1
|
Schulte D, Snijder J. A Handle on Mass Coincidence Errors in De Novo Sequencing of Antibodies by Bottom-up Proteomics. J Proteome Res 2024; 23:3552-3559. [PMID: 38932690 PMCID: PMC11301774 DOI: 10.1021/acs.jproteome.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Antibody sequences can be determined at 99% accuracy directly from the polypeptide product by using bottom-up proteomics techniques. Sequencing accuracy at the peptide level is limited by the isobaric residues leucine and isoleucine, incomplete fragmentation spectra in which the order of two or more residues remains ambiguous due to lacking fragment ions for the intermediate positions, and isobaric combinations of amino acids, of potentially different lengths, for example, GG = N and GA = Q. Here, we present several updates to Stitch (v1.5), which performs template-based assembly of de novo peptides to reconstruct antibody sequences. This version introduces a mass-based alignment algorithm that explicitly accounts for mass coincidence errors. In addition, it incorporates a postprocessing procedure to assign I/L residues based on secondary fragments (satellite ions, i.e., w-ions). Moreover, evidence for sequence assignments can now be directly evaluated with the addition of an integrated spectrum viewer. Lastly, input data from a wider selection of de novo peptide sequencing algorithms are allowed, now including Casanovo, PEAKS, Novor.Cloud, pNovo, and MaxNovo, in addition to flat text and FASTA. Combined, these changes make Stitch compatible with a larger range of data processing pipelines and improve its tolerance to peptide-level sequencing errors.
Collapse
Affiliation(s)
- Douwe Schulte
- Biomolecular Mass Spectrometry
and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht
Institute of Pharmaceutical Sciences, Utrecht
University, Padualaan 8, Utrecht 3584
CH, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry
and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht
Institute of Pharmaceutical Sciences, Utrecht
University, Padualaan 8, Utrecht 3584
CH, The Netherlands
| |
Collapse
|
2
|
Bondt A, Hoek M, Dingess K, Tamara S, de Graaf B, Peng W, den Boer MA, Damen M, Zwart C, Barendregt A, van Rijswijck DMH, Schulte D, Grobben M, Tejjani K, van Rijswijk J, Völlmy F, Snijder J, Fortini F, Papi A, Volta CA, Campo G, Contoli M, van Gils MJ, Spadaro S, Rizzo P, Heck AJR. Into the Dark Serum Proteome: Personalized Features of IgG1 and IgA1 Repertoires in Severe COVID-19 Patients. Mol Cell Proteomics 2024; 23:100690. [PMID: 38065436 PMCID: PMC10784693 DOI: 10.1016/j.mcpro.2023.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
Serum proteomics has matured and is now able to monitor hundreds of proteins quantitatively in large cohorts of patients. However, the fine characteristics of some of the most dominant proteins in serum, the immunoglobulins, are in these studies often ignored, due to their vast, and highly personalized, diversity in sequences. Here, we focus exclusively on these personalized features in the serum proteome and distinctively chose to study individual samples from a low diversity population: elderly donors infected by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). By using mass spectrometry-based methods, immunoglobulin IgG1 and IgA1 clonal repertoires were monitored quantitatively and longitudinally in more than 50 individual serum samples obtained from 17 Corona virus disease 2019 patients admitted to intensive care units. These clonal profiles were used to examine how each patient reacted to a severe SARS-CoV-2 infection. All 17 donors revealed unique polyclonal repertoires and substantial changes over time, with several new clones appearing following the infection, in a few cases leading to a few, very high, abundant clones dominating their repertoire. Several of these clones were de novo sequenced through combinations of top-down, middle-down, and bottom-up proteomics approaches. This revealed sequence features in line with sequences deposited in the SARS-CoV-specific antibody database. In other patients, the serological Ig profiles revealed the treatment with tocilizumab, that subsequently dominated their serological IgG1 repertoire. Tocilizumab clearance could be monitored, and a half-life of approximately 6 days was established. Overall, our longitudinal monitoring of IgG1 and IgA1 repertoires of individual donors reveals that antibody responses are highly personalized traits of each patient, affected by the disease and the chosen clinical treatment. The impact of these observations argues for a more personalized and longitudinal approach in patients' diagnostics, both in serum proteomics as well as in monitoring immune responses.
Collapse
Affiliation(s)
- Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Kelly Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Bastiaan de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Mirjam Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Ceri Zwart
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Danique M H van Rijswijck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Douwe Schulte
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacqueline van Rijswijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Franziska Völlmy
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | - Alberto Papi
- Respiratory Section, Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Respiratory Disease Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Carlo Alberto Volta
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Intensive Care Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, University of Ferrara, Ferrara, Italy
| | - Marco Contoli
- Respiratory Section, Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Respiratory Disease Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Intensive Care Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy; Department of Translational Medicine and Laboratory for Technology of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Han X, Lu X, Li PH, Wang S, Schalek R, Meirovitch Y, Lin Z, Adhinarta J, Berger D, Wu Y, Fang T, Meral ES, Asraf S, Ploegh H, Pfister H, Wei D, Jain V, Trimmer JS, Lichtman JW. Multiplexed volumetric CLEM enabled by antibody derivatives provides new insights into the cytology of the mouse cerebellar cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.540091. [PMID: 37292964 PMCID: PMC10245788 DOI: 10.1101/2023.05.20.540091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mapping neuronal networks that underlie behavior has become a central focus in neuroscience. While serial section electron microscopy (ssEM) can reveal the fine structure of neuronal networks (connectomics), it does not provide the molecular information that helps identify cell types or their functional properties. Volumetric correlated light and electron microscopy (vCLEM) combines ssEM and volumetric fluorescence microscopy to incorporate molecular labeling into ssEM datasets. We developed an approach that uses small fluorescent single-chain variable fragment (scFv) immuno-probes to perform multiplexed detergent-free immuno-labeling and ssEM on the same samples. We generated eight such fluorescent scFvs that targeted useful markers for brain studies (green fluorescent protein, glial fibrillary acidic protein, calbindin, parvalbumin, voltage-gated potassium channel subfamily A member 2, vesicular glutamate transporter 1, postsynaptic density protein 95, and neuropeptide Y). To test the vCLEM approach, six different fluorescent probes were imaged in a sample of the cortex of a cerebellar lobule (Crus 1), using confocal microscopy with spectral unmixing, followed by ssEM imaging of the same sample. The results show excellent ultrastructure with superimposition of the multiple fluorescence channels. Using this approach we could document a poorly described cell type in the cerebellum, two types of mossy fiber terminals, and the subcellular localization of one type of ion channel. Because scFvs can be derived from existing monoclonal antibodies, hundreds of such probes can be generated to enable molecular overlays for connectomic studies.
