1
|
Lai SH, Chu ML, Lin JL, Chen CH. Development of a focused high-energy macromolecular ion beam. Analyst 2021; 146:2936-2944. [PMID: 33949381 DOI: 10.1039/d0an02478c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report the development of a focused macromolecular ion beam with kinetic energy of up to 110 keV. The system consists of a quadrupole ion trap (QIT), einzel lens and linear accelerator (LINAC). Based on the combination of matrix-assisted laser desorption ionization (MALDI) and quadrupole ion trapping (QIT), ions were desorbed from the surface and trapped with an ion trap to form biomolecular ion packets. Positive- and negative-pulsed voltages were applied on each end-cap electrode of the QIT to extract the ion packets and form an ion beam that was subsequently focused via an einzel lens and accelerated by stepwise pulsed voltages. The tabletop instrument was designed and successfully demonstrated via measurements of molecular ions of insulin, cytochrome c and bovine serum albumin (BSA) with mass-to-charge ratios (m/z) ranging from ∼5.8 to 66.5 k. This is the first report of both a focused and high-kinetic-energy protein ion beam. In addition, both secondary ions and electrons were observed from the surface by hypervelocity ion beam bombardment. This focused macromolecular ion beam has demonstrated its potential in the study of interactions between large molecular ions with other molecules either in the gas phase or upon a surface.
Collapse
Affiliation(s)
- Szu-Hsueh Lai
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan. and Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Lee Chu
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Jung-Lee Lin
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Chung-Hsuan Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan. and Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Farmani Z, Vetere A, Poidevin C, Auer AA, Schrader W. Studying Natural Buckyballs and Buckybowls in Fossil Materials. Angew Chem Int Ed Engl 2020; 59:15008-15013. [PMID: 32427395 PMCID: PMC7496765 DOI: 10.1002/anie.202005449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Indexed: 11/08/2022]
Abstract
Buckyballs (fullerenes) were first reported over 30 years ago, but still little is known regarding their natural occurrence, since they have so far only been found at sites of high-energy incidents, such as lightning strikes or meteor impacts, but have not been reported in low-energy materials like fossil fuels. Using ultrahigh-resolution mass spectrometry, a wide range of fullerenes from C30 to C114 was detected in the asphaltene fraction of a heavy crude oil, together with their building blocks of C10n H10 stoichiometry. High-level DLPNO-CCSD(T) calculations corroborate their stability as spherical and hemispherical species. Interestingly, the maximum intensity of the fullerenes was found at C40 instead of the major fullerene C60 . Hence, experimental evidence supported by calculations show the existence of not only buckyballs but also buckybowls as 3-dimensional polyaromatic compounds in fossil materials.
Collapse
Affiliation(s)
- Zahra Farmani
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Alessandro Vetere
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Corentin Poidevin
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Alexander A. Auer
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Wolfgang Schrader
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
3
|
Farmani Z, Vetere A, Poidevin C, Auer AA, Schrader W. Studying Natural Buckyballs and Buckybowls in Fossil Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zahra Farmani
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Alessandro Vetere
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Corentin Poidevin
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Alexander A. Auer
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Wolfgang Schrader
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
4
|
Wang Y, Nakajima E, Okamura Y, Wang D, Okumura N, Takao T. Metastable decomposition at the peptide C-terminus: Possible use in protein identification. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8734. [PMID: 32031718 DOI: 10.1002/rcm.8734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/14/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE The b n-1 ion of a peptide, as well as a [b n-1 + 18] ion, can be observed not only as normal product ions, but also as prominent metastable ions in a reflectron-embedded matrix-assisted laser desorption ionization time-of-flight spectrometer. The m/z values for the peaks are slightly shifted compared with the ordinary product ions and appear as relatively broad peaks, which permits them to be discriminated from other ions. METHODS A standard protein mixture and gel-derived proteins digested with LysN protease, which cleaves peptide linkages in proteins at the N-terminal side of Lys residues, were examined. The collected data were used for protein identification using in-house software, iD-plus (http://coco.protein.osaka-u.ac.jp/id-plus/), which was developed for searching for proteins in the peptide database, based on enzyme specificity (N-terminal Lys in this study), peptide masses and C-terminal amino acids. RESULTS The b n-1 as well as [b n-1 + 18] ions were observed as broad ion peaks for all of the peptides (86 peptides) examined in this study. In silico calculations using the database of LysN digested peptides (11 969 470), created from 553 941 protein sequences (SwissProt: 2017_03), indicate that the use of no less than four peptides permits a protein to be identified without the need of any probability-based scoring. CONCLUSIONS The preference for b n-1 ion formation is probably due to the higher propensity of the C-terminal peptide bond to be cleaved than other internal bonds. The fact that such C-terminal fragmentation takes place for most of the peptides examined suggests that the use of an N-terminal specific enzyme would allow the C-terminal amino acids to be more reliably read out than other internal sequences, information that could be efficiently used for protein identification.
