity, and premature aging. Clinical data show that brain atrophy, demyelination, and calcification are the main neurological manifestations of CS, which progress with time. Neuronal loss and calcification occur in various brain areas, particularly the cerebellum and basal ganglia, resulting in dyskinesia, ataxia, and limb tremors in CSB patients. However, the understanding of neurodevelopmental defects in CS has been constrained by the lack of significant neurodevelopmental and functional abnormalities observed in CSB-deficient mice. In this review, we focus on elucidating the protein structure and distribution of CSB and delve into the impact of CSB mutations on the development and function of the nervous system. In addition, we provide an overview of research models that have been instrumental in exploring CS disorders, with a forward-looking perspective on the substantial contributions that brain organoids are poised to further advance this field.
Collapse
Affiliation(s)
- Xintai Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Zheng
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Marina Dukhinova
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center for Brain Health, the Fourth Affiliated Hospital of School of Medicine / International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322001, China
| | - Luxi Wang
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China. ,
| | - Zhijie Lin
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
8
|
Qu Z, Sakaguchi N, Kikutake C, Suyama M. Identification and analysis of short indels inducing exon extension/shrinkage events. FEBS Open Bio 2024; 14:1682-1690. [PMID: 39085971 PMCID: PMC11452298 DOI: 10.1002/2211-5463.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
The search for genetic variants that act as causative factors in human diseases by disrupting the normal splicing process has primarily focused on single nucleotide variants (SNVs). It is worth noting that insertions or deletions (indels) have also been sporadically reported as causative disease variants through their potential impact on the splicing process. In this study, to perform identification of indels inducing exon extension/shrinkage events, we used individual-specific genomes and RNA sequencing (RNA-seq) data pertaining to the corresponding individuals and identified 12 exon extension/shrinkage events that were potentially induced by indels that disrupted authentic splice sites or created novel splice sites in 235 normal individuals. By evaluating the impact of these abnormal splicing events on the resulting transcripts, we found that five events led to the generation of premature termination codons (PTCs), including those occurring within genes associated with genetic disorders. Our analysis revealed that the potential functions of indels have been underexamined, and it is worth considering the possibility that indels may affect splice site usage, using RNA-seq data to discover novel potentially disease-associated mutations.
Collapse
Affiliation(s)
- Zhuo Qu
- Division of Bioinformatics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Narumi Sakaguchi
- Division of Bioinformatics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
9
|
Koko M, Elseed MA, Mohammed IN, Hamed AA, Abd Allah ASI, Yahia A, Siddig RA, Altmüller J, Toliat MR, Elmahdi EO, Amin M, Ahmed EA, Eltazi IZM, Elmugadam FA, Abdelgadir WA, Eltaraifee E, Ibrahim MOM, Ali NMH, Malik HM, Babai AM, Bakhit YH, Nürnberg P, Ibrahim ME, Salih MA, Schubert J, Elsayed LEO, Lerche H. Bi-allelic PRRT2 variants may predispose to Self-limited Familial Infantile Epilepsy. Eur J Hum Genet 2024; 32:1338-1342. [PMID: 38316952 PMCID: PMC11500335 DOI: 10.1038/s41431-024-01541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Heterozygous PRRT2 variants are frequently implicated in Self-limited Infantile Epilepsy, whereas homozygous variants are so far linked to severe presentations including developmental and epileptic encephalopathy, movement disorders, and intellectual disability. In a study aiming to explore the genetics of epilepsy in the Sudanese population, we investigated several families including a consanguineous family with three siblings diagnosed with self-limited infantile epilepsy. We evaluated both dominant and recessive inheritance using whole exome sequencing and genomic arrays. We identified a pathogenic homozygous splice-site variant in the first intron of PRRT2 [NC_000016.10(NM_145239.3):c.-65-1G > A] that segregated with the phenotype in this family. This work taps into the genetics of epilepsy in an underrepresented African population and suggests that the phenotypes of homozygous PRRT2 variants may include milder epilepsy presentations without movement disorders.
Collapse
Affiliation(s)
- Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Maha A Elseed
- Department of Pediatrics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam N Mohammed
- Department of Pediatrics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ahlam A Hamed
- Department of Pediatrics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Amal S I Abd Allah
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Rayan A Siddig
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Berlin Institute of Health at Charité- Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Esra O Elmahdi
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mutaz Amin
- Department of Biochemistry, Faculty of Medicine, Al-Neelain University, Khartoum, Sudan
| | - Elhami A Ahmed
- UNESCO Chair on Bioethics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Isra Z M Eltazi
- Department of Medicine, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima A Elmugadam
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Sciences and Technology, Al-Neelain University, Khartoum, Sudan
| | - Esraa Eltaraifee
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohamed O M Ibrahim
- Department of Biochemistry, Faculty of Medicine, Sudan University of Science and Technology, Khartoum, Sudan
| | - Nabila M H Ali
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Hiba M Malik
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Arwa M Babai
- Neurogenetics Research Group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Yousuf H Bakhit
- Department of Neurology, Neurobiology Division, University Hospital Bonn, Bonn, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Muntaser E Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Liena E O Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Kucharski M, Nayak S, Gendrot M, Dondorp AM, Bozdech Z. Peeling the onion: how complex is the artemisinin resistance genetic trait of malaria parasites? Trends Parasitol 2024:S1471-4922(24)00245-9. [PMID: 39358163 DOI: 10.1016/j.pt.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The genetics of Plasmodium as an intracellular, mostly haploid, sexually reproducing, eukaryotic organism with a complex life cycle, presents unprecedented challenges in studying drug resistance. This article summarizes current knowledge on the genetic basis of artemisinin resistance (AR) - a main component of current drug therapies for falciparum malaria. Although centered on nonsynonymous single-nucleotide polymorphisms (nsSNPs), we describe multifaceted resistance mechanisms as part of a complex, cumulative genetic trait that involves regulation of expression by a wide array of polymorphisms in noncoding regions. These genetic variations alter transcriptome profiles linked to Plasmodium's development and population dynamics, ultimately influencing the emergence and spread of the resistance.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore; Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore; Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Hucko L, da Cruz NFS, Staropoli P, Berrocal AM. Familial exudative vitreoretinopathy (FEVR) in a child with a Jagged 1 variant identified on genetic testing. Ophthalmic Genet 2024; 45:488-493. [PMID: 38836470 DOI: 10.1080/13816810.2024.2357303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Familial Exudative Vitreoretinopathy (FEVR) is a heritable retinal vascular disease characterized by incomplete vascularization of the peripheral retina resulting in ischemia. Fifty percent of FEVR cases 10 are due to known pathogenic genetic variants, and disease phenotype can vary greatly. FEVR is a clinical diagnosis, however, genetic testing can play a key role in screening for FEVR in genetically susceptible populations, thus leading to early treatment and improved patient outcomes. CASE A 2-year-old male with no known past ocular or medical history was diagnosed with FEVR upon examination under anesthesia and multimodal retinal imaging. Genetic testing identified a Jagged 1 (JAG1) variant of uncertain significance, 15 which has been linked to FEVR in recent studies. Despite close follow-up and treatment, the patient experienced a funnel retinal detachment in the right eye approximately one year after diagnosis. DISCUSSION This case in conjunction with recent literature suggests that JAG1 variants are likely associated with FEVR. Further investigations are necessary to identify the frequency of JAG1 variants among patients with FEVR. Robust understanding of FEVR's heterogenous genetic profile will lead to improved treatment modalities 20 and patient outcomes.
Collapse
Affiliation(s)
- Lauren Hucko
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Natasha F S da Cruz
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Patrick Staropoli
- Department of Ophthalmology, Retina Consultants of Texas, Houston, Texas, USA
| | - Audina M Berrocal
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
12
|
Woolley SA, Hopkins B, Khatkar MS, Jerrett IV, Willet CE, O’Rourke BA, Tammen I. A Splice Site Variant in ADAMTS3 Is the Likely Causal Variant for Pulmonary Hypoplasia with Anasarca in Persian/Persian-Cross Sheep. Animals (Basel) 2024; 14:2811. [PMID: 39409761 PMCID: PMC11475510 DOI: 10.3390/ani14192811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Pulmonary hypoplasia with anasarca, or hydrops fetalis, is characterized by stillbirth, diffuse oedema, and generalized lymph node hypoplasia. The enlarged fetus frequently causes dystocia. The disease has been reported in cattle and sheep as an inherited condition with a recessive mode of inheritance. This is the first report of the disease in Persian/Persian-cross sheep in Australia. Affected fetuses were reported from three flocks, and a total of eleven affected, eleven obligate carrier, and 188 related Persian/Persian-cross animals were available for analysis, as well as unrelated control animals. SNP genotyping revealed a region of homozygosity in affected animals on ovine chromosome six, which contained the functional candidate gene ADAMTS3. Whole genome sequencing of two affected fetuses and one obligate carrier ewe revealed a single nucleotide deletion, ENSOARG00000013204:g.87124344delC, located 3 bp downstream from a donor splice site region in the ADAMTS3 gene. Sanger sequencing of cDNA containing this variant further revealed that it is likely to introduce an early splice site in exon 14, resulting in a loss of 6 amino acids at the junction of exon 14 and intron 14/15. A genotyping assay was developed, and the ENSOARG00000013204:g.87124344delC segregated with disease in 209 animals, allowing for effective identification of carrier animals.
Collapse
Affiliation(s)
- Shernae A. Woolley
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bethany Hopkins
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mehar S. Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ian V. Jerrett
- Agriculture Victoria, AgriBio Centre, Bundoora, VIC 3083, Australia
| | - Cali E. Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, Australia
| | - Brendon A. O’Rourke
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW 2568, Australia;
| | - Imke Tammen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Khan H, Muzaffar F, Salman M, Bashir R, Seo GH, Naz S. Genetic investigations on singleton school aged children reveal novel variants and new candidate genes for hearing loss. Sci Rep 2024; 14:21412. [PMID: 39271758 PMCID: PMC11399343 DOI: 10.1038/s41598-024-71407-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Hearing loss affects around 5% of the global population. Two preliminary studies have described genetic variants in sporadic individuals with hearing loss from Pakistan. Here we extend these studies to determine the spectrum of variants in a cohort of individuals with no previous history of hearing loss. Individuals with hearing loss born to consanguineous couples were identified from special schools. Audiograms were assessed. DNA from participants negative for GJB2 pathogenic variants was subjected to exome sequencing. Data were filtered to include variants with frequencies < 0.01 in the public databases. The effects of the missense variants on respective amino acids were analyzed by using PyMol software. Among the 44 participants, hearing loss was moderate for two individuals; 14 exhibited moderately-severe hearing loss while 25 had a severe degree of hearing loss. Hearing loss was reported to have been progressive in four participants and was currently profound in three participants. Variants were unambiguously identified in 17 genes, of which the majority affected SLC26A4. CDH23, MYO15A and OTOF were other significant contributors. Deleterious variants detected in two genes suggest new associations for hearing loss. Molecular characterization of hearing loss in our cohort revealed high genetic heterogeneity with a 75% diagnostic rate.