Collapse
|
4
|
Han X, Lu X, Li PH, Wang S, Schalek R, Meirovitch Y, Lin Z, Adhinarta J, Berger D, Wu Y, Fang T, Meral ES, Asraf S, Ploegh H, Pfister H, Wei D, Jain V, Trimmer JS, Lichtman JW. Multiplexed volumetric CLEM enabled by antibody derivatives provides new insights into the cytology of the mouse cerebellar cortex. RESEARCH SQUARE 2023:rs.3.rs-3121892. [PMID: 37461609 PMCID: PMC10350204 DOI: 10.21203/rs.3.rs-3121892/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Mapping neuronal networks that underlie behavior has become a central focus in neuroscience. While serial section electron microscopy (ssEM) can reveal the fine structure of neuronal networks (connectomics), it does not provide the molecular information that helps identify cell types or their functional properties. Volumetric correlated light and electron microscopy (vCLEM) combines ssEM and volumetric fluorescence microscopy to incorporate molecular labeling into ssEM datasets. We developed an approach that uses small fluorescent single-chain variable fragment (scFv) immuno-probes to perform multiplexed detergent-free immuno-labeling and ssEM on the same samples. We generated eight such fluorescent scFvs that targeted useful markers for brain studies (green fluorescent protein, glial fibrillary acidic protein, calbindin, parvalbumin, voltage-gated potassium channel subfamily A member 2, vesicular glutamate transporter 1, postsynaptic density protein 95, and neuropeptide Y). To test the vCLEM approach, six different fluorescent probes were imaged in a sample of the cortex of a cerebellar lobule (Crus 1), using confocal microscopy with spectral unmixing, followed by ssEM imaging of the same sample. The results show excellent ultrastructure with superimposition of the multiple fluorescence channels. Using this approach we could document a poorly described cell type in the cerebellum, two types of mossy fiber terminals, and the subcellular localization of one type of ion channel. Because scFvs can be derived from existing monoclonal antibodies, hundreds of such probes can be generated to enable molecular overlays for connectomic studies.
Collapse
Affiliation(s)
- Xiaomeng Han
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Xiaotang Lu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | | | - Shuohong Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Richard Schalek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Yaron Meirovitch
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Zudi Lin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Jason Adhinarta
- Computer Science Department, Boston College, Chestnut Hill, MA
| | - Daniel Berger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Tao Fang
- Program of Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
| | | | - Shadnan Asraf
- School of Public Health, University of Massachusetts Amherst, Amherst, MA
| | - Hidde Ploegh
- Program of Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
| | - Hanspeter Pfister
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Donglai Wei
- Computer Science Department, Boston College, Chestnut Hill, MA
| | | | - James S. Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| |
Collapse
|
5
|
Kazieva LS, Farafonova TE, Zgoda VG. [Antibody proteomics]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:5-18. [PMID: 36857423 DOI: 10.18097/pbmc20236901005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Antibodies represent an essential component of humoral immunity; therefore their study is important for molecular biology and medicine. The unique property of antibodies to specifically recognize and bind a certain molecular target (an antigen) determines their widespread application in treatment and diagnostics of diseases, as well as in laboratory and biotechnological practices. High specificity and affinity of antibodies is determined by the presence of primary structure variable regions, which are not encoded in the human genome and are unique for each antibody-producing B cell clone. Hence, there is little or no information about amino acid sequences of the variable regions in the databases. This differs identification of antibody primary structure from most of the proteomic studies because it requires either B cell genome sequencing or de novo amino acid sequencing of the antibody. The present review demonstrates some examples of proteomic and proteogenomic approaches and the methodological arsenal that proteomics can offer for studying antibodies, in particular, for identification of primary structure, evaluation of posttranslational modifications and application of bioinformatics tools for their decoding.
Collapse
Affiliation(s)
- L Sh Kazieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
6
|
Beslic D, Tscheuschner G, Renard BY, Weller MG, Muth T. Comprehensive evaluation of peptide de novo sequencing tools for monoclonal antibody assembly. Brief Bioinform 2023; 24:bbac542. [PMID: 36545804 PMCID: PMC9851299 DOI: 10.1093/bib/bbac542] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Monoclonal antibodies are biotechnologically produced proteins with various applications in research, therapeutics and diagnostics. Their ability to recognize and bind to specific molecule structures makes them essential research tools and therapeutic agents. Sequence information of antibodies is helpful for understanding antibody-antigen interactions and ensuring their affinity and specificity. De novo protein sequencing based on mass spectrometry is a valuable method to obtain the amino acid sequence of peptides and proteins without a priori knowledge. In this study, we evaluated six recently developed de novo peptide sequencing algorithms (Novor, pNovo 3, DeepNovo, SMSNet, PointNovo and Casanovo), which were not specifically designed for antibody data. We validated their ability to identify and assemble antibody sequences on three multi-enzymatic data sets. The deep learning-based tools Casanovo and PointNovo showed an increased peptide recall across different enzymes and data sets compared with spectrum-graph-based approaches. We evaluated different error types of de novo peptide sequencing tools and their performance for different numbers of missing cleavage sites, noisy spectra and peptides of various lengths. We achieved a sequence coverage of 97.69-99.53% on the light chains of three different antibody data sets using the de Bruijn assembler ALPS and the predictions from Casanovo. However, low sequence coverage and accuracy on the heavy chains demonstrate that complete de novo protein sequencing remains a challenging issue in proteomics that requires improved de novo error correction, alternative digestion strategies and hybrid approaches such as homology search to achieve high accuracy on long protein sequences.