Collapse
Affiliation(s)
- Yang Wang
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Etsuko Nakajima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Yoshihito Okamura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Danqing Wang
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Nobuaki Okumura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| |
Collapse
|
5
|
Blaženović I, Shen T, Mehta SS, Kind T, Ji J, Piparo M, Cacciola F, Mondello L, Fiehn O. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time-Ion Mobility Mass Spectrometry. Anal Chem 2018; 90:10758-10764. [PMID: 30096227 DOI: 10.1021/acs.analchem.8b01527] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Unknown metabolites represent a bottleneck in untargeted metabolomics research. Ion mobility-mass spectrometry (IM-MS) facilitates lipid identification because it yields collision cross section (CCS) information that is independent from mass or lipophilicity. To date, only a few CCS values are publicly available for complex lipids such as phosphatidylcholines, sphingomyelins, or triacylglycerides. This scarcity of data limits the use of CCS values as an identification parameter that is orthogonal to mass, MS/MS, or retention time. A combination of lipid descriptors was used to train five different machine learning algorithms for automatic lipid annotations, combining accurate mass ( m/ z), retention time (RT), CCS values, carbon number, and unsaturation level. Using a training data set of 429 true positive lipid annotations from four lipid classes, 92.7% correct annotations overall were achieved using internal cross-validation. The trained prediction model was applied to an unknown milk lipidomics data set and allowed for class 3 level annotations of most features detected in this application set according to Metabolomics Standards Initiative (MSI) reporting guidelines.
Collapse
Affiliation(s)
- Ivana Blaženović
- West Coast Metabolomics Center , UC Davis , Davis , California 95616 , United States
| | - Tong Shen
- West Coast Metabolomics Center , UC Davis , Davis , California 95616 , United States
| | - Sajjan S Mehta
- West Coast Metabolomics Center , UC Davis , Davis , California 95616 , United States
| | - Tobias Kind
- West Coast Metabolomics Center , UC Davis , Davis , California 95616 , United States
| | - Jian Ji
- West Coast Metabolomics Center , UC Davis , Davis , California 95616 , United States.,School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Marco Piparo
- West Coast Metabolomics Center , UC Davis , Davis , California 95616 , United States.,Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , University of Messina-Polo Annunziata , Viale Annunziata , 98168 Messina , Italy
| | - Francesco Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali , University of Messina , Via Consolare Valeria , 98125 Messina , Italy
| | - Luigi Mondello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , University of Messina-Polo Annunziata , Viale Annunziata , 98168 Messina , Italy.,Chromaleont s.r.l., c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Polo Annunziata , University of Messina , viale Annunziata , 98168 Messina , Italy.,Department of Medicine , University Campus Bio-Medico of Rome , Via Álvaro del Portillo 21 , 00128 Rome , Italy
| | - Oliver Fiehn
- West Coast Metabolomics Center , UC Davis , Davis , California 95616 , United States.,Department of Biochemistry , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| |
Collapse
|
6
|
Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, Barupal DK, Showalter MR, Arita M, Fiehn O. Identification of small molecules using accurate mass MS/MS search. MASS SPECTROMETRY REVIEWS 2018; 37:513-532. [PMID: 28436590 PMCID: PMC8106966 DOI: 10.1002/mas.21535] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 05/03/2023]
Abstract
Tandem mass spectral library search (MS/MS) is the fastest way to correctly annotate MS/MS spectra from screening small molecules in fields such as environmental analysis, drug screening, lipid analysis, and metabolomics. The confidence in MS/MS-based annotation of chemical structures is impacted by instrumental settings and requirements, data acquisition modes including data-dependent and data-independent methods, library scoring algorithms, as well as post-curation steps. We critically discuss parameters that influence search results, such as mass accuracy, precursor ion isolation width, intensity thresholds, centroiding algorithms, and acquisition speed. A range of publicly and commercially available MS/MS databases such as NIST, MassBank, MoNA, LipidBlast, Wiley MSforID, and METLIN are surveyed. In addition, software tools including NIST MS Search, MS-DIAL, Mass Frontier, SmileMS, Mass++, and XCMS2 to perform fast MS/MS search are discussed. MS/MS scoring algorithms and challenges during compound annotation are reviewed. Advanced methods such as the in silico generation of tandem mass spectra using quantum chemistry and machine learning methods are covered. Community efforts for curation and sharing of tandem mass spectra that will allow for faster distribution of scientific discoveries are discussed.