Collapse
Affiliation(s)
- Hina Khan
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fariha Muzaffar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Midhat Salman
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- University of Health Sciences, Lahore, Pakistan
| | - Rasheeda Bashir
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | | | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
14
|
So JY, Nazaroff J, Yenamandra VK, Gorell ES, Harris N, Fulchand S, Eid E, Dolorito JA, Marinkovich MP, Tang JY. Functional genotype-phenotype associations in recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol 2024; 91:448-456. [PMID: 38735484 DOI: 10.1016/j.jaad.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Genotype-phenotype associations in recessive dystrophic epidermolysis bullosa (RDEB) have been difficult to elucidate. OBJECTIVE To investigate RDEB genotype-phenotype associations and explore a functional approach to genotype classification. METHODS Clinical examination and genetic testing of RDEB subjects, including assessment of clinical disease by RDEB subtype and extent of blistering. Genotypes were evaluated according to each variant's effect on type VII collagen function per updated literature and subsequently categorized by degree of impact on VII collagen function as low-impact (splice/missense, missense/missense), medium-impact (premature termination codon [PTC]/missense, splice/splice), and high-impact (PTC/PTC, PTC/splice). Genotype-phenotype associations were investigated using Kruskal-Wallis and Fisher's exact tests, and age-adjusted regressions. RESULTS Eighty-three participants were included. High-impact variants were associated with worse RDEB subtype and clinical disease, including increased prevalence of generalized blistering (55.6% for low-impact vs 72.7% medium-impact vs 90.4% high-impact variants, P = .002). In age-adjusted regressions, participants with high-impact variants had 40.8-fold greater odds of squamous cell carcinoma compared to low-impact variants (P = .02), and 5.7-fold greater odds of death compared to medium-impact variants (P = .05). LIMITATIONS Cross-sectional design. CONCLUSION Functional genotype categories may stratify RDEB severity; high-impact variants correlated with worse clinical outcomes. Further validation in larger cohorts is needed.
Collapse
Affiliation(s)
- Jodi Y So
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Jaron Nazaroff
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Vamsi K Yenamandra
- CSIR-Institute of Genomics & Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| | - Emily S Gorell
- Division of Dermatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nicki Harris
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Shivali Fulchand
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Edward Eid
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - John A Dolorito
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - M Peter Marinkovich
- Department of Dermatology, Stanford University School of Medicine, Stanford, California; Dermatology Service, Veterans Affairs Palo Alto Medical Center, Palo Alto, California
| | - Jean Y Tang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
15
|
Fan Y, Qin Y, Dong X, Wang Z, Zhou H. Identification and expression patterns of voltage-gated sodium channel genes with intron retentions in different strains of Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106084. [PMID: 39277397 DOI: 10.1016/j.pestbp.2024.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/17/2024]
Abstract
Pyrethroid are the primary insecticides used for controlling of Bactricera dorsalis, a highly destructive and invasive fruit pest. Field populations have developed serious resistance, especially to β-cypermethrin. While mutations in the voltage-gated sodium channel (Vgsc) are a common mechanism of pyrethroid resistance, variations in BdVgsc associated with β-cypermethrin resistance remain unclear. Here, we reported the resistance levels of five field populations from China, with resistance ratio ranging from 1.54 to 21.34-fold. Cloning the full length of BdVgsc revealed no specific or known amino acid mutations between the most resistant population and the susceptible strain. However, three types of partial intron retention (IRE4-5, IRE19-f and IREL-24) were identified in BdVgsc transcripts, with these intron retentions containing stop codons. The expression of IRE4-5 transcripts and total BdVgsc showed different trends across developmental stages and tissues. Exposure to β-cypermethrin led to increased expression of IRE4-5. Comparison of genomic and transcriptional sequences reveled that IRE4-5 transcripts had two types (IRE4-5.5 T and IRE4-5.6 T) caused by genomic variations. Both field and congenic strains indicated that homozygotes for IRE4-5.5 T had lower IRE4-5 transcript levels than homozygotes for IRE4-5.6 T. However, congenic and field strains exhibited inconsistent results about the association of expression levels of IRE4-5 transcripts with sensitivity to β-cypermethrin. In summary, this study is the first to identify intron retention transcripts in the Vgsc gene from B. dorsalis and to examine their expression patterns across different developmental stages, tissues, and strains with varying sensitivities to β-cypermethrin. The potential role of the intron retentions of BdVgsc in insecticide toxicity is also discussed.
Collapse
Affiliation(s)
- Yinjun Fan
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Yu Qin
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Xinyi Dong
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Zixuan Wang
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China.
| |
Collapse
|
16
|
Reis LM, Seese SE, Costakos D, Semina EV. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms. Prog Retin Eye Res 2024; 102:101288. [PMID: 39097141 PMCID: PMC11392650 DOI: 10.1016/j.preteyeres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in FOXC1, CYP1B1, and PITX2 associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Sarah E Seese
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Elena V Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
17
|
Wang K, Luigi-Sierra MG, Castelló A, Figueiredo-Cardoso T, Mercadé A, Martínez A, Delgado JV, Álvarez JF, Noce A, Wang M, Jordana J, Amills M. Identification of nonsense variants in the genomes of 15 Murciano-Granadina bucks and analysis of their segregation in parent-offspring trios. J Dairy Sci 2024:S0022-0302(24)01097-X. [PMID: 39218071 DOI: 10.3168/jds.2024-24952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Nonsense variants can inactivate gene function by causing the synthesis of truncated proteins or by inducing nonsense mediated decay of messenger RNAs. The occurrence of such variants in the genomes of livestock species is modulated by multiple demographic and selective factors. Even though nonsense variants can have causal effects on embryo lethality, abortions, and disease, their genomic distribution and segregation in domestic goats have not been characterized in depth yet. In this work, we have sequenced the genomes of 15 Murciano-Granadina bucks with an average coverage of 32.92 × ± 1.45 × . Bioinformatic analysis revealed 947 nonsense variants consistently detected with SnpEff and Ensembl-VEP. These variants were especially abundant in the 3'end of the protein-coding regions. Genes related to olfactory perception, ATPase activity coupled to transmembrane movement of substances, defense to virus, hormonal response, and sensory perception of taste were particularly enriched in nonsense variants. Seventeen nonsense variants expected to have harmful effects on fitness were genotyped in parent-offspring trios. We observed that several nonsense variants predicted to be lethal based on mouse knockout data did not have such effect, a finding that could be explained by the existence of multiple mechanisms counteracting lethality. These findings demonstrate that predicting the effects of putative nonsense variants on fitness is extremely challenging. As a matter of fact, such a goal could only be achieved by generating a high quality telomere-to-telomere goat reference genome combined with carefully curated annotation and functional testing of promising candidate variants.
Collapse
Affiliation(s)
- Ke Wang
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental Station, Zhanjiang, Guangdong, 524000, China.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - María Gracia Luigi-Sierra
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anna Castelló
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Taina Figueiredo-Cardoso
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anna Mercadé
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, Córdoba 14071, Spain
| | | | | | - Antonia Noce
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Mingjing Wang
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcel Amills
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain..
| |
Collapse
|
18
|
Moschetti M, Lo Curto A, Giacomarra M, Francofonte D, Zizzo C, Messina E, Duro G, Colomba P. Mutation Spectrum of GAA Gene in Pompe Disease: Current Knowledge and Results of an Italian Study. Int J Mol Sci 2024; 25:9139. [PMID: 39273088 PMCID: PMC11394944 DOI: 10.3390/ijms25179139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 09/15/2024] Open
Abstract
Studying a patient with Pompe disease (PD) is like opening Pandora's box. The specialist is faced with numerous clinical features similar to those of several diseases, and very often the symptoms are well hidden and none is associated with this rare disease. In recent years, scientific interest in this disease has been growing more and more, but still no symptom is recognized as key to a correct diagnosis of it, nor is there any specific disease marker to date. New diagnostic/therapeutic proposals on disease allow for the diffusion of knowledge of this pathology for timely diagnosis of the patient. Due to unawareness and difficulty in diagnosis, many adults with PD are diagnosed with great delay. In this article, we report and discuss current knowledge of PD and provide new data from work conducted on a cohort of 2934 Italian subjects recruited in recent years. A genetic analysis of the GAA gene was performed on patients with significant clinical signs and pathological enzyme activity to define the genetic profile of subjects. This identified 39 symptomatic PD subjects with low acid alpha-glucosidase enzyme activity and the presence of two causative mutations in GAA gene regions. Furthermore, 22 subjects with genetic variants of uncertain significance (GVUS) were identified.
Collapse
Affiliation(s)
- Marta Moschetti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Alessia Lo Curto
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Miriam Giacomarra
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Daniele Francofonte
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Elisa Messina
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Paolo Colomba
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
19
|
Donelson CJH, Ghiringhelli Borsa N, Taylor AO, Smith RJH, Zhang Y. Functional evaluation of rare variants in complement factor I using a minigene assay. Front Immunol 2024; 15:1446081. [PMID: 39238643 PMCID: PMC11374653 DOI: 10.3389/fimmu.2024.1446081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
The regulatory serine protease, complement factor I (FI), in conjunction with one of its cofactors (FH, C4BP, MCP, or CR1), plays an essential role in controlling complement activity through inactivation of C3b and C4b. The functional impact by missense variants in the CFI gene, particularly those with minor allele frequencies of 0.01% to 0.1%, is infrequently studied. As such, these variants are typically classified as variants of uncertain significance (VUS) when they are identified by clinical testing. Herein, we utilized a minigene splicing assay to assess the functional impact of 36 ultra-rare variants of CFI. These variants were selected based on their minor allele frequencies (MAF) and their association with low-normal FI levels. Four variants lead to aberrant splicing-one 5' consensus splice site (NM_000204.5: c.1429G>C, p.Asp477His) and three exonic changes (c.355G>A, p.Gly119Arg; c.472G>A, p.Gly158Arg; and c.950G>A, p.Arg317Gln)-enabling their reclassification to likely pathogenic (LP) or pathogenic (P) based on ACMG guidelines. These findings underscore the value of functional assays, such as the minigene assay, in assessing the clinical relevance of rare variants in CFI.