Collapse
Affiliation(s)
- Denis Beslic
- Robert Koch Institute, MF1, Nordufer 20, 13353 Berlin
| | - Georg Tscheuschner
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin
| | - Bernhard Y Renard
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin
| | - Thilo Muth
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin
| |
Collapse
|
7
|
Xing C, Liu C, Kong Z, Wei K, Li P, Li G, Yuan J, Yan W. De novo assisted AFB1-Specific monoclonal antibody sequence assembly and comprehensive molecular characterization. Anal Biochem 2022; 656:114883. [PMID: 36063915 DOI: 10.1016/j.ab.2022.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Despite their widely used and access as biological reagents in analytical methods, the detailed structural features for most of the antibodies were rarely known. Here, a new antibody for AFB1 with high specificity in constructing ELISA was studied in detail. The molecular structure and modification were elucidated mainly by nano-electrospray ionization mass spectrometry. The mass experiments, including MALDI-TOF MS, revealed complete and specific fragments, including antibody molecular weight, peptides, glycopeptide, and N-glycoform. By proteolytic treatment of pepsin and trypsin and high-resolution tandem-MS, the primary structure of the newly developed anti-AFB1 antibody was assembled by several rounds of Database search process assisted with the de novo results. The antibody CDR annotation and constraint-based multiple alignment tool were used to differentiate and align the sequences. The method uses only two proteases to generate numerous peptides for de novo sequencing. This artificial assembled AFB1-specific monoclonal antibody sequence was validated by comparison with the sequencing results of the immunoglobulin gene. The results showed that this method achieves full sequence coverage of anti-AFB1 monoclonal antibody, with an accuracy of 100% in the CDR regions of light chain and four amino acid mismatch in heavy chain. This simple and low-cost method was confirmed by treating a public dataset. The secondary structure information of intact antibody was also elucidated from the results of circular dichroism spectrum.
Collapse
Affiliation(s)
- Changrui Xing
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| | - Chongjing Liu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Zhikang Kong
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Kaidong Wei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Peng Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Guanglei Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Jian Yuan
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Wenjing Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Schulte D, Peng W, Snijder J. Template-Based Assembly of Proteomic Short Reads For De Novo Antibody Sequencing and Repertoire Profiling. Anal Chem 2022; 94:10391-10399. [PMID: 35834437 PMCID: PMC9330293 DOI: 10.1021/acs.analchem.2c01300] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Antibodies can target a vast molecular diversity of antigens.
This
is achieved by generating a complementary diversity of antibody sequences
through somatic recombination and hypermutation. A full understanding
of the antibody repertoire in health and disease therefore requires
dedicated de novo sequencing methods. Next-generation
cDNA sequencing methods have laid the foundation of our current understanding
of the antibody repertoire, but these methods share one major limitation
in that they target the antibody-producing B-cells, rather than the
functional secreted product in bodily fluids. Mass spectrometry-based
methods offer an opportunity to bridge this gap between antibody repertoire
profiling and bulk serological assays, as they can access antibody
sequence information straight from the secreted polypeptide products.
In a step to meeting the challenge of mass spectrometry (MS)-based
antibody sequencing, we present a fast and simple software tool (Stitch)
to map proteomic short reads to user-defined templates with dedicated
features for both monoclonal antibody sequencing and profiling of
polyclonal antibody repertoires. We demonstrate the use of Stitch
by fully reconstructing two monoclonal antibody sequences with >98%
accuracy (including I/L assignment); sequencing a Fab from patient
serum isolated by reversed-phase liquid chromatography (LC) fractionation
against a high background of homologous antibody sequences; sequencing
antibody light chains from the urine of multiple-myeloma patients;
and profiling the IgG repertoire in sera from patients hospitalized
with COVID-19. We demonstrate that Stitch assembles a comprehensive
overview of the antibody sequences that are represented in the dataset
and provides an important first step toward analyzing polyclonal antibodies
and repertoire profiling.
Collapse
Affiliation(s)
- Douwe Schulte
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
9
|
Gadush MV, Sautto GA, Chandrasekaran H, Bensussan A, Ross TM, Ippolito GC, Person MD. Template-Assisted De Novo Sequencing of SARS-CoV-2 and Influenza Monoclonal Antibodies by Mass Spectrometry. J Proteome Res 2022; 21:1616-1627. [PMID: 35653804 DOI: 10.1021/acs.jproteome.1c00913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we used multiple enzyme digestions, coupled with higher-energy collisional dissociation (HCD) and electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to develop a mass-spectrometric (MS) method for determining the complete protein sequence of monoclonal antibodies (mAbs). The method was refined on an mAb of a known sequence, a SARS-CoV-1 antireceptor binding domain (RBD) spike monoclonal antibody. The data were searched using Supernovo to generate a complete template-assisted de novo sequence for this and two SARS-CoV-2 mAbs of known sequences resulting in correct sequences for the variable regions and correct distinction of Ile and Leu residues. We then used the method on a set of 25 antihemagglutinin (HA) influenza antibodies of unknown sequences and determined high confidence sequences for >99% of the complementarity determining regions (CDRs). The heavy-chain and light-chain genes were cloned and transfected into cells for recombinant expression followed by affinity purification. The recombinant mAbs displayed binding curves matching the original mAbs with specificity to the HA influenza antigen. Our findings indicate that this methodology results in almost complete antibody sequence coverage with high confidence results for CDR regions on diverse mAb sequences.
