1
|
Gu Y, Liu M, Ma L, Quinn RJ. Advancing Kir4.2 Channel Ligand Identification through Collision-Induced Affinity Selection Mass Spectrometry. ACS Chem Biol 2024; 19:763-773. [PMID: 38449446 PMCID: PMC10949200 DOI: 10.1021/acschembio.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
The inwardly rectifying potassium Kir4.2 channel plays a crucial role in regulating membrane potentials and maintaining potassium homeostasis. Kir4.2 has been implicated in various physiological processes, including insulin secretion, gastric acid regulation, and the pathogenesis of central nervous system diseases. Despite its significance, the number of identified ligands for Kir4.2 remains limited. In this study, we established a method to directly observe ligands avoiding a requirement to observe the high-mass ligand-membrane protein-detergent complexes. This method used collision-induced affinity selection mass spectrometry (CIAS-MS) to identify ligands dissociated from the Kir4.2 channel-detergent complex. The CIAS-MS approach integrated all stages of affinity selection within the mass spectrometer, offering advantages in terms of time efficiency and cost-effectiveness. Additionally, we explored the effect of collisional voltage ramps on the dissociation behavior of the ligand and the ligand at different concentrations, demonstrating dose dependency.
Collapse
Affiliation(s)
- Yushu Gu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Miaomiao Liu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Linlin Ma
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
- School
of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
2
|
Gu Y, Liu M, Ma L, Quinn RJ. Identification of Ligands for Ion Channels: TRPM2. Chembiochem 2024; 25:e202300790. [PMID: 38242853 DOI: 10.1002/cbic.202300790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, nonselective cation channel with a widespread distribution throughout the body. It is involved in many pathological and physiological processes, making it a potential therapeutic target for various diseases, including Alzheimer's disease, Parkinson's disease, and cancers. New analytical techniques are beneficial for gaining a deeper understanding of its involvement in disease pathogenesis and for advancing the drug discovery for TRPM2-related diseases. In this work, we present the application of collision-induced affinity selection mass spectrometry (CIAS-MS) for the direct identification of ligands binding to TRPM2. CIAS-MS circumvents the need for high mass detection typically associated with mass spectrometry of large membrane proteins. Instead, it focuses on the detection of small molecules dissociated from the ligand-protein-detergent complexes. This affinity selection approach consolidates all affinity selection steps within the mass spectrometer, resulting in a streamlined process. We showed the direct identification of a known TRPM2 ligand dissociated from the protein-ligand complex. We demonstrated that CIAS-MS can identify binding ligands from complex mixtures of compounds and screened a compound library against TRPM2. We investigated the impact of voltage increments and ligand concentrations on the dissociation behavior of the binding ligand, revealing a dose-dependent relationship.
Collapse
Affiliation(s)
- Yushu Gu
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, N34 1.29, Nathan Campus, Brisbane, Queensland, 4111, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| |
Collapse
|
3
|
Kaltashov IA, Ivanov DG, Yang Y. Mass spectrometry-based methods to characterize highly heterogeneous biopharmaceuticals, vaccines, and nonbiological complex drugs at the intact-mass level. MASS SPECTROMETRY REVIEWS 2024; 43:139-165. [PMID: 36582075 PMCID: PMC10307928 DOI: 10.1002/mas.21829] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The intact-mass MS measurements are becoming increasingly popular in characterization of a range of biopolymers, especially those of interest to biopharmaceutical industry. However, as the complexity of protein therapeutics and other macromolecular medicines increases, the new challenges arise, one of which is the high levels of structural heterogeneity that are frequently exhibited by such products. The very notion of the molecular mass measurement loses its clear and intuitive meaning when applied to an extremely heterogenous system that cannot be characterized by a unique mass, but instead requires that a mass distribution be considered. Furthermore, convoluted mass distributions frequently give rise to unresolved ionic signal in mass spectra, from which little-to-none meaningful information can be extracted using standard approaches that work well for homogeneous systems. However, a range of technological advances made in the last decade, such as the hyphenation of intact-mass MS measurements with front-end separations, better integration of ion mobility in MS workflows, development of an impressive arsenal of gas-phase ion chemistry tools to supplement MS methods, as well as the revival of the charge detection MS and its triumphant entry into the field of bioanalysis already made impressive contributions towards addressing the structural heterogeneity challenge. An overview of these techniques is accompanied by critical analysis of the strengths and weaknesses of different approaches, and a brief overview of their applications to specific classes of biopharmaceutical products, vaccines, and nonbiological complex drugs.