Collapse
Affiliation(s)
| | | | | | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratory, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratory, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
20
|
Diallo M, Courdier C, Mercier E, Sequeira A, Defay-Stinat A, Plaisant C, Mesdaghi S, Rigden D, Javerzat S, Lasseaux E, Bourgeade L, Audebert-Bellanger S, Dollfus H, Hadj-Rabia S, Morice-Picard F, Philibert M, Sidibé MK, Smirnov V, Sylla O, Michaud V, Arveiler B. Functional Characterization of Splice Variants in the Diagnosis of Albinism. Int J Mol Sci 2024; 25:8657. [PMID: 39201349 PMCID: PMC11355033 DOI: 10.3390/ijms25168657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Albinism is a genetically heterogeneous disease in which 21 genes are known so far. Its inheritance mode is autosomal recessive except for one X-linked form. The molecular analysis of exonic sequences of these genes allows for about a 70% diagnostic rate. About half (15%) of the unsolved cases are heterozygous for one pathogenic or probably pathogenic variant. Assuming that the missing variant may be located in non-coding regions, we performed sequencing for 122 such heterozygous patients of either the whole genome (27 patients) or our NGS panel (95 patients) that includes, in addition to all exons of the 21 genes, the introns and flanking sequences of five genes, TYR, OCA2, SLC45A2, GPR143 and HPS1. Rare variants (MAF < 0.01) in trans to the first variant were tested by RT-PCR and/or minigene assay. Of the 14 variants tested, nine caused either exon skipping or the inclusion of a pseudoexon, allowing for the diagnosis of 11 patients. This represents 9.8% (12/122) supplementary diagnosis for formerly unsolved patients and 75% (12/16) of those in whom the candidate variant was in trans to the first variant. Of note, one missense variant was demonstrated to cause skipping of the exon in which it is located, thus shedding new light on its pathogenic mechanism. Searching for non-coding variants and testing them for an effect on RNA splicing is warranted in order to increase the diagnostic rate.
Collapse
Affiliation(s)
- Modibo Diallo
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
| | - Cécile Courdier
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| | - Elina Mercier
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
| | - Angèle Sequeira
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
| | - Alicia Defay-Stinat
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
| | - Claudio Plaisant
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| | - Shahram Mesdaghi
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (S.M.); (D.R.)
- Computational Biology Facility, MerseyBio, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Daniel Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (S.M.); (D.R.)
| | - Sophie Javerzat
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
| | - Eulalie Lasseaux
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| | - Laetitia Bourgeade
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| | | | - Hélène Dollfus
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Strasbourg, 67091 Strasbourg, France;
| | - Smail Hadj-Rabia
- Service de Dermatologie, Hôpital Necker-Enfants Malades, 75015 Paris, France;
| | - Fanny Morice-Picard
- Service de Dermatologie, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France;
| | | | | | - Vasily Smirnov
- Service d’Exploration Fonctionnelle de la Vision et de Neuro-Ophtalmologie, Centre Hospitalier Universitaire de Lille, 59037 Lille, France;
| | - Ousmane Sylla
- Infirmerie Hôpital Militaire, Bamako BP 236, Mali; (M.K.S.); (O.S.)
| | - Vincent Michaud
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| | - Benoit Arveiler
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| |
Collapse
|
21
|
Guo J, You L, Zhou Y, Hu J, Li J, Yang W, Tang X, Sun Y, Gu Y, Dong Y, Chen X, Sato C, Zinman L, Rogaeva E, Wang J, Chen Y, Zhang M. Spatial enrichment and genomic analyses reveal the link of NOMO1 with amyotrophic lateral sclerosis. Brain 2024; 147:2826-2841. [PMID: 38643019 DOI: 10.1093/brain/awae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease with uncertain genetic predisposition in most sporadic cases. The spatial architecture of cell types and gene expression are the basis of cell-cell interactions, biological function and disease pathology, but are not well investigated in the human motor cortex, a key ALS-relevant brain region. Recent studies indicated single nucleus transcriptomic features of motor neuron vulnerability in ALS motor cortex. However, the brain regional vulnerability of ALS-associated genes and the genetic link between region-specific genes and ALS risk remain largely unclear. Here, we developed an entropy-weighted differential gene expression matrix-based tool (SpatialE) to identify the spatial enrichment of gene sets in spatial transcriptomics. We benchmarked SpatialE against another enrichment tool (multimodal intersection analysis) using spatial transcriptomics data from both human and mouse brain tissues. To investigate regional vulnerability, we analysed three human motor cortex and two dorsolateral prefrontal cortex tissues for spatial enrichment of ALS-associated genes. We also used Cell2location to estimate the abundance of cell types in ALS-related cortex layers. To dissect the link of regionally expressed genes and ALS risk, we performed burden analyses of rare loss-of-function variants detected by whole-genome sequencing in ALS patients and controls, then analysed differential gene expression in the TargetALS RNA-sequencing dataset. SpatialE showed more accurate and specific spatial enrichment of regional cell type markers than multimodal intersection analysis in both mouse brain and human dorsolateral prefrontal cortex. Spatial transcriptomic analyses of human motor cortex showed heterogeneous cell types and spatial gene expression profiles. We found that 260 manually curated ALS-associated genes are significantly enriched in layer 5 of the motor cortex, with abundant expression of upper motor neurons and layer 5 excitatory neurons. Burden analyses of rare loss-of-function variants in Layer 5-associated genes nominated NOMO1 as a novel ALS-associated gene in a combined sample set of 6814 ALS patients and 3324 controls (P = 0.029). Gene expression analyses in CNS tissues revealed downregulation of NOMO1 in ALS, which is consistent with a loss-of-function disease mechanism. In conclusion, our integrated spatial transcriptomics and genomic analyses identified regional brain vulnerability in ALS and the association of a layer 5 gene (NOMO1) with ALS risk.
Collapse
Affiliation(s)
- Jingyan Guo
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Linya You
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
- Key Laboratory of Medical Computing and Computer Assisted Intervention of Shanghai, 200032, Shanghai, China
| | - Yu Zhou
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Jiali Hu
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Jiahao Li
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
| | - Wanli Yang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
| | - Xuelin Tang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Yimin Sun
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yuqi Gu
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Yi Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xi Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Division of Neurology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Jian Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yan Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Ming Zhang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China
- Institute for Advanced Study, Tongji University, 200092, Shanghai, China
| |
Collapse
|
22
|
Demetriou K, Nisbet J, Coman D, Ewing AD, Phillips L, Smith S, Lipke M, Inwood A, Spicer J, Atthow C, Wilgen U, Robertson T, McWhinney A, Swenson R, Espley B, Snowdon B, McGill JJ, Summers KM. Molecular genetic analysis of candidate genes for glutaric aciduria type II in a cohort of patients from Queensland, Australia. Mol Genet Metab 2024; 142:108516. [PMID: 38941880 DOI: 10.1016/j.ymgme.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Glutaric aciduria type II (GAII) is a heterogeneous genetic disorder affecting mitochondrial fatty acid, amino acid and choline oxidation. Clinical manifestations vary across the lifespan and onset may occur at any time from the early neonatal period to advanced adulthood. Historically, some patients, in particular those with late onset disease, have experienced significant benefit from riboflavin supplementation. GAII has been considered an autosomal recessive condition caused by pathogenic variants in the gene encoding electron-transfer flavoprotein ubiquinone-oxidoreductase (ETFDH) or in the genes encoding electron-transfer flavoprotein subunits A and B (ETFA and ETFB respectively). Variants in genes involved in riboflavin metabolism have also been reported. However, in some patients, molecular analysis has failed to reveal diagnostic molecular results. In this study, we report the outcome of molecular analysis in 28 Australian patients across the lifespan, 10 paediatric and 18 adult, who had a diagnosis of glutaric aciduria type II based on both clinical and biochemical parameters. Whole genome sequencing was performed on 26 of the patients and two neonatal onset patients had targeted sequencing of candidate genes. The two patients who had targeted sequencing had biallelic pathogenic variants (in ETFA and ETFDH). None of the 26 patients whose whole genome was sequenced had biallelic variants in any of the primary candidate genes. Interestingly, nine of these patients (34.6%) had a monoallelic pathogenic or likely pathogenic variant in a single primary candidate gene and one patient (3.9%) had a monoallelic pathogenic or likely pathogenic variant in two separate genes within the same pathway. The frequencies of the damaging variants within ETFDH and FAD transporter gene SLC25A32 were significantly higher than expected when compared to the corresponding allele frequencies in the general population. The remaining 16 patients (61.5%) had no pathogenic or likely pathogenic variants in the candidate genes. Ten (56%) of the 18 adult patients were taking the selective serotonin reuptake inhibitor antidepressant sertraline, which has been shown to produce a GAII phenotype, and another two adults (11%) were taking a serotonin-norepinephrine reuptake inhibitor antidepressant, venlafaxine or duloxetine, which have a mechanism of action overlapping that of sertraline. Riboflavin deficiency can also mimic both the clinical and biochemical phenotype of GAII. Several patients on these antidepressants showed an initial response to riboflavin but then that response waned. These results suggest that the GAII phenotype can result from a complex interaction between monoallelic variants and the cellular environment. Whole genome or targeted gene panel analysis may not provide a clear molecular diagnosis.