Collapse
Affiliation(s)
- Michelle V Gadush
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States
| | - Hamssika Chandrasekaran
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alena Bensussan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Maria D Person
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Suckau D, Evers W, Belau E, Pengelley S, Resemann A, Tang W, Sen KI, Wagner E, Colas O, Beck A. Use of PASEF for Accelerated Protein Sequence Confirmation and De Novo Sequencing with High Data Quality. Methods Mol Biol 2022; 2313:207-217. [PMID: 34478140 DOI: 10.1007/978-1-0716-1450-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biopharmaceutical sequences can be well confirmed by multiple protease digests-e.g., trypsin, elastase, and chymotrypsin-followed by LC-MS/MS data analysis. High quality data can be used for de novo sequencing as well. PASEF (Parallel Accumulation and Serial Fragmentation) on the timsTOF instrument has been used to accelerate proteome and protein sequence studies and increase sequence coverage concomitantly.Here we describe the protein chemical and LC-MS methods in detail to generate high quality samples for sequence characterization from only 3 digests. We applied PASEF to generate exhaustive protein sequence coverage maps by combination of results from the three enzyme digests using a short LC gradient. The data quality obtained was high and adequate for determining antibody sequences de novo.Nivolumab and dulaglutide were digested by 3 enzymes individually. For nivolumab, 94/94/90% sequence coverage and 86/84/85% fragment coverage were obtained from the individual digest analysis with trypsin/chymotrypsin/elastase, respectively. For dulaglutide, 96/100/90% sequence coverage and 92/90/83% fragment coverage were obtained. The merged peptide map from the 3 digests for nivolumab resulted in ∼550 peptides; enough to safely confirm the full sequences and to determine the nivolumab sequence de novo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elsa Wagner
- Biologics CMC and Developability, Institut de Recherche Pierre Fabre (IRPF)-Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Olivier Colas
- Biologics CMC and Developability, Institut de Recherche Pierre Fabre (IRPF)-Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Alain Beck
- Biologics CMC and Developability, Institut de Recherche Pierre Fabre (IRPF)-Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France.
| |
Collapse
|
11
|
de Graaf SC, Hoek M, Tamara S, Heck AJR. A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies. MAbs 2022; 14:2079449. [PMID: 35699511 PMCID: PMC9225641 DOI: 10.1080/19420862.2022.2079449] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A key step in therapeutic and endogenous humoral antibody characterization is identifying the amino acid sequence. So far, this task has been mainly tackled through sequencing of B-cell receptor (BCR) repertoires at the nucleotide level. Mass spectrometry (MS) has emerged as an alternative tool for obtaining sequence information directly at the – most relevant – protein level. Although several MS methods are now well established, analysis of recombinant and endogenous antibodies comes with a specific set of challenges, requiring approaches beyond the conventional proteomics workflows. Here, we review the challenges in MS-based sequencing of both recombinant as well as endogenous humoral antibodies and outline state-of-the-art methods attempting to overcome these obstacles. We highlight recent examples and discuss remaining challenges. We foresee a great future for these approaches making de novo antibody sequencing and discovery by MS-based techniques feasible, even for complex clinical samples from endogenous sources such as serum and other liquid biopsies.
Collapse
Affiliation(s)
- Sebastiaan C de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| |
Collapse
|
12
|
Irani V, Soliman C, Raftis MA, Guy AJ, Elbourne A, Ramsland PA. Expression of monoclonal antibodies for functional and structural studies. METHODS IN MICROBIOLOGY 2022. [DOI: 10.1016/bs.mim.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Zhou M, Laureanti JA, Bell CJ, Kwon M, Meng Q, Novikova IV, Thomas DG, Nicora CD, Sontag RL, Bedgar DL, O'Bryon I, Merkley ED, Ginovska B, Cort JR, Davin LB, Lewis NG. De novo sequencing and native mass spectrometry revealed hetero-association of dirigent protein homologs and potential interacting proteins in Forsythia × intermedia. Analyst 2021; 146:7670-7681. [PMID: 34806721 DOI: 10.1039/d1an01476e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of dirigent proteins (DPs) and their functions in plant phenol biochemistry was made over two decades ago with Forsythia × intermedia. Stereo-selective, DP-guided, monolignol-derived radical coupling in vitro was then reported to afford the optically active lignan, (+)-pinoresinol from coniferyl alcohol, provided one-electron oxidase/oxidant capacity was present. It later became evident that DPs have several distinct sub-families, presumably with different functions. Some known DPs require other essential enzymes/proteins (e.g. oxidases) for their functions. However, the lack of a fully sequenced genome for Forsythia × intermedia made it difficult to profile other components co-purified with the (+)-pinoresinol forming DP. Herein, we used an integrated bottom-up, top-down, and native mass spectrometry (MS) approach to de novo sequence the extracted proteins via adaptation of our initial report of DP solubilization and purification. Using publicly available transcriptome and genomic data from closely related species, we identified 14 proteins that were putatively associated with either DP function or the cell wall. Although their co-occurrence after extraction and chromatographic separation is suggestive for potential protein-protein interactions, none were found to form stable protein complexes with DPs in native MS under the specific experimental conditions we have explored. Interestingly, two new DP homologs were found and they formed hetero-trimers. Molecular dynamics simulations suggested that similar hetero-trimers were possible between Arabidopsis DP homologs with comparable sequence similarities. Nevertheless, our integrated mass spectrometry method development helped prepare for future investigations directed to the discovery of novel proteins and protein-protein interactions. These advantages can be highly beneficial for plant and microbial research where fully sequenced genomes may not be readily available.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Joseph A Laureanti
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Callum J Bell
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Mi Kwon
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Qingyan Meng
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Irina V Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Dennis G Thomas
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan L Sontag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Diana L Bedgar
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Isabelle O'Bryon