Collapse
Affiliation(s)
- Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | - Daniil G. Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | | |
Collapse
|
4
|
Campuzano IDG. A Research Journey: Over a Decade of Denaturing and Native-MS Analyses of Hydrophobic and Membrane Proteins in Amgen Therapeutic Discovery. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2413-2431. [PMID: 37643331 DOI: 10.1021/jasms.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Membrane proteins and associated complexes currently comprise the majority of therapeutic targets and remain among the most challenging classes of proteins for analytical characterization. Through long-term strategic collaborations forged between industrial and academic research groups, there has been tremendous progress in advancing membrane protein mass spectrometry (MS) analytical methods and their concomitant application to Amgen therapeutic project progression. Herein, I will describe a detailed and personal account of how electrospray ionization (ESI) native mass spectrometry (nMS), ion mobility-MS (IM-MS), reversed phase liquid chromatographic mass spectrometry (RPLC-MS), high-throughput solid phase extraction mass spectrometry, and matrix-assisted laser desorption ionization mass spectrometry methods were developed, optimized, and validated within Amgen Research, and importantly, how these analytical methods were applied for membrane and hydrophobic protein analyses and ultimately therapeutic project support and progression. Additionally, I will discuss all the highly important and productive collaborative efforts, both internal Amgen and external academic, which were key in generating the samples, methods, and associated data described herein. I will also describe some early and previously unpublished nano-ESI (nESI) native-MS data from Amgen Research and the highly productive University of California Los Angeles (UCLA) collaboration. I will also present previously unpublished examples of real-life Amgen biotherapeutic membrane protein projects that were supported by all the MS (and IM) analytical techniques described herein. I will start by describing the initial nESI nMS experiments performed at Amgen in 2011 on empty nanodisc molecules, using a quadrupole time-of-flight MS, and how these experiments progressed on to the 15 Tesla Fourier transform ion cyclotron resonance MS at UCLA. Then described are monomeric and multimeric membrane protein data acquired in both nESI nMS and tandem-MS modes, using multiple methods of ion activation, resulting in dramatic spectral simplification. Also described is how we investigated the far less established and less published subject, that is denaturing RPLC-MS analysis of membrane proteins, and how we developed a highly robust and reproducible RPLC-MS method capable of effective separation of membrane proteins differing in only the presence or absence of an N-terminal post translational modification. Also described is the evolution of the aforementioned RPLC-MS method into a high-throughput solid phase extraction MS method. Finally, I will give my opinion on key developments and how the area of nMS of membrane proteins needs to evolve to a state where it can be applied within the biopharmaceutical research environment for routine therapeutic project support.
Collapse
Affiliation(s)
- Iain D G Campuzano
- Amgen Research, Center for Research Acceleration by Digital Innovation, Molecular Analytics, Thousand Oaks, California 91320, United States
| |
Collapse
|
5
|
Juliano BR, Keating JW, Ruotolo BT. Infrared Photoactivation Enables Improved Native Top-Down Mass Spectrometry of Transmembrane Proteins. Anal Chem 2023; 95:13361-13367. [PMID: 37610409 PMCID: PMC11081007 DOI: 10.1021/acs.analchem.3c02788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Membrane proteins are often challenging targets for native top-down mass spectrometry experimentation. The requisite use of membrane mimetics to solubilize such proteins necessitates the application of supplementary activation methods to liberate protein ions prior to sequencing, which typically limits the sequence coverage achieved. Recently, infrared photoactivation has emerged as an alternative to collisional activation for the liberation of membrane proteins from surfactant micelles. However, much remains unknown regarding the mechanism by which IR activation liberates membrane protein ions from such micelles, the extent to which such methods can improve membrane protein sequence coverage, and the degree to which such approaches can be extended to support native proteomics. Here, we describe experiments designed to evaluate and probe infrared photoactivation for membrane protein sequencing, proteoform identification, and native proteomics applications. Our data reveal that infrared photoactivation can dissociate micelles composed of a variety of detergent classes, without the need for a strong IR chromophore by leveraging the relatively weak association energies of such detergent clusters in the gas phase. Additionally, our data illustrate how IR photoactivation can be extended to include membrane mimetics beyond micelles and liberate proteins from nanodiscs, liposomes, and bicelles. Finally, our data quantify the improvements in membrane protein sequence coverage produced through the use of IR photoactivation, which typically leads to membrane protein sequence coverage values ranging from 40 to 60%.