Collapse
Affiliation(s)
- Kalliope Demetriou
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Janelle Nisbet
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - David Coman
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Wesley Medical Centre, Auchenflower, QLD 4066, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Liza Phillips
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Sally Smith
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Michelle Lipke
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Anita Inwood
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Janette Spicer
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Catherine Atthow
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Urs Wilgen
- University of Queensland, St Lucia, QLD 4072, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Thomas Robertson
- University of Queensland, St Lucia, QLD 4072, Australia; Anatomical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Avis McWhinney
- Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Rebecca Swenson
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brayden Espley
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brianna Snowdon
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - James J McGill
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
23
|
Aguilar C, Williams D, Kurapati R, Bains RS, Mburu P, Parker A, Williams J, Concas D, Tateossian H, Haynes AR, Banks G, Vikhe P, Heise I, Hutchison M, Atkins G, Gillard S, Starbuck B, Oliveri S, Blake A, Sethi S, Kumar S, Bardhan T, Jeng JY, Johnson SL, Corns LF, Marcotti W, Simon M, Wells S, Potter PK, Lad HV. Pleiotropic brain function of whirlin identified by a novel mutation. iScience 2024; 27:110170. [PMID: 38974964 PMCID: PMC11225360 DOI: 10.1016/j.isci.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Despite some evidence indicating diverse roles of whirlin in neurons, the functional corollary of whirlin gene function and behavior has not been investigated or broadly characterized. A single nucleotide variant was identified from our recessive ENU-mutagenesis screen at a donor-splice site in whirlin, a protein critical for proper sensorineural hearing function. The mutation (head-bob, hb) led to partial intron-retention causing a frameshift and introducing a premature termination codon. Mutant mice had a head-bobbing phenotype and significant hyperactivity across several phenotyping tests. Lack of complementation of head-bob with whirler mutant mice confirmed the head-bob mutation as functionally distinct with compound mutants having a mild-moderate hearing defect. Utilizing transgenics, we demonstrate rescue of the hyperactive phenotype and combined with the expression profiling data conclude whirlin plays an essential role in activity-related behaviors. These results highlight a pleiotropic role of whirlin within the brain and implicate alternative, central mediated pathways in its function.
Collapse
Affiliation(s)
- Carlos Aguilar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Debbie Williams
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Ramakrishna Kurapati
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Rasneer S. Bains
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Philomena Mburu
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andy Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Jackie Williams
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Danilo Concas
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Hilda Tateossian
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andrew R. Haynes
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Gareth Banks
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Pratik Vikhe
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Ines Heise
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Marie Hutchison
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Gemma Atkins
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Simon Gillard
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Becky Starbuck
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Simona Oliveri
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andrew Blake
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Siddharth Sethi
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Saumya Kumar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Tanaya Bardhan
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Lara F. Corns
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Michelle Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Sara Wells
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Paul K. Potter
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Heena V. Lad
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| |
Collapse
|
24
|
Ullate-Agote A, Tzika AC. The dynamic behavior of chromatophores marks the transition from bands to spots in leopard geckos. Proc Natl Acad Sci U S A 2024; 121:e2400486121. [PMID: 38976731 PMCID: PMC11260152 DOI: 10.1073/pnas.2400486121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
Reptilian skin coloration is spectacular and diverse, yet little is known about the ontogenetic processes that govern its establishment and the molecular signaling pathways that determine it. Here, we focus on the development of the banded pattern of leopard gecko hatchlings and the transition to black spots in the adult. With our histological analyses, we show that iridophores are present in the white and yellow bands of the hatchling and they gradually perish in the adult skin. Furthermore, we demonstrate that melanophores can autonomously form spots in the absence of the other chromatophores both on the regenerated skin of the tail and on the dorsal skin of the Mack Super Snow (MSS) leopard geckos. This color morph is characterized by uniform black coloration in hatchlings and black spots in adulthood; we establish that their skin is devoid of xanthophores and iridophores at both stages. Our genetic analyses identified a 13-nucleotide deletion in the PAX7 transcription factor of MSS geckos, affecting its protein coding sequence. With our single-cell transcriptomics analysis of embryonic skin, we confirm that PAX7 is expressed in iridophores and xanthophores, suggesting that it plays a key role in the differentiation of both chromatophores. Our in situ hybridizations on whole-mount embryos document the dynamics of the skin pattern formation and how it is impacted in the PAX7 mutants. We hypothesize that the melanophores-iridophores interactions give rise to the banded pattern of the hatchlings and black spot formation is an intrinsic capacity of melanophores in the postembryonic skin.
Collapse
Affiliation(s)
- Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva1211, Switzerland
| | - Athanasia C. Tzika
- Laboratory of Artificial & Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva1211, Switzerland
| |
Collapse
|
25
|
Fraile A, Cebrián J, Thuissard-Vasallo I, Pérez-Martín S, Casado R, Gil-Fournier B, Alonso-Martín J, Tamargo J, Caballero R, Delpón E, Cosío FG. Coexistent HCN4 and GATA5 Rare Variants and Atrial Fibrillation in a Large Spanish Family. Can J Cardiol 2024; 40:1270-1280. [PMID: 38432398 DOI: 10.1016/j.cjca.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Familial association of atrial fibrillation (AF) can involve single gene variants related to known arrhythmogenic mechanisms; however, genome-wide association studies often disclose complex genetic variants in familial and nonfamilial AF, making it difficult to relate to known pathogenetic mechanisms. METHODS The finding of 4 siblings with AF led to studying 47 members of a family. Long-term Holter monitoring (average 298 hours) ruled out silent AF. Whole-exome sequencing was performed, and variants shared by the index cases were filtered and prioritised according to current recommendations. HCN4 currents (IHCN4) were recorded in Chinese hamster ovary cells expressing human p.P1163H or native HCN4 channels with the use of the patch-clamp technique, and topologically associating domain analyses of GATA5 variant were performed. RESULTS The clinical study diagnosed 2 more AF cases. Five family members carried the heterozygous p.P1163H HCN4 variant, 14 carried the intronic 20,61040536,G,A GATA5 rare variant, and 9 carried both variants (HCN4+GATA5). Five of the 6 AF cases (onset age ranging from 33 to 70 years) carried both variants and 1 carried the GATA5 variant alone. Multivariate analysis showed that the presence of HCN4+GATA5 variants significantly increased AF risk (odds ratio 32.7, 95% confidence interval 1.8-591.4) independently from age, hypertension, and overweight. Functional testing showed that IHCN4 generated by heterozygous p.P1163H were normal. Topologically associating domain analysis suggested that GATA5 could affect the expression of many genes, including those encoding microRNA-1. CONCLUSION The coincidence of 2 rare gene variants was independently associated with AF, but functional studies do not allow the postulation of the arrhythmogenic mechanisms involved.
Collapse
Affiliation(s)
- Alfonso Fraile
- Cardiology Department, Hospital Universitario de Getafe, Getafe, Spain.
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Centro de Investigación Biomédica en Red (CIBERCV), Madrid, Spain
| | | | - Sara Pérez-Martín
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Centro de Investigación Biomédica en Red (CIBERCV), Madrid, Spain
| | - Raquel Casado
- Cardiology Department, Hospital Universitario de Getafe, Getafe, Spain
| | | | | | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Centro de Investigación Biomédica en Red (CIBERCV), Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Centro de Investigación Biomédica en Red (CIBERCV), Madrid, Spain.
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Centro de Investigación Biomédica en Red (CIBERCV), Madrid, Spain
| | - Francisco G Cosío
- Department of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Sang A, Zhuo S, Bochanis A, Manautou JE, Bahal R, Zhong XB, Rasmussen TP. Mechanisms of Action of the US Food and Drug Administration-Approved Antisense Oligonucleotide Drugs. BioDrugs 2024; 38:511-526. [PMID: 38914784 DOI: 10.1007/s40259-024-00665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
Antisense oligonucleotides (ASOs) are single stranded nucleic acids that target RNA. The US Food and Drug Administration has approved ASOs for several diseases. ASOs utilize three principal modes of action (MOA). The first MOA is initiated by base-pairing between the ASO and its target mRNA, followed by RNase H-dependent mRNA degradation. The second MOA is triggered by ASOs that occlude splice acceptor sites in pre-mRNAs leading to skipping of a mutation-bearing exon. The third MOA involves ASOs that sterically hinder mRNA function, often inhibiting translation. ASOs contain a variety of modifications to the sugar-phosphate backbone and bases that stabilize the ASO or render them resistant to RNase activity. RNase H-dependent ASOs include inotersen and eplontersen (for hereditary transthyretin amyloidosis), fomiversen (for opportunistic cytomegalovirus infection), mipomersen (for familial hypercholesterolemia), and tofersen [for amyotrophic lateral sclerosis (ALS)]. Splice modulating ASOs include nursinersen (for spinal muscular atrophy) and eteplirsen, golodirsen, viltolarsen, and casimersen (all for the treatment of Duchenne muscular dystrophy). In addition, a designer ASO, milasen, was used to treat a single individual afflicted with Batten disease. Since ASO design relies principally upon knowledge of mRNA sequence, the bench to bedside pipeline for ASOs is expedient compared with protein-directed drugs. [Graphical abstract available.].
Collapse
Affiliation(s)
- Angela Sang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Selena Zhuo
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Adara Bochanis
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
27
|
Chen Y, Fu Y, Koczkowska M, Callens T, Gomes A, Liu J, Bradley W, Brown B, Shaw B, D’Agostino D, Fu C, Wallis D. Genotype-Phenotype Correlation in Neurofibromatosis Type 1: Evidence for a Mild Phenotype Associated with Splicing Variants Leading to In-Frame Skipping of NF1 Exon 24 [19a]. Cancers (Basel) 2024; 16:2406. [PMID: 39001468 PMCID: PMC11240586 DOI: 10.3390/cancers16132406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant neurocutaneous disorder caused by loss-of-function variants in the NF1 gene. As of 20 November 2023, over 5000 distinct pathogenic or likely pathogenic variants have been reported in public databases. However, only a few NF1 genotype-phenotype correlations have been established so far. In this study, we present findings on 40 individuals with NF1, comprising 26 unrelated probands and 14 affected relatives, who carry one of nine NF1 heterozygous pathogenic splicing variants, all of which result in the in-frame skipping of exon 24 [19a] (NM_000267.3:r.3114_3197del, p.Asn1039_Arg1066del). These variants include c.3114-2A>G, c.3114-1G>A, c.3196A>G, c.3197G>A, c.3197G>T, c.3197+1G>A, c.3197+1G>T, c.3197+2T>C, and c.3197+3A>T. Among individuals with these variants, none exhibit externally visible plexiform neurofibromas, histopathologically confirmed cutaneous or subcutaneous neurofibromas, symptomatic spinal neurofibromas, or symptomatic optic pathway gliomas. The most prevalent, and sometimes sole, clinical feature observed in this cohort is multiple café-au-lait macules, with or without skinfold freckles: 85% and 60.5% of the individuals display six or more café-au-lait macules and freckles, respectively. In comparison to established NF1 genotype-phenotype correlations, these patients demonstrate highly similar clinical presentations to those associated with the NF1 pathogenic variant c.2970_2972del (p.Met992del), known for resulting in the mildest clinical features. Despite the generally mild phenotype, cognitive impairment, developmental delay, and/or learning difficulties are still observed in 33.3% of these patients, suggesting that learning challenges remain a prominent aspect of the phenotypic presentation in these individuals and necessitate specialized care. This newly established genotype-phenotype correlation will assist clinicians in improving the management of patients harboring NF1 exon 24 [19a] skipping variants and provide a new therapeutic target for NF1 treatment.