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Eric D Merkley
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bojana Ginovska
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John R Cort
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.,Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| |
Collapse
|
14
|
Bondt A, Hoek M, Tamara S, de Graaf B, Peng W, Schulte D, van Rijswijck DMH, den Boer MA, Greisch JF, Varkila MRJ, Snijder J, Cremer OL, Bonten MJM, Heck AJR. Human plasma IgG1 repertoires are simple, unique, and dynamic. Cell Syst 2021; 12:1131-1143.e5. [PMID: 34613904 PMCID: PMC8691384 DOI: 10.1016/j.cels.2021.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 01/30/2023]
Abstract
Although humans can produce billions of IgG1 variants through recombination and hypermutation, the diversity of IgG1 clones circulating in human blood plasma has largely eluded direct characterization. Here, we combined several mass-spectrometry-based approaches to reveal that the circulating IgG1 repertoire in human plasma is dominated by a limited number of clones in healthy donors and septic patients. We observe that each individual donor exhibits a unique serological IgG1 repertoire, which remains stable over time but can adapt rapidly to changes in physiology. We introduce an integrative protein- and peptide-centric approach to obtain and validate a full sequence of an individual plasma IgG1 clone de novo. This IgG1 clone emerged at the onset of a septic episode and exhibited a high mutation rate (13%) compared with the closest matching germline DNA sequence, highlighting the importance of de novo sequencing at the protein level. A record of this paper’s transparent peer review process is included in the supplemental information. Novel LC-MS-based methods enable personalized IgG1 profiling in plasma Each donor exhibits a simple but unique serological IgG1 repertoire This repertoire adapts to changes in physiology, e.g., sepsis Individual plasma IgG1 clones can be identified by combining top-down and bottom-up proteomics
Collapse
Affiliation(s)
- Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Bastiaan de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Douwe Schulte
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Danique M H van Rijswijck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Jean-François Greisch
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Meri R J Varkila
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
15
|
Dupré M, Duchateau M, Sternke-Hoffmann R, Boquoi A, Malosse C, Fenk R, Haas R, Buell AK, Rey M, Chamot-Rooke J. De Novo Sequencing of Antibody Light Chain Proteoforms from Patients with Multiple Myeloma. Anal Chem 2021; 93:10627-10634. [PMID: 34292722 DOI: 10.1021/acs.analchem.1c01955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In multiple myeloma diseases, monoclonal immunoglobulin light chains (LCs) are abundantly produced, with, as a consequence in some cases, the formation of deposits affecting various organs, such as the kidney, while in other cases remaining soluble up to concentrations of several g·L-1 in plasma. The exact factors crucial for the solubility of LCs are poorly understood, but it can be hypothesized that their amino acid sequence plays an important role. Determining the precise sequences of patient-derived LCs is therefore highly desirable. We establish here a novel de novo sequencing workflow for patient-derived LCs, based on the combination of bottom-up and top-down proteomics without database search. PEAKS is used for the de novo sequencing of peptides that are further assembled into full length LC sequences using ALPS. Top-down proteomics provides the molecular masses of proteoforms and allows the exact determination of the amino acid sequence including all posttranslational modifications. This pipeline is then used for the complete de novo sequencing of LCs extracted from the urine of 10 patients with multiple myeloma. We show that for the bottom-up part, digestions with trypsin and Nepenthes digestive fluid are sufficient to produce overlapping peptides able to generate the best sequence candidates. Top-down proteomics is absolutely required to achieve 100% final sequence coverage and characterize clinical samples containing several LCs. Our work highlights an unexpected range of modifications.
Collapse
Affiliation(s)
- Mathieu Dupré
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, CNRS, 28 rue du Dr Roux, Paris 75015, France
| | - Magalie Duchateau
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, CNRS, 28 rue du Dr Roux, Paris 75015, France
| | - Rebecca Sternke-Hoffmann
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Amelie Boquoi
- Department of Hematology, Oncology and Clinical Oncology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany, Moorenstr. 5, Düsseldorf 40225, Germany
| | - Christian Malosse
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, CNRS, 28 rue du Dr Roux, Paris 75015, France
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Oncology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany, Moorenstr. 5, Düsseldorf 40225, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Oncology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany, Moorenstr. 5, Düsseldorf 40225, Germany
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs. Lyngby 2800, Denmark
| | - Martial Rey
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, CNRS, 28 rue du Dr Roux, Paris 75015, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, CNRS, 28 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
16
|
Peng W, Pronker MF, Snijder J. Mass Spectrometry-Based De Novo Sequencing of Monoclonal Antibodies Using Multiple Proteases and a Dual Fragmentation Scheme. J Proteome Res 2021; 20:3559-3566. [PMID: 34121409 PMCID: PMC8256418 DOI: 10.1021/acs.jproteome.1c00169] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Antibody sequence information is crucial to understanding the structural basis for antigen binding and enables the use of antibodies as therapeutics and research tools. Here, we demonstrate a method for direct de novo sequencing of monoclonal IgG from the purified antibody products. The method uses a panel of multiple complementary proteases to generate suitable peptides for de novo sequencing by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a bottom-up fashion. Furthermore, we apply a dual fragmentation scheme, using both stepped high-energy collision dissociation (stepped HCD) and electron-transfer high-energy collision dissociation (EThcD), on all peptide precursors. The method achieves full sequence coverage of the monoclonal antibody herceptin, with an accuracy of 99% in the variable regions. We applied the method to sequence the widely used anti-FLAG-M2 mouse monoclonal antibody, which we successfully validated by remodeling a high-resolution crystal structure of the Fab and demonstrating binding to a FLAG-tagged target protein in Western blot analysis. The method thus offers robust and reliable sequences of monoclonal antibodies.