Collapse
Affiliation(s)
- Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph W Keating
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Lantz C, Wei B, Zhao B, Jung W, Goring AK, Le J, Miller J, Loo RRO, Loo JA. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc 2022; 144:21826-21830. [PMID: 36441927 PMCID: PMC10017227 DOI: 10.1021/jacs.2c06726] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Native mass spectrometry (MS) of proteins and protein assemblies reveals size and binding stoichiometry, but elucidating structures to understand their function is more challenging. Native top-down MS (nTDMS), i.e., fragmentation of the gas-phase protein, is conventionally used to derive sequence information, locate post-translational modifications (PTMs), and pinpoint ligand binding sites. nTDMS also endeavors to dissociate covalent bonds in a conformation-sensitive manner, such that information about higher-order structure can be inferred from the fragmentation pattern. However, the activation/dissociation method used can greatly affect the resulting information on protein higher-order structure. Methods such as electron capture/transfer dissociation (ECD and ETD, or ExD) and ultraviolet photodissociation (UVPD) can produce product ions that are sensitive to structural features of protein complexes. For multi-subunit complexes, a long-held belief is that collisionally activated dissociation (CAD) induces unfolding and release of a subunit, and thus is not useful for higher-order structure characterization. Here we show not only that sequence information can be obtained directly from CAD of native protein complexes but that the fragmentation pattern can deliver higher-order structural information about their gas- and solution-phase structures. Moreover, CAD-generated internal fragments (i.e., fragments containing neither N-/C-termini) reveal structural aspects of protein complexes.
Collapse
Affiliation(s)
- Carter Lantz
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Benqian Wei
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Boyu Zhao
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Wonhyeuk Jung
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Andrew K Goring
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Jessie Le
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Justin Miller
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, California 90095, United States.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, California 90095, United States.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Swansiger AK, Marty MT, Prell JS. Fourier-Transform Approach for Reconstructing Macromolecular Mass Defect Profiles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:172-180. [PMID: 34913687 DOI: 10.1021/jasms.1c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
State-of-the-art native mass spectrometry (MS) methods have been developed for analysis of highly heterogeneous intact complexes and have provided much insight into the structure and properties of noncovalent assemblies that can be difficult to study using denatured proteins. These native MS methods can often be used to study even highly polydisperse membrane proteins embedded in detergent micelles, nanodiscs, and other membrane mimics. However, characterizing highly polydisperse native complexes which are also heterogeneous presents additional challenges for native MS. Macromolecular mass defect (MMD) analysis aims to characterize heterogeneous ion populations obfuscated by adduct polydispersity and reveal the distribution of "base" masses, and was recently implemented in the Bayesian analysis software UniDec. Here, we illustrate an alternative, orthogonal MMD analysis method implemented in the deconvolution program iFAMS, which takes advantage of Fourier transform (FT) to deconvolve low-resolution data with few user-input parameters and which can provide high quality results even for mass spectra with a signal-to-noise ratio of ∼5:1. Agreement between this method, which is based on frequency-domain data, and the mass-domain algorithm of UniDec provides strong evidence that both methods can accurately characterize highly polydisperse and heterogeneous ion populations. The FT algorithm is expected to be very useful in characterizing many types of analytes ranging from membrane proteins to polymer-conjugated proteins, branched polymers, and other large analytes, as well as for reconstructing isotope profiles for highly complex but still isotope-resolved mass spectra.
Collapse
Affiliation(s)
- Andrew K Swansiger
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
9
|
Campuzano IDG, Sandoval W. Denaturing and Native Mass Spectrometric Analytics for Biotherapeutic Drug Discovery Research: Historical, Current, and Future Personal Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1861-1885. [PMID: 33886297 DOI: 10.1021/jasms.1c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mass spectrometry (MS) plays a key role throughout all stages of drug development and is now as ubiquitous as other analytical techniques such as surface plasmon resonance, nuclear magnetic resonance, and supercritical fluid chromatography, among others. Herein, we aim to discuss the history of MS, both electrospray and matrix-assisted laser desorption ionization, specifically for the analysis of antibodies, evolving through to denaturing and native-MS analysis of newer biologic moieties such as antibody-drug conjugates, multispecific antibodies, and interfering nucleic acid-based therapies. We discuss challenging therapeutic target characterization such as membrane protein receptors. Importantly, we compare and contrast the MS and hyphenated analytical chromatographic methods used to characterize these therapeutic modalities and targets within biopharmaceutical research and highlight the importance of appropriate MS deconvolution software and its essential contribution to project progression. Finally, we describe emerging applications and MS technologies that are still predominantly within either a development or academic stage of use but are poised to have significant impact on future drug development within the biopharmaceutic industry once matured. The views reflected herein are personal and are not meant to be an exhaustive list of all relevant MS performed within biopharmaceutical research but are what we feel have been historically, are currently, and will be in the future the most impactful for the drug development process.