Collapse
Affiliation(s)
- Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Yulong Fu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Magdalena Koczkowska
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
- 3P-Medicine Laboratory, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Tom Callens
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Alicia Gomes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Jian Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - William Bradley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Bryce Brown
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Brandon Shaw
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Daniela D’Agostino
- Division of Medical Genetics, Departments of Medicine and Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Chuanhua Fu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.K.); (T.C.); (A.G.); (J.L.); (W.B.); (B.B.); (B.S.); (C.F.); (D.W.)
| |
Collapse
|
28
|
Wang Y, Niu W, Shi H, Bao X, Liu Y, Lu M, Sun Y. A novel variation in DEPDC5 causing familial focal epilepsy with variable foci. Front Genet 2024; 15:1414259. [PMID: 38974383 PMCID: PMC11227254 DOI: 10.3389/fgene.2024.1414259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Background Disheveled, EGL-10, and pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a component of GTPase-activating protein (GAP) activity toward the RAG complex 1 (GATOR1) protein, which is an inhibitor of the amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. GATOR1 complex variations were reported to correlate with familial focal epilepsy with variable foci (FFEVF). With the wide application of whole exome sequencing (WES), more and more variations in DEPDC5 were uncovered in FFEVF families. Methods A family with a proband diagnosed with familial focal epilepsy with variable foci (FFEVF) was involved in this study. Whole exome sequencing (WES) was performed in the proband, and Sanger sequencing was used to confirm the variation carrying status of the family members. Mini-gene splicing assay was performed to validate the effect on the alternative splicing of the variation. Results A novel variant, c.1217 + 2T>A, in DEPDC5 was identified by WES in the proband. This splicing variant that occurred at the 5' end of intron 17 was confirmed by mini-gene splicing assays, which impacted alternative splicing and led to the inclusion of an intron fragment. The analysis of the transcribed mRNA sequence indicates that the translation of the protein is terminated prematurely, which is very likely to result in the loss of function of the protein and lead to the occurrence of FFEVF. Conclusion The results suggest that c.1217 + 2T>A variations in DEPDC5 might be the genetic etiology for FFEVF in this pedigree. This finding expands the genotype spectrum of FFEVF and provides new etiological information for FFEVF.
Collapse
Affiliation(s)
- Yanchi Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Bao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yidong Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Manman Lu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Huang AC, Su JY, Hung YJ, Chiang HL, Chen YT, Huang YT, Yu CHA, Lin HN, Lin CL. SpliceAPP: an interactive web server to predict splicing errors arising from human mutations. BMC Genomics 2024; 25:600. [PMID: 38877417 PMCID: PMC11179192 DOI: 10.1186/s12864-024-10512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Splicing variants are a major class of pathogenic mutations, with their severity equivalent to nonsense mutations. However, redundant and degenerate splicing signals hinder functional assessments of sequence variations within introns, particularly at branch sites. We have established a massively parallel splicing assay to assess the impact on splicing of 11,191 disease-relevant variants. Based on the experimental results, we then applied regression-based methods to identify factors determining splicing decisions and their respective weights. RESULTS Our statistical modeling is highly sensitive, accurately annotating the splicing defects of near-exon intronic variants, outperforming state-of-the-art predictive tools. We have incorporated the algorithm and branchpoint information into a web-based tool, SpliceAPP, to provide an interactive application. This user-friendly website allows users to upload any genetic variants with genome coordinates (e.g., chr15 74,687,208 A G), and the tool will output predictions for splicing error scores and evaluate the impact on nearby splice sites. Additionally, users can query branch site information within the region of interest. CONCLUSIONS In summary, SpliceAPP represents a pioneering approach to screening pathogenic intronic variants, contributing to the development of precision medicine. It also facilitates the annotation of splicing motifs. SpliceAPP is freely accessible using the link https://bc.imb.sinica.edu.tw/SpliceAPP . Source code can be downloaded at https://github.com/hsinnan75/SpliceAPP .
Collapse
Affiliation(s)
- Ang-Chu Huang
- Institute of Molecular Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nangang District, Taipei City, 115014, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Jia-Ying Su
- Institute of Molecular Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nangang District, Taipei City, 115014, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jen Hung
- Institute of Molecular Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nangang District, Taipei City, 115014, Taiwan
| | - Hung-Lun Chiang
- Institute of Molecular Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nangang District, Taipei City, 115014, Taiwan
| | - Yi-Ting Chen
- Institute of Molecular Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nangang District, Taipei City, 115014, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Chen-Hsin Albert Yu
- Institute of Molecular Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nangang District, Taipei City, 115014, Taiwan
| | - Hsin-Nan Lin
- Institute of Molecular Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nangang District, Taipei City, 115014, Taiwan.
| | - Chien-Ling Lin
- Institute of Molecular Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nangang District, Taipei City, 115014, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.
- Bioinformatics Program, International Graduate Program, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
30
|
Parsons BL, Beal MA, Dearfield KL, Douglas GR, Gi M, Gollapudi BB, Heflich RH, Horibata K, Kenyon M, Long AS, Lovell DP, Lynch AM, Myers MB, Pfuhler S, Vespa A, Zeller A, Johnson GE, White PA. Severity of effect considerations regarding the use of mutation as a toxicological endpoint for risk assessment: A report from the 8th International Workshop on Genotoxicity Testing (IWGT). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 38828778 DOI: 10.1002/em.22599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.
Collapse
Affiliation(s)
- Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kerry L Dearfield
- U.S. Environmental Protection Agency and U.S. Department of Agriculture, Washington, DC, USA
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Min Gi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | | | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Michelle Kenyon
- Portfolio and Regulatory Strategy, Drug Safety Research and Development, Pfizer, Groton, Connecticut, USA
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- Population Health Research Institute, St George's Medical School, University of London, London, UK
| | | | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Alisa Vespa
- Pharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George E Johnson
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
D'Incal CP, Annear DJ, Elinck E, van der Smagt JJ, Alders M, Dingemans AJM, Mateiu L, de Vries BBA, Vanden Berghe W, Kooy RF. Loss-of-function of activity-dependent neuroprotective protein (ADNP) by a splice-acceptor site mutation causes Helsmoortel-Van der Aa syndrome. Eur J Hum Genet 2024; 32:630-638. [PMID: 38424297 PMCID: PMC11153555 DOI: 10.1038/s41431-024-01556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in ADNP result in Helsmoortel-Van der Aa syndrome. Here, we describe the first de novo intronic deletion, affecting the splice-acceptor site of the first coding ADNP exon in a five-year-old girl with developmental delay and autism. Whereas exome sequencing failed to detect the non-coding deletion, genome-wide CpG methylation analysis revealed an episignature suggestive of a Helsmoortel-Van der Aa syndrome diagnosis. This diagnosis was further supported by PhenoScore, a novel facial recognition software package. Subsequent whole-genome sequencing resolved the three-base pair ADNP deletion c.[-5-1_-4del] with transcriptome sequencing showing this deletion leads to skipping of exon 4. An N-terminal truncated protein could not be detected in transfection experiments with a mutant expression vector in HEK293T cells, strongly suggesting this is a first confirmed diagnosis exclusively due to haploinsufficiency of the ADNP gene. Pathway analysis of the methylome indicated differentially methylated genes involved in brain development, the cytoskeleton, locomotion, behavior, and muscle development. Along the same line, transcriptome analysis identified most of the differentially expressed genes as upregulated, in line with the hypomethylated CpG episignature and confirmed the involvement of the cytoskeleton and muscle development pathways that are also affected in patient cell lines and animal models. In conclusion, this novel mutation for the first time demonstrates that Helsmoortel-Van der Aa syndrome can be caused by a loss-of-function mutation. Moreover, our study elegantly illustrates the use of EpiSignatures, WGS and Phenoscore as novel complementary diagnostic tools in case a of negative WES result.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Cognitive Genetics (CONGET), Centre for Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium Department of Medical Genetics, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Dale John Annear
- Cognitive Genetics (CONGET), Centre for Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium Department of Medical Genetics, Antwerp, Belgium
| | - Ellen Elinck
- Cognitive Genetics (CONGET), Centre for Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium Department of Medical Genetics, Antwerp, Belgium
| | - Jasper J van der Smagt
- Division of Laboratories, Pharmacy and Biomedical Genetics, Section Clinical Genetics, University Medical Center Utrecht, the Netherlands and Rijksuniversiteit Utrecht, Utrecht, the Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Ligia Mateiu
- Cognitive Genetics (CONGET), Centre for Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium Department of Medical Genetics, Antwerp, Belgium
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - R Frank Kooy
- Cognitive Genetics (CONGET), Centre for Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium Department of Medical Genetics, Antwerp, Belgium.
| |
Collapse
|
32
|
Polavarapu K, O'Neil D, Thompson R, Spendiff S, Nandeesh B, Vengalil S, Huddar A, Baskar D, Arunachal G, Kotambail A, Bhatia S, Tumulu SK, Matalonga L, Töpf A, Laurie S, Zeldin J, Nashi S, Unnikrishnan G, Nalini A, Lochmüller H. Partial loss of desmin expression due to a leaky splice site variant in the human DES gene is associated with neuromuscular transmission defects. Neuromuscul Disord 2024; 39:10-18. [PMID: 38669730 DOI: 10.1016/j.nmd.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Recessive desminopathies are rare and often present as severe early-onset myopathy. Here we report a milder phenotype in three unrelated patients from southern India (2 M, 1F) aged 16, 21, and 22 years, who presented with childhood-onset, gradually progressive, fatigable limb-girdle weakness, ptosis, speech and swallowing difficulties, without cardiac involvement. Serum creatine kinase was elevated, and repetitive nerve stimulation showed decrement in all. Clinical improvement was noted with pyridostigmine and salbutamol in two patients. All three patients had a homozygous substitution in intron 5: DES(NM_001927.4):c.1023+5G>A, predicted to cause a donor splice site defect. Muscle biopsy with ultrastructural analysis suggested myopathy with myofibrillar disarray, and immunohistochemistry showed partial loss of desmin with some residual staining, while western blot analysis showed reduced desmin. RT-PCR of patient muscle RNA revealed two transcripts: a reduced normal desmin transcript and a larger abnormal transcript suggesting leaky splicing at the intron 5 donor site. Sequencing of the PCR products confirmed the inclusion of intron 5 in the longer transcript, predicted to cause a premature stop codon. Thus, we provide evidence for a leaky splice site causing partial loss of desmin associated with a unique phenotypic presentation of a milder form of desmin-related recessive myopathy overlapping with congenital myasthenic syndrome.