Collapse
Affiliation(s)
| | | | - Joost Snijder
- Biomolecular Mass Spectrometry
and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht
Institute of Pharmaceutical Sciences, Utrecht
University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
17
|
den Boer MA, Greisch JF, Tamara S, Bondt A, Heck AJR. Selectivity over coverage in de novo sequencing of IgGs. Chem Sci 2020; 11:11886-11896. [PMID: 33520151 PMCID: PMC7814886 DOI: 10.1039/d0sc03438j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Although incredibly diverse in specificity, millions of unique Immunoglobulin G (IgG) molecules in the human antibody repertoire share most of their amino acid sequence. These constant parts of IgG do not yield any useful information in attempts to sequence antibodies de novo. Therefore, methods focusing solely on the variable regions and providing unambiguous sequence reads are strongly advantageous. We report a mass spectrometry-based method that uses electron capture dissociation (ECD) to provide straightforward-to-read sequence ladders for the variable parts of both the light and heavy chains, with a preference for the functionally important CDR3. We optimized this method on the therapeutic antibody Trastuzumab and demonstrate its applicability on two monoclonal quartets of the four IgG subclasses, IgG1, IgG2, IgG3 and IgG4. The method is based on proteolytically separating the variable F(ab')2 part from the conserved Fc part, whereafter the F(ab')2 portions are mass-analyzed and fragmented by ECD. Pure ECD, without additional collisional activation, leads to straightforward-to-read sequence tags covering the CDR3 of both the light and heavy chains. Using molecular modelling and structural analysis, we discuss and explain this selective fragmentation behavior and describe how structural features of the different IgG subclasses lead to distinct fragmentation patterns. Overall, we foresee that pure ECD on F(ab')2 or Fab molecules can become a valuable tool for the de novo sequencing of serum antibodies.
Collapse
Affiliation(s)
- Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Jean-Francois Greisch
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| |
Collapse
|
18
|
Srzentić K, Fornelli L, Tsybin YO, Loo JA, Seckler H, Agar JN, Anderson LC, Bai DL, Beck A, Brodbelt JS, van der Burgt YEM, Chamot-Rooke J, Chatterjee S, Chen Y, Clarke DJ, Danis PO, Diedrich JK, D'Ippolito RA, Dupré M, Gasilova N, Ge Y, Goo YA, Goodlett DR, Greer S, Haselmann KF, He L, Hendrickson CL, Hinkle JD, Holt MV, Hughes S, Hunt DF, Kelleher NL, Kozhinov AN, Lin Z, Malosse C, Marshall AG, Menin L, Millikin RJ, Nagornov KO, Nicolardi S, Paša-Tolić L, Pengelley S, Quebbemann NR, Resemann A, Sandoval W, Sarin R, Schmitt ND, Shabanowitz J, Shaw JB, Shortreed MR, Smith LM, Sobott F, Suckau D, Toby T, Weisbrod CR, Wildburger NC, Yates JR, Yoon SH, Young NL, Zhou M. Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1783-1802. [PMID: 32812765 PMCID: PMC7539639 DOI: 10.1021/jasms.0c00036] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Consortium for Top-Down Proteomics (www.topdownproteomics.org) launched the present study to assess the current state of top-down mass spectrometry (TD MS) and middle-down mass spectrometry (MD MS) for characterizing monoclonal antibody (mAb) primary structures, including their modifications. To meet the needs of the rapidly growing therapeutic antibody market, it is important to develop analytical strategies to characterize the heterogeneity of a therapeutic product's primary structure accurately and reproducibly. The major objective of the present study is to determine whether current TD/MD MS technologies and protocols can add value to the more commonly employed bottom-up (BU) approaches with regard to confirming protein integrity, sequencing variable domains, avoiding artifacts, and revealing modifications and their locations. We also aim to gather information on the common TD/MD MS methods and practices in the field. A panel of three mAbs was selected and centrally provided to 20 laboratories worldwide for the analysis: Sigma mAb standard (SiLuLite), NIST mAb standard, and the therapeutic mAb Herceptin (trastuzumab). Various MS instrument platforms and ion dissociation techniques were employed. The present study confirms that TD/MD MS tools are available in laboratories worldwide and provide complementary information to the BU approach that can be crucial for comprehensive mAb characterization. The current limitations, as well as possible solutions to overcome them, are also outlined. A primary limitation revealed by the results of the present study is that the expert knowledge in both experiment and data analysis is indispensable to practice TD/MD MS.