Collapse
Affiliation(s)
- Tobias Kind
- Genome Center, Metabolomics, UC Davis, Davis, California
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Tomas Cajka
- Genome Center, Metabolomics, UC Davis, Davis, California
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, People’s Republic of China
| | - Zijuan Lai
- Genome Center, Metabolomics, UC Davis, Davis, California
| | | | | | | | | | - Masanori Arita
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Oliver Fiehn
- Genome Center, Metabolomics, UC Davis, Davis, California
- Faculty of Sciences, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Gomes NG, Pereira DM, Valentão P, Andrade PB. Hybrid MS/NMR methods on the prioritization of natural products: Applications in drug discovery. J Pharm Biomed Anal 2018; 147:234-249. [DOI: 10.1016/j.jpba.2017.07.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022]
|
8
|
Woodall DW, Wang B, Inutan ED, Narayan SB, Trimpin S. High-Throughput Characterization of Small and Large Molecules Using Only a Matrix and the Vacuum of a Mass Spectrometer. Anal Chem 2015; 87:4667-74. [DOI: 10.1021/ac504475x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel W. Woodall
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Beixi Wang
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Ellen D. Inutan
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Srinivas B. Narayan
- Detroit Medical Center: Detroit Hospital (DMC), Detroit, Michigan 48201, United States
| | - Sarah Trimpin
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Cardiovascular
Research Institute, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| |
Collapse
|
9
|
Maechler L, Fillipov I, Derrick PJ. Unveiling the intricacies of the curved-field ion mirror. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:115-123. [PMID: 26307692 DOI: 10.1255/ejms.1352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In time-of-flight (ToF) mass spectrometry, non-linear ion mirrors, i.e. mirrors that produce a non-linear potential in which the ions fly, can focus ions exhibiting a very broad kinetic energy distribution. Besides the quadratic potential, the so-called curved field has been used in mirrors as a non-linear potential over the past 20 years. The curved field has, however, only been loosely defined. The focusing properties of the curved field appear to have never been mathematically investigated and explained. In this work, we put forward a rigid definition of the curved field and investigate the properties of it in terms of focusing and transmission. This rigid definition shows the curved field as a two-parameter function for a given mirror length and maximum potential, which can be optimized in terms of ToF distribution/resolution. Such an optimization was performed in one- dimension (1D) by solving the ToF integral equation numerically. The characteristics of optimized configurations arrived at through a comparison with mirrors with polynomial distance-potential relationships are assessed. These optimised solutions cannot be approximated in 1D by a common set of polynomial terms. There are optimised configurations affording ideal energy focussing, but on closer inspection, these potential distributions are found to be, in fact, quadratic potentials. There are other optimised solutions that afford good energy focussing in cases of there being significant field-free regions between the source/detector and the entrance to the mirror. Some of these configurations are approximated by a linear plus a quadratic term, others need higher-order terms to be approximated. To facilitate 3D investigation, the optimised solutions in 1D were used to set the initial voltages on electrodes in a rotationally symmetric mirror, which was modelled with the computer package SIMION 8.0. The SIMION ion-flight simulations revealed that the other optimised solutions with higher-order terms have the disadvantage of lowering the transmittance. That is to say, in 3D the configurations of the curved field, which give good resolution and transmittance with field- free regions between source/detector and mirror, can all be approximated by a potential consisting of a linear plus a quadratic term.
Collapse
Affiliation(s)
- Lars Maechler
- Ion Innovations Laboratory and Department of Physics, The University of Auckland, Auckland, New Zealand.
| | - Igor Fillipov
- Ion Innovations Laboratory and Department of Physics, The University of Auckland, Auckland, New Zealand.
| | - Peter J Derrick
- Io n Innovations Laboratory and Department of Physics, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Yan Y, Ubukata M, Cody RB, Holy TE, Gross ML. High-energy collision-induced dissociation by MALDI TOF/TOF causes charge-remote fragmentation of steroid sulfates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1404-11. [PMID: 24781458 PMCID: PMC4108546 DOI: 10.1007/s13361-014-0901-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 05/24/2023]
Abstract
A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.
Collapse
Affiliation(s)
- Yuetian Yan
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | | | | | | | | |
Collapse
|
11
|
Fenselau CC. Rapid characterization of microorganisms by mass spectrometry--what can be learned and how? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1161-6. [PMID: 23722726 PMCID: PMC3715556 DOI: 10.1007/s13361-013-0660-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 05/11/2023]
Abstract
Strategies for the rapid and reliable analysis of microorganisms have been sought to meet national needs in defense, homeland security, space exploration, food and water safety, and clinical diagnosis. Mass spectrometry has long been a candidate technique because it is extremely rapid and can provide highly specific information. It has excellent sensitivity. Molecular and fragment ion masses provide detailed fingerprints, which can also be interpreted. Mass spectrometry is also a broad band method--everything has a mass--and it is automatable. Mass spectrometry is a physiochemical method that is orthogonal and complementary to biochemical and morphological methods used to characterize microorganisms.
Collapse
Affiliation(s)
- Catherine C Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA,
| |
Collapse
|
12
|
Trimpin S, Wang B, Lietz CB, Marshall DD, Richards AL, Inutan ED. New ionization processes and applications for use in mass spectrometry. Crit Rev Biochem Mol Biol 2013; 48:409-29. [DOI: 10.3109/10409238.2013.806887] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|