Collapse
Affiliation(s)
- Kiran Polavarapu
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Daniel O'Neil
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Rachel Thompson
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Sally Spendiff
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Bevinahalli Nandeesh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Dipti Baskar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Saloni Bhatia
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Seetam Kumar Tumulu
- Department of Neuroradiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Leslie Matalonga
- Centro Nacional de Análisis Genómico, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Steven Laurie
- Centro Nacional de Análisis Genómico, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Joshua Zeldin
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| | - Hanns Lochmüller
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada; Centro Nacional de Análisis Genómico, Baldiri Reixac 4, Barcelona 08028, Spain; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada; Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| |
Collapse
|
33
|
Huang M, Liu YU, Yao X, Qin D, Su H. Variability in SOD1-associated amyotrophic lateral sclerosis: geographic patterns, clinical heterogeneity, molecular alterations, and therapeutic implications. Transl Neurodegener 2024; 13:28. [PMID: 38811997 PMCID: PMC11138100 DOI: 10.1186/s40035-024-00416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons, resulting in global health burden and limited post-diagnosis life expectancy. Although primarily sporadic, familial ALS (fALS) cases suggest a genetic basis. This review focuses on SOD1, the first gene found to be associated with fALS, which has been more recently confirmed by genome sequencing. While informative, databases such as ALSoD and STRENGTH exhibit regional biases. Through a systematic global examination of SOD1 mutations from 1993 to 2023, we found different geographic distributions and clinical presentations. Even though different SOD1 variants are expressed at different protein levels and have different half-lives and dismutase activities, these alterations lead to loss of function that is not consistently correlated with disease severity. Gain of function of toxic aggregates of SOD1 resulting from mutated SOD1 has emerged as one of the key contributors to ALS. Therapeutic interventions specifically targeting toxic gain of function of mutant SOD1, including RNA interference and antibodies, show promise, but a cure remains elusive. This review provides a comprehensive perspective on SOD1-associated ALS and describes molecular features and the complex genetic landscape of SOD1, highlighting its importance in determining diverse clinical manifestations observed in ALS patients and emphasizing the need for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Miaodan Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Yong U Liu
- Laboratory for Neuroimmunology in Health and Diseases, Guangzhou First People's Hospital School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
34
|
Fichna JP, Chiliński M, Halder AK, Cięszczyk P, Plewczynski D, Żekanowski C, Janik P. Structural Variants and Implicated Processes Associated with Familial Tourette Syndrome. Int J Mol Sci 2024; 25:5758. [PMID: 38891944 PMCID: PMC11171586 DOI: 10.3390/ijms25115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental psychiatric disorder with complex and elusive etiology with a significant role of genetic factors. The aim of this study was to identify structural variants that could be associated with familial GTS. The study group comprised 17 multiplex families with 80 patients. Structural variants were identified from whole-genome sequencing data and followed by co-segregation and bioinformatic analyses. The localization of these variants was used to select candidate genes and create gene sets, which were subsequently processed in gene ontology and pathway enrichment analysis. Seventy putative pathogenic variants shared among affected individuals within one family but not present in the control group were identified. Only four private or rare deletions were exonic in LDLRAD4, B2M, USH2A, and ZNF765 genes. Notably, the USH2A gene is involved in cochlear development and sensory perception of sound, a process that was associated previously with familial GTS. In addition, two rare variants and three not present in the control group were co-segregating with the disease in two families, and uncommon insertions in GOLM1 and DISC1 were co-segregating in three families each. Enrichment analysis showed that identified structural variants affected synaptic vesicle endocytosis, cell leading-edge organization, and signaling for neurite outgrowth. The results further support the involvement of the regulation of neurotransmission, neuronal migration, and sound-sensing in GTS.
Collapse
Affiliation(s)
- Jakub P. Fichna
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Mateusz Chiliński
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anup Kumar Halder
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland;
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Cezary Żekanowski
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland;
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
35
|
Al-Saei O, Malka S, Owen N, Aliyev E, Vempalli FR, Ocieczek P, Al-Khathlan B, Fakhro K, Moosajee M. Increasing the diagnostic yield of childhood glaucoma cases recruited into the 100,000 Genomes Project. BMC Genomics 2024; 25:484. [PMID: 38755526 PMCID: PMC11097485 DOI: 10.1186/s12864-024-10353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved (13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma (PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger structural variants, CNVs, and non-coding variants.
Collapse
Affiliation(s)
- Omayma Al-Saei
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Samantha Malka
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | - Paulina Ocieczek
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | | | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
- The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
36
|
Wickland DP, McNinch C, Jessen E, Necela B, Shreeder B, Lin Y, Knutson KL, Asmann YW. Comprehensive profiling of cancer neoantigens from aberrant RNA splicing. J Immunother Cancer 2024; 12:e008988. [PMID: 38754917 PMCID: PMC11097882 DOI: 10.1136/jitc-2024-008988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Cancer neoantigens arise from protein-altering somatic mutations in tumor and rank among the most promising next-generation immuno-oncology agents when used in combination with immune checkpoint inhibitors. We previously developed a computational framework, REAL-neo, for identification, quality control, and prioritization of both class-I and class-II human leucocyte antigen (HLA)-presented neoantigens resulting from somatic single-nucleotide mutations, small insertions and deletions, and gene fusions. In this study, we developed a new module, SPLICE-neo, to identify neoantigens from aberrant RNA transcripts from two distinct sources: (1) DNA mutations within splice sites and (2) de novo RNA aberrant splicings. METHODS First, SPLICE-neo was used to profile all DNA splice-site mutations in 11,892 tumors from The Cancer Genome Atlas (TCGA) and identified 11 profiles of splicing donor or acceptor site gains or losses. Transcript isoforms resulting from the top seven most frequent profiles were computed using novel logic models. Second, SPLICE-neo identified de novo RNA splicing events using RNA sequencing reads mapped to novel exon junctions from either single, double, or multiple exon-skipping events. The aberrant transcripts from both sources were then ranked based on isoform expression levels and z-scores assuming that individual aberrant splicing events are rare. Finally, top-ranked novel isoforms were translated into protein, and the resulting neoepitopes were evaluated for neoantigen potential using REAL-neo. The top splicing neoantigen candidates binding to HLA-A*02:01 were validated using in vitro T2 binding assays. RESULTS We identified abundant splicing neoantigens in four representative TCGA cancers: BRCA, LUAD, LUSC, and LIHC. In addition to their substantial contribution to neoantigen load, several splicing neoantigens were potent tumor antigens with stronger bindings to HLA compared with the positive control of antigens from influenza virus. CONCLUSIONS SPLICE-neo is the first tool to comprehensively identify and prioritize splicing neoantigens from both DNA splice-site mutations and de novo RNA aberrant splicings. There are two major advances of SPLICE-neo. First, we developed novel logic models that assemble and prioritize full-length aberrant transcripts from DNA splice-site mutations. Second, SPLICE-neo can identify exon-skipping events involving more than two exons, which account for a quarter to one-third of all skipping events.
Collapse
Affiliation(s)
- Daniel P Wickland
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - Colton McNinch
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Erik Jessen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Brian Necela
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| | - Barath Shreeder
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yi Lin
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
37
|
Riccio C, Jansen ML, Guo L, Ziegler A. Variant effect predictors: a systematic review and practical guide. Hum Genet 2024; 143:625-634. [PMID: 38573379 PMCID: PMC11098935 DOI: 10.1007/s00439-024-02670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Large-scale association analyses using whole-genome sequence data have become feasible, but understanding the functional impacts of these associations remains challenging. Although many tools are available to predict the functional impacts of genetic variants, it is unclear which tool should be used in practice. This work provides a practical guide to assist in selecting appropriate tools for variant annotation. We conducted a MEDLINE search up to November 10, 2023, and included tools that are applicable to a broad range of phenotypes, can be used locally, and have been recently updated. Tools were categorized based on the types of variants they accept and the functional impacts they predict. Sequence Ontology terms were used for standardization. We identified 118 databases and software packages, encompassing 36 variant types and 161 functional impacts. Combining only three tools, namely SnpEff, FAVOR, and SparkINFERNO, allows predicting 99 (61%) distinct functional impacts. Thirty-seven tools predict 89 functional impacts that are not supported by any other tool, while 75 tools predict pathogenicity and can be used within the ACMG/AMP guidelines in a clinical context. We launched a website allowing researchers to select tools based on desired variants and impacts. In summary, more than 100 tools are already available to predict approximately 160 functional impacts. About 60% of the functional impacts can be predicted by the combination of three tools. Unexpectedly, recent tools do not predict more impacts than older ones. Future research should allow predicting the functionality of so far unsupported variant types, such as gene fusions.URL: https://cardio-care.shinyapps.io/VEP_Finder/ .Registration: OSF Registries on November 10, 2023, https://osf.io/s2gct .
Collapse
Affiliation(s)
- Cristian Riccio
- Cardio-CARE, Medizincampus Davos, Herman-Burchard-Str. 1, Davos Wolfgang, 7265, Davos, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Max L Jansen
- Cardio-CARE, Medizincampus Davos, Herman-Burchard-Str. 1, Davos Wolfgang, 7265, Davos, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Linlin Guo
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- University Center of Cardiovascular Science & Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Ziegler
- Cardio-CARE, Medizincampus Davos, Herman-Burchard-Str. 1, Davos Wolfgang, 7265, Davos, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- University Center of Cardiovascular Science & Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
38
|
Mochizuki A, Nishida H, Kaimori R, Kondo Y, Kadowaki H, Kusaba T, Kawamura K, Osoegawa A, Sugio K, Daa T. Clinical characteristics, proteins, and genes related to interstitial pneumonia-associated squamous cell carcinoma of the lungs. Pathol Res Pract 2024; 257:155292. [PMID: 38657559 DOI: 10.1016/j.prp.2024.155292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
Squamous cell carcinoma (SCC) is a common histological type of lung carcinoma that is associated with interstitial pneumonia (IP). We hypothesized that identifying specific genetic alterations or molecular markers of SCC with IP may aid the development of novel therapeutic strategies for the same. Therefore, in the present study, we aimed to identify tumorigenic genetic alterations and molecular markers in cases of SCC with IP. We included 28 lung SCC cases (14 cases with IP and 14 cases without IP). We performed immunohistochemistry for STAT3, STAT5, and TLE1, and next-generation sequencing was performed using an iSeq 100 system. The panel used in this study targeted 50 cancer-associated genes. Immunohistochemically, the rate of TLE1 positivity was higher in the SCC without IP group (93 %) than in the SCC with IP group (29 %), while that of STAT5 was higher in the SCC with IP group (79 %) than in the SCC without IP group (14 %). STAT3 expression was high in both the groups (SCC with IP, 64 %; SCC without IP, 71 %). Eighteen genes were mutated in more than six samples, and FBXW7 mutation was mainly observed in the SCC with IP group (p < 0.01). Mechanisms underlying tumorigenesis in SCC with IP included STAT5 activation via inflammation, while that in SCC without IP included squamous TLE1-mediated metaplasia. These findings are based on smoking-induced STAT3 activation; therefore, patients with IP who smoke are more likely to have progressive SCC. We also found that FBXW7 mutations may be associated with SCC with IP and keratinization. ERBB4 and KDR mutations were observed in both with or without IP, and these genes may be tumor-related genes in SCC. These molecular markers may help determine the prognoses of patients with SCC with IP and direct the development of treatment approaches.