Collapse
Affiliation(s)
- Kristina Srzentić
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Luca Fornelli
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Joseph A Loo
- University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Henrique Seckler
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Jeffrey N Agar
- Northeastern University, Boston, Massachusetts 02115, United States
| | - Lissa C Anderson
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Dina L Bai
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Alain Beck
- Centre d'immunologie Pierre Fabre, 74160 Saint-Julien-en-Genevois, France
| | | | | | | | | | - Yunqiu Chen
- Biogen, Inc., Cambridge, Massachusetts 02142-1031, United States
| | - David J Clarke
- The University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | - Paul O Danis
- Consortium for Top-Down Proteomics, Cambridge, Massachusetts 02142, United States
| | - Jolene K Diedrich
- The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ying Ge
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Young Ah Goo
- University of Maryland, Baltimore, Maryland 21201, United States
| | - David R Goodlett
- University of Maryland, Baltimore, Maryland 21201, United States
| | - Sylvester Greer
- University of Texas at Austin, Austin, Texas 78712-1224, United States
| | | | - Lidong He
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | | | - Joshua D Hinkle
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Matthew V Holt
- Baylor College of Medicine, Houston, Texas 77030-3411, United States
| | - Sam Hughes
- The University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | - Donald F Hunt
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Neil L Kelleher
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Anton N Kozhinov
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Ziqing Lin
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Alan G Marshall
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Florida State University, Tallahassee, Florida 32310-4005, United States
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Robert J Millikin
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Simone Nicolardi
- Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Ljiljana Paša-Tolić
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Neil R Quebbemann
- University of California-Los Angeles, Los Angeles, California 90095, United States
| | | | - Wendy Sandoval
- Genentech, Inc., South San Francisco, California 94080-4990, United States
| | - Richa Sarin
- Biogen, Inc., Cambridge, Massachusetts 02142-1031, United States
| | | | | | - Jared B Shaw
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Lloyd M Smith
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Frank Sobott
- University of Antwerp, 2000 Antwerp, Belgium
- University of Leeds, LS2 9JT Leeds, United Kingdom
| | | | - Timothy Toby
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Norelle C Wildburger
- Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John R Yates
- The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sung Hwan Yoon
- University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicolas L Young
- Baylor College of Medicine, Houston, Texas 77030-3411, United States
| | - Mowei Zhou
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
19
|
O'Bryon I, Jenson SC, Merkley ED. Flying blind, or just flying under the radar? The underappreciated power of de novo methods of mass spectrometric peptide identification. Protein Sci 2020; 29:1864-1878. [PMID: 32713088 PMCID: PMC7454419 DOI: 10.1002/pro.3919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
Mass spectrometry-based proteomics is a popular and powerful method for precise and highly multiplexed protein identification. The most common method of analyzing untargeted proteomics data is called database searching, where the database is simply a collection of protein sequences from the target organism, derived from genome sequencing. Experimental peptide tandem mass spectra are compared to simplified models of theoretical spectra calculated from the translated genomic sequences. However, in several interesting application areas, such as forensics, archaeology, venomics, and others, a genome sequence may not be available, or the correct genome sequence to use is not known. In these cases, de novo peptide identification can play an important role. De novo methods infer peptide sequence directly from the tandem mass spectrum without reference to a sequence database, usually using graph-based or machine learning algorithms. In this review, we provide a basic overview of de novo peptide identification methods and applications, briefly covering de novo algorithms and tools, and focusing in more depth on recent applications from venomics, metaproteomics, forensics, and characterization of antibody drugs.
Collapse
Affiliation(s)
- Isabelle O'Bryon
- Chemical and Biological SignaturesPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Sarah C. Jenson
- Chemical and Biological SignaturesPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Eric D. Merkley
- Chemical and Biological SignaturesPacific Northwest National LaboratoryRichlandWashingtonUSA
| |
Collapse
|
20
|
D’Ippolito RA, Panepinto MC, Mahoney KE, Bai DL, Shabanowitz J, Hunt DF. Sequencing a Bispecific Antibody by Controlling Chain Concentration Effects When Using an Immobilized Nonspecific Protease. Anal Chem 2020; 92:10470-10477. [PMID: 32597636 PMCID: PMC8106826 DOI: 10.1021/acs.analchem.0c01126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complete sequence coverage of monospecific antibodies was previously achieved using immobilized aspergillopepsin I in a single LC-MS/MS analysis. Bispecific antibodies are asymmetrical compared to their monospecific antibody counterparts, resulting in a decrease in the concentration of individual subunits. Four standard proteins were used to characterize the effect of a decrease in concentration when using this immobilized enzyme reactor. Low concentration samples resulted in the elimination of large peptide products due to a greater number of enzymatic cleavages. A competitive inhibitor rich in arginine residues reduced the number of enzymatic cleavages to the protein and retained large molecular weight products. The digestion of a bispecific antibody with competitive inhibition of aspergillopepsin I maintained large peptide products better suited for sequence reconstruction, resulting in complete sequence coverage from a single LC-MS/MS analysis.
Collapse
Affiliation(s)
- Robert A. D’Ippolito
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Maria C. Panepinto
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Keira E. Mahoney
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Dina L. Bai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Donald F. Hunt
- Department of Chemistry and Department of Pathology, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
21
|
Mao Y, Daly TJ, Li N. Lys-Sequencer: An algorithm for de novo sequencing of peptides by paired single residue transposed Lys-C and Lys-N digestion coupled with high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8574. [PMID: 31499586 DOI: 10.1002/rcm.8574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Database-dependent identification of proteins by mass spectrometry is well established, but has limitations when there are novel proteins, mutations, splice variants, and post-translational modifications (PTMs) not available in the established reference database. De novo sequencing as a database-independent approach could address these limitations by deducing peptide sequences directly from experimental tandem mass spectrometry spectra, while concomitantly yielding residue-by-residue confidence metrics. METHODS Equal amounts of bovine serum albumin (BSA) sample aliquots were digested separately with Lys-C and Lys-N complementary peptidases, separated by reversed-phase ultra-high-performance liquid chromatography (UPLC), and analyzed by collision-induced dissociation (CID)-based mass spectrometry on an Orbitrap mass spectrometer. In the Lys-Sequencer algorithm, matched tandem mass spectra with equal precursor ion mass from complementary digestions were paired, and fragment ion types were identified based on the unique mass relationship between fragment ions extracted from a spectrum pair followed by de novo sequencing of peptides with identification confidence assigned at the residue level. RESULTS In all the matched spectrum pairs, 34 top-ranked BSA peptides were identified, from which 391 amino acid residues were identified correctly, covering ~67% of the full sequence of BSA (583 residues) with only ~6% (35 residues) exhibiting ambiguity in the sequence order (although amino acid compositions were still correctly assigned). Of note, this approach identified peptide sequences up to 17 amino acids in length without ambiguity, with the exception of the N-terminal or C-terminal peptides containing lysine (18-mer). CONCLUSIONS The algorithm ("Lys-Sequencer") developed in this work achieves high precision for de novo sequencing of peptides. This method facilitates the identification of point mutation and new PTMs in the protein characterization and discovery of new peptides and proteins with varying levels of confidence.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Thomas J Daly
- Department of Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Ning Li
- Department of Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| |
Collapse
|
22
|
Hinkle JD, D'Ippolito RA, Panepinto MC, Wang WH, Bai DL, Shabanowitz J, Hunt DF. Unambiguous Sequence Characterization of a Monoclonal Antibody in a Single Analysis Using a Nonspecific Immobilized Enzyme Reactor. Anal Chem 2019; 91:13547-13554. [PMID: 31584792 DOI: 10.1021/acs.analchem.9b02666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate sequence characterization is essential for the development of therapeutic antibodies by the pharmaceutical industry. Presented here is a methodology to obtain comprehensive sequence analysis of a monoclonal antibody. An enzyme reactor of immobilized Aspergillopepsin I, a highly stable nonspecific protease, was used to cleave reduced antibody subunits into a peptide profile ranging from 1 to 20 kDa. Utilizing the Thermo Orbitrap Fusion's unique instrument architecture combined with state-of-the-art instrument control software allowed for dynamic instrument methods that optimally characterize eluting peptides based on their size and charge density. Using a data-dependent instrument method, both collisional dissociation and electron transfer dissociation were used to fragment the appropriate charge state of analyte peptides. The instrument layout also allowed for scans to be taken in parallel using both the ion trap and Orbitrap concurrently, thus allowing larger peptides to be analyzed in high resolution using the Orbitrap while simultaneously analyzing tryptic-like peptides using the ion trap. We harnessed these capabilities to develop a custom method to optimally fragment the eluting peptides based on their mass and charge density. Using this approach, we obtained 100% sequence coverage of the total antibody in a single chromatographic analysis, enabling unambiguous sequence assignment of all residues.
Collapse
Affiliation(s)
- Joshua D Hinkle
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Robert A D'Ippolito
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Maria C Panepinto
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Wei-Han Wang
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Dina L Bai
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Jeffrey Shabanowitz
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Donald F Hunt
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States.,Department of Pathology , University of Virginia , Charlottesville , Virginia 22908 , United States
| |
Collapse
|
23
|
Meyer L, López T, Espinosa R, Arias CF, Vollmers C, DuBois RM. A simplified workflow for monoclonal antibody sequencing. PLoS One 2019; 14:e0218717. [PMID: 31233538 PMCID: PMC6590890 DOI: 10.1371/journal.pone.0218717] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022] Open
Abstract
The diversity of antibody variable regions makes cDNA sequencing challenging, and conventional monoclonal antibody cDNA amplification requires the use of degenerate primers. Here, we describe a simplified workflow for amplification of IgG antibody variable regions from hybridoma RNA by a specialized RT-PCR followed by Sanger sequencing. We perform three separate reactions for each hybridoma: one each for kappa, lambda, and heavy chain transcripts. We prime reverse transcription with a primer specific to the respective constant region and use a template-switch oligonucleotide, which creates a custom sequence at the 5’ end of the antibody cDNA. This template-switching circumvents the issue of low sequence homology and the need for degenerate primers. Instead, subsequent PCR amplification of the antibody cDNA molecules requires only two primers: one primer specific for the template-switch oligonucleotide sequence and a nested primer to the respective constant region. We successfully sequenced the variable regions of five mouse monoclonal IgG antibodies using this method, which enabled us to design chimeric mouse/human antibody expression plasmids for recombinant antibody production in mammalian cell culture expression systems. All five recombinant antibodies bind their respective antigens with high affinity, confirming that the amino acid sequences determined by our method are correct and demonstrating the high success rate of our method. Furthermore, we also designed RT-PCR primers and amplified the variable regions from RNA of cells transfected with chimeric mouse/human antibody expression plasmids, showing that our approach is also applicable to IgG antibodies of human origin. Our monoclonal antibody sequencing method is highly accurate, user-friendly, and very cost-effective.
Collapse
Affiliation(s)
- Lena Meyer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Tomás López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Rafaela Espinosa
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (RMD); (CV)
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (RMD); (CV)
| |
Collapse
|
24
|
Muth T, Hartkopf F, Vaudel M, Renard BY. A Potential Golden Age to Come-Current Tools, Recent Use Cases, and Future Avenues for De Novo Sequencing in Proteomics. Proteomics 2018; 18:e1700150. [PMID: 29968278 DOI: 10.1002/pmic.201700150] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/23/2018] [Indexed: 01/15/2023]
Abstract
In shotgun proteomics, peptide and protein identification is most commonly conducted using database search engines, the method of choice when reference protein sequences are available. Despite its widespread use the database-driven approach is limited, mainly because of its static search space. In contrast, de novo sequencing derives peptide sequence information in an unbiased manner, using only the fragment ion information from the tandem mass spectra. In recent years, with the improvements in MS instrumentation, various new methods have been proposed for de novo sequencing. This review article provides an overview of existing de novo sequencing algorithms and software tools ranging from peptide sequencing to sequence-to-protein mapping. Various use cases are described for which de novo sequencing was successfully applied. Finally, limitations of current methods are highlighted and new directions are discussed for a wider acceptance of de novo sequencing in the community.
Collapse
Affiliation(s)
- Thilo Muth
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353, Berlin, Germany
| | - Felix Hartkopf
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353, Berlin, Germany
| | - Marc Vaudel
- K.G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5020, Bergen, Norway
| | - Bernhard Y Renard
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353, Berlin, Germany
| |
Collapse
|
25
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|