Collapse
Affiliation(s)
- Akiko Mochizuki
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| | - Haruto Nishida
- Departments of Diagnostic Pathology, Oita University, Oita, Japan.
| | - Ryo Kaimori
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| | - Yoshihiko Kondo
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| | - Hiroko Kadowaki
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| | - Takahiro Kusaba
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| | | | | | - Kenji Sugio
- Thoracic and Breast Surgery, Oita University, Oita, Japan
| | - Tsutomu Daa
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| |
Collapse
|
39
|
Lee H, Ozbulak U, Park H, Depuydt S, De Neve W, Vankerschaver J. Assessing the reliability of point mutation as data augmentation for deep learning with genomic data. BMC Bioinformatics 2024; 25:170. [PMID: 38689247 PMCID: PMC11059627 DOI: 10.1186/s12859-024-05787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Deep neural networks (DNNs) have the potential to revolutionize our understanding and treatment of genetic diseases. An inherent limitation of deep neural networks, however, is their high demand for data during training. To overcome this challenge, other fields, such as computer vision, use various data augmentation techniques to artificially increase the available training data for DNNs. Unfortunately, most data augmentation techniques used in other domains do not transfer well to genomic data. RESULTS Most genomic data possesses peculiar properties and data augmentations may significantly alter the intrinsic properties of the data. In this work, we propose a novel data augmentation technique for genomic data inspired by biology: point mutations. By employing point mutations as substitutes for codons, we demonstrate that our newly proposed data augmentation technique enhances the performance of DNNs across various genomic tasks that involve coding regions, such as translation initiation and splice site detection. CONCLUSION Silent and missense mutations are found to positively influence effectiveness, while nonsense mutations and random mutations in non-coding regions generally lead to degradation. Overall, point mutation-based augmentations in genomic datasets present valuable opportunities for improving the accuracy and reliability of predictive models for DNA sequences.
Collapse
Affiliation(s)
| | - Utku Ozbulak
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
| | - Homin Park
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
- IDLab, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Stephen Depuydt
- Erasmus Brussels University of Applied Sciences and Arts, Brussels, Belgium
| | - Wesley De Neve
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
- IDLab, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Joris Vankerschaver
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea.
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.
| |
Collapse
|
40
|
Zhang Y, Sun M, Li N, Zhao Y, Zhang F, Shu J, Liu Y, Cai C. Identification of a novel intronic variant of ATP6V0A2 in a Han-Chinese family with cutis laxa. Mol Biol Rep 2024; 51:498. [PMID: 38598037 DOI: 10.1007/s11033-024-09446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Cutis laxa is a connective tissue disease caused by abnormal synthesis or secretion of skin elastic fibers, leading to skin flabby and saggy in various body parts. It can be divided into congenital cutis laxa and acquired cutis laxa, and inherited cutis laxa syndromes is more common in clinic. METHODS In this study, we reported a case of a Han-Chinese male newborn with ATP6V0A2 gene variant leading to cutis laxa. The proband was identified by whole-exome sequencing to determine the novel variant, and their parents were verified by Sanger sequencing. Bioinformatics analysis and minigene assay were used to verify the effect of this variant on splicing function. RESULTS The main manifestations of the proband are skin laxity, abnormal facial features, and enlargement of the anterior fontanelle. Whole-exome sequencing showed that the newborn carried a non-canonical splicing-site variant c.117 + 5G > T, p. (?) in ATP6V0A2 gene. Sanger sequencing showed that both parents of the proband carried the heterozygous variant. The results of bioinformatics analysis and minigene assay displayed that the variant site affected the splicing function of pre-mRNA of the ATP6V0A2 gene. CONCLUSIONS In this study, it was identified that ATP6V0A2 gene c. 117 + 5G > T may be the cause of the disease. The non-canonical splicing variants of ATP6V0A2 gene were rarely reported in the past, and this variant expanded the variants spectrum of the gene. The functional study of minigene assay plays a certain role in improving the level of evidence for the pathogenicity of splicing variants, which lays a foundation for prenatal counseling and follow-up gene therapy.
Collapse
Affiliation(s)
- Ying Zhang
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Mei Sun
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Na Li
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Department of Neonatology, Tianjin Children's Hospital (Children's Hospital of Tianjin University, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Yiran Zhao
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Maternal and Child Health Hospital of Tangshan, No. 14 Jianshe south Road, Lu nan District, Tangshan City, Hebei Province, 063000, China
| | - Fang Zhang
- Department of Neonatology, Tianjin Children's Hospital (Children's Hospital of Tianjin University, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Jianbo Shu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| | - Yang Liu
- Department of Neonatology, Tianjin Children's Hospital (Children's Hospital of Tianjin University, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| |
Collapse
|
41
|
Ma S, Howden SA, Keane SC. Use of steric blocking antisense oligonucleotides for the targeted inhibition of junction containing precursor microRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588531. [PMID: 38645194 PMCID: PMC11030329 DOI: 10.1101/2024.04.08.588531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Antisense oligonucleotides (ASOs) are widely used as therapeutics for neurodegenerative diseases, cancers, and virus infections. One class of ASOs functions to enhance protein expression by sequestering the mature microRNA (miRNA) in a double-stranded structure within the RNA-induced silencing complex (RISC). An alternative approach for the targeted control of gene expression is to use ASOs that bind to the pre-elements of miRNAs (pre-miRNAs) and modulate their enzymatic processing. Here, we demonstrate that ASOs can be used to disrupt a specific structural feature, "junction," within pre-miR-31 that is important in directing efficient processing by the Dicer/TRBP complex. Furthermore, we extend and validate this strategy to pre-miR-144, which has a similar junction-dependent structure-function relationship. We found that a significant number of human pre-miRNAs are predicted to contain junctions, and validated our ASO approach on several members of this group. Importantly, we also verified the application of junction-targeting ASOs for the specific inhibition of pre-miRNA processing in cell. Our study reemphasizes the important roles of RNA structure in regulating Dicer/TRBP processing of pre-miRNAs and provides the framework to develop structure-informed ASOs that serve to inhibit miRNA production.
Collapse
Affiliation(s)
- Sicong Ma
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sarah C. Keane
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
42
|
Wang Y, Zhai Y, Zhang M, Song C, Zhang Y, Zhang G. Escaping from CRISPR-Cas-mediated knockout: the facts, mechanisms, and applications. Cell Mol Biol Lett 2024; 29:48. [PMID: 38589794 PMCID: PMC11003099 DOI: 10.1186/s11658-024-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats and associated Cas protein (CRISPR-Cas), a powerful genome editing tool, has revolutionized gene function investigation and exhibits huge potential for clinical applications. CRISPR-Cas-mediated gene knockout has already become a routine method in research laboratories. However, in the last few years, accumulating evidences have demonstrated that genes knocked out by CRISPR-Cas may not be truly silenced. Functional residual proteins could be generated in such knockout organisms to compensate the putative loss of function, termed herein knockout escaping. In line with this, several CRISPR-Cas-mediated knockout screenings have discovered much less abnormal phenotypes than expected. How does knockout escaping happen and how often does it happen have not been systematically reviewed yet. Without knowing this, knockout results could easily be misinterpreted. In this review, we summarize these evidences and propose two main mechanisms allowing knockout escaping. To avoid the confusion caused by knockout escaping, several strategies are discussed as well as their advantages and disadvantages. On the other hand, knockout escaping also provides convenient tools for studying essential genes and treating monogenic disorders such as Duchenne muscular dystrophy, which are discussed in the end.
Collapse
Affiliation(s)
- Ying Wang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Yujing Zhai
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Mingzhe Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
43
|
Su Y, Wei L, Wang L, Xu P, Mo M. Splicing mutations of GALC in adult patient with adult-onset Krabbe disease: case report and review of literature. Neurocase 2024; 30:63-67. [PMID: 38762762 DOI: 10.1080/13554794.2024.2354541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Krabbe disease (KD) is classed as the lysosomal storage disease with mutations in the galactosylceramidase (GALC) gene, and commonly showed as autosomal recessive pattern with 30-kb deletion in infantile subtype. In this case, we report a 39-years adult-onset KD (AOKD) patient with multiple sclerosis-like symptoms and neuroimaging changes. She carries the heterozygous mutations in GALC included a missense mutation of c.1901T>C from her mother, and a splicing mutation of c.908+5G>A from her father. The splicing mutations in KD are reviewed and confirmed that c.908+5G>A is a novel splicing mutation in AOKD.
Collapse
Affiliation(s)
- Yilin Su
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lan Wang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
da Fontoura Galvão G, da Silva EV, Trefilio LM, Alves-Leon SV, Fontes-Dantas FL, de Souza JM. Comprehensive CCM3 Mutational Analysis in Two Patients with Syndromic Cerebral Cavernous Malformation. Transl Stroke Res 2024; 15:411-421. [PMID: 36723700 DOI: 10.1007/s12975-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
Cerebral cavernous malformation (CCM) is a vascular disease that affects the central nervous system, which familial form is due to autosomal dominant mutations in the genes KRIT1(CCM1), MGC4607(CCM2), and PDCD10(CCM3). Patients affected by the PDCD10 mutations usually have the onset of symptoms at an early age and a more aggressive phenotype. The aim of this study is to investigate the molecular mechanism involved with CCM3 disease pathogenesis. Herein, we report two typical cases of CCM3 phenotype and compare the clinical and neuroradiological findings with five patients with a familial form of KRIT1 or CCM2 mutations and six patients with a sporadic form. In addition, we evaluated the PDCD10 gene expression by qPCR and developed a bioinformatic pipeline to understand the structural changes of mutations. The two CCM3 patients had an early onset of symptoms and a high lesion burden. Furthermore, the sequencing showed that Patient 1 had a frameshift mutation in c.222delT; p.(Asn75Thrfs*14) that leads to lacking the last 124 C-terminal amino acids on its primary structure and Patient 2 had a variant on the splicing site region c.475-2A > G. The mRNA expression was fourfold lower in both patients with PDCD10 mutation. Using in silico analysis, we identify that the frameshift mutation transcript lacks the C-terminal FAT-homology domain compared to the wild-type PDCD10 and preserves the N-terminal dimerization domain. The two patients studied here allow estimating the potential impact of mutations in clinical interpretation as well as support to better understand the mechanism and pathogenesis of CCM3.
Collapse
Affiliation(s)
- Gustavo da Fontoura Galvão
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
- Departamento de Neurocirurgia, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
| | - Elielson Veloso da Silva
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
- Programa de Pós-Graduação Em Neurologia E Neurociências, Universidade Federal Fluminense, Rio de Janeiro RJ, Brazil
| | - Luisa Menezes Trefilio
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
| | - Soniza Vieira Alves-Leon
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
- Departamento de Neurologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro RJ, Brazil
| | - Fabrícia Lima Fontes-Dantas
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil.
- Departamento de Farmacologia E Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual Do Rio de Janeiro, Rio de Janeiro RJ, Brazil.
| | - Jorge Marcondes de Souza
- Programa de Pós-Graduação Em Neurologia, Laboratório de Neurociências Translacional, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro RJ, Brazil.
- Departamento de Neurocirurgia, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro RJ, Brazil.
| |
Collapse
|
45
|
Zhang H, Xin M, Lin L, Chen C, Balestra D, Ding Q. Pleiotropic effects of different exonic nucleotide changes at the same position contribute to hemophilia B phenotypic variation. J Thromb Haemost 2024; 22:975-989. [PMID: 38184202 DOI: 10.1016/j.jtha.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The disease-causing effects of genetic variations often depend on their location within a gene. Exonic changes generally lead to alterations in protein production, secretion, activity, or clearance. However, owing to the overlap between proteins and splicing codes, missense variants can also affect messenger RNA splicing, thus adding a layer of complexity and influencing disease phenotypes. OBJECTIVES To extensively characterize a panel of 13 exonic variants in the F9 gene occurring at 6 different factor IX positions and associated with varying severities of hemophilia B (HB). METHODS Computational predictions, splicing analysis, and recombinant factor IX assays were exploited to characterize F9 variants. RESULTS We demonstrated that 5 (38%) of 13 selected F9 exonic variants have pleiotropic effects. Although bioinformatic approaches accurately classified effects, extensive experimental assays were required to elucidate and deepen the molecular mechanisms underlying the pleiotropic effects. Importantly, their characterization was instrumental in developing tailored RNA therapeutics based on engineered U7 small nuclear RNA to mask cryptic splice sites and compensatory U1 small nuclear RNA to enhance exon definition. CONCLUSION Overall, albeit a multitool bioinformatic approach suggested the molecular effects of multiple HB variants, the deep investigation of molecular mechanisms revealed insights into the HB phenotype-genotype relationship, enabling accurate classification of HB variants. Importantly, knowledge of molecular mechanisms allowed the development of tailored RNA therapeutics, which can also be translated to other genetic diseases.
Collapse
Affiliation(s)
- Huayang Zhang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liya Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
46
|
Durmaz D, Aslanger AD, Yavas Abali Z, Yilmaz Y, Karaman V, Yesil Sayin G, Toksoy G, Unuvar A, Uyguner ZO. A Rare Inherited Bone Marrow Failure Syndrome Disclosed by Reanalysis of the Exome Data of a Patient Evaluated for Cytopenia and Dysmorphic Features. J Pediatr Hematol Oncol 2024; 46:e214-e219. [PMID: 38408162 PMCID: PMC10956657 DOI: 10.1097/mph.0000000000002839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/27/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Multisystemic findings of inherited bone marrow failure syndromes may cause difficulty in diagnosis. Exome sequencing (ES) helps to define the etiology of rare diseases and reanalysis offers a valuable new diagnostic approach. Herein, we present the clinical and molecular characteristics of a girl who was referred for cytopenia and frequent infections. CASE REPORT A 5-year-old girl with cytopenia, dysmorphism, short stature, developmental delay, and myopia was referred for genetic counseling. Reanalysis of the ES data revealed a homozygous splice-site variant in the DNAJC21 (NM_001012339.3:c.983+1G>A), causing Shwachman-Diamond Syndrome (SDS). It was shown by the RNA sequencing that exon 7 was skipped, causing an 88-nucleotide deletion. CONCLUSIONS Precise genetic diagnosis enables genetic counseling and improves patient management by avoiding inappropriate treatment and unnecessary testing. This report would contribute to the clinical and molecular understanding of this rare type of SDS caused by DNAJC21 variants and expand the phenotypic features of this condition.
Collapse
Affiliation(s)
- Durmus Durmaz
- Department of Medical Genetics, Istanbul Faculty of Medicine
| | | | - Zehra Yavas Abali
- Department of Medical Genetics, Istanbul Faculty of Medicine
- Institute of Health Sciences
| | - Yasin Yilmaz
- Division of Pediatric Hematology and Oncology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Volkan Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine
| | | | - Guven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine
| | - Aysegul Unuvar
- Division of Pediatric Hematology and Oncology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
47
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
48
|
Al-Kasbi G, Al-Murshedi F, Al-Futaisi A, Al-Jabry T, Zadjali F, Al-Yahyaee S, Al-Maawali A. Revisiting Exome Data Identified Missed Splice Site Variant of the Asparagine Synthetase ( ASNS ) Gene. J Pediatr Genet 2024; 13:1-5. [PMID: 38567172 PMCID: PMC10984708 DOI: 10.1055/s-0042-1757193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/21/2022] [Indexed: 04/04/2024]
Abstract
Next-generation sequencing, such as whole-exome sequencing (WES), is increasingly used in the study of Mendelian disorders, yet many are reported as "negative." Inappropriate variant annotation and filtering steps are reasons for missing the molecular diagnosis. Noncoding variants, including splicing mutations, are examples of variants that can be overlooked. Herein, we report a family of four affected newborns, and all presented with severe congenital microcephaly. Initial research WES analysis identified a damaging homozygous variant in NME1 gene as a possible cause of primary microcephaly phenotype in these patients. However, reanalysis of the exome data uncovered a biallelic splice site variant in asparagine synthetase gene which seems to be the possible cause of the phenotype in these patients. This study highlights the importance of revisiting the exome data and the issue of "negative" exome and the afterward approaches to identify and prove new candidate genes.
Collapse
Affiliation(s)
- Ghalia Al-Kasbi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fathiya Al-Murshedi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amna Al-Futaisi
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Tariq Al-Jabry
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fahad Zadjali
- Department of Clinical Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Said Al-Yahyaee
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
49
|
Adesanya O, Das D, Kalsotra A. Emerging roles of RNA-binding proteins in fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1840. [PMID: 38613185 PMCID: PMC11018357 DOI: 10.1002/wrna.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
A rampant and urgent global health issue of the 21st century is the emergence and progression of fatty liver disease (FLD), including alcoholic fatty liver disease and the more heterogenous metabolism-associated (or non-alcoholic) fatty liver disease (MAFLD/NAFLD) phenotypes. These conditions manifest as disease spectra, progressing from benign hepatic steatosis to symptomatic steatohepatitis, cirrhosis, and, ultimately, hepatocellular carcinoma. With numerous intricately regulated molecular pathways implicated in its pathophysiology, recent data have emphasized the critical roles of RNA-binding proteins (RBPs) in the onset and development of FLD. They regulate gene transcription and post-transcriptional processes, including pre-mRNA splicing, capping, and polyadenylation, as well as mature mRNA transport, stability, and translation. RBP dysfunction at every point along the mRNA life cycle has been associated with altered lipid metabolism and cellular stress response, resulting in hepatic inflammation and fibrosis. Here, we discuss the current understanding of the role of RBPs in the post-transcriptional processes associated with FLD and highlight the possible and emerging therapeutic strategies leveraging RBP function for FLD treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
50
|
Dadush A, Merdler-Rabinowicz R, Gorelik D, Feiglin A, Buchumenski I, Pal LR, Ben-Aroya S, Ruppin E, Levanon EY. DNA and RNA base editors can correct the majority of pathogenic single nucleotide variants. NPJ Genom Med 2024; 9:16. [PMID: 38409211 PMCID: PMC10897195 DOI: 10.1038/s41525-024-00397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
The majority of human genetic diseases are caused by single nucleotide variants (SNVs) in the genome sequence. Excitingly, new genomic techniques known as base editing have opened efficient pathways to correct erroneous nucleotides. Due to reliance on deaminases, which have the capability to convert A to I(G) and C to U, the direct applicability of base editing might seem constrained in terms of the range of mutations that can be reverted. In this evaluation, we assess the potential of DNA and RNA base editing methods for treating human genetic diseases. Our findings indicate that 62% of pathogenic SNVs found within genes can be amended by base editing; 30% are G>A and T>C SNVs that can be corrected by DNA base editing, and most of them by RNA base editing as well, and 29% are C>T and A>G SNVs that can be corrected by DNA base editing directed to the complementary strand. For each, we also present several factors that affect applicability such as bystander and off-target occurrences. For cases where editing the mismatched nucleotide is not feasible, we introduce an approach that calculates the optimal substitution of the deleterious amino acid with a new amino acid, further expanding the scope of applicability. As personalized therapy is rapidly advancing, our demonstration that most SNVs can be treated by base editing is of high importance. The data provided will serve as a comprehensive resource for those seeking to design therapeutic base editors and study their potential in curing genetic diseases.
Collapse
Affiliation(s)
- Ariel Dadush
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Rona Merdler-Rabinowicz
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Gorelik
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Ariel Feiglin
- Skip Therapeutics Ltd, 2 Ilan Ramon St, Ness Ziona, Israel
| | | | - Lipika R Pal
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shay Ben-Aroya
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|