Collapse
MESH Headings
- Antibodies, Monoclonal/analysis
- Automation, Laboratory
- Biopharmaceutics/methods
- Chromatography, Liquid
- Drug Discovery/methods
- Drug Industry/history
- History, 20th Century
- History, 21st Century
- Humans
- Immunoconjugates/analysis
- Immunoconjugates/chemistry
- Protein Denaturation
- Protein Processing, Post-Translational
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/history
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/history
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, California 92130, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
10
|
Ion mobility-mass spectrometry reveals the role of peripheral myelin protein dimers in peripheral neuropathy. Proc Natl Acad Sci U S A 2021; 118:2015331118. [PMID: 33893233 DOI: 10.1073/pnas.2015331118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peripheral myelin protein (PMP22) is an integral membrane protein that traffics inefficiently even in wild-type (WT) form, with only 20% of the WT protein reaching its final plasma membrane destination in myelinating Schwann cells. Misfolding of PMP22 has been identified as a key factor in multiple peripheral neuropathies, including Charcot-Marie-Tooth disease and Dejerine-Sottas syndrome. While biophysical analyses of disease-associated PMP22 mutants show altered protein stabilities, leading to reduced surface trafficking and loss of PMP22 function, it remains unclear how destabilization of PMP22 mutations causes mistrafficking. Here, native ion mobility-mass spectrometry (IM-MS) is used to compare the gas phase stabilities and abundances for an array of mutant PM22 complexes. We find key differences in the PMP22 mutant stabilities and propensities to form homodimeric complexes. Of particular note, we observe that severely destabilized forms of PMP22 exhibit a higher propensity to dimerize than WT PMP22. Furthermore, we employ lipid raft-mimicking SCOR bicelles to study PMP22 mutants, and find that the differences in dimer abundances are amplified in this medium when compared to micelle-based data, with disease mutants exhibiting up to 4 times more dimer than WT when liberated from SCOR bicelles. We combine our findings with previous cellular data to propose that the formation of PMP22 dimers from destabilized monomers is a key element of PMP22 mistrafficking.
Collapse
|
11
|
Taylor M, Lukowski JK, Anderton CR. Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:872-894. [PMID: 33656885 PMCID: PMC8033567 DOI: 10.1021/jasms.0c00439] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 05/02/2023]
Abstract
Biological systems are composed of heterogeneous populations of cells that intercommunicate to form a functional living tissue. Biological function varies greatly across populations of cells, as each single cell has a unique transcriptome, proteome, and metabolome that translates to functional differences within single species and across kingdoms. Over the past decade, substantial advancements in our ability to characterize omic profiles on a single cell level have occurred, including in multiple spectroscopic and mass spectrometry (MS)-based techniques. Of these technologies, spatially resolved mass spectrometry approaches, including mass spectrometry imaging (MSI), have shown the most progress for single cell proteomics and metabolomics. For example, reporter-based methods using heavy metal tags have allowed for targeted MS investigation of the proteome at the subcellular level, and development of technologies such as laser ablation electrospray ionization mass spectrometry (LAESI-MS) now mean that dynamic metabolomics can be performed in situ. In this Perspective, we showcase advancements in single cell spatial metabolomics and proteomics over the past decade and highlight important aspects related to high-throughput screening, data analysis, and more which are vital to the success of achieving proteomic and metabolomic profiling at the single cell scale. Finally, using this broad literature summary, we provide a perspective on how the next decade may unfold in the area of single cell MS-based proteomics and metabolomics.
Collapse
Affiliation(s)
- Michael
J. Taylor
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jessica K. Lukowski
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher R. Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Affiliation(s)
- James E. Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
13
|
Zhou M, Lantz C, Brown KA, Ge Y, Paša-Tolić L, Loo JA, Lermyte F. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem Sci 2020; 11:12918-12936. [PMID: 34094482 PMCID: PMC8163214 DOI: 10.1039/d0sc04392c] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
In biology, it can be argued that if the genome contains the script for a cell's life cycle, then the proteome constitutes an ensemble cast of actors that brings these instructions to life. Their interactions with each other, co-factors, ligands, substrates, and so on, are key to understanding nearly any biological process. Mass spectrometry is well established as the method of choice to determine protein primary structure and location of post-translational modifications. In recent years, top-down fragmentation of intact proteins has been increasingly combined with ionisation of noncovalent assemblies under non-denaturing conditions, i.e., native mass spectrometry. Sequence, post-translational modifications, ligand/metal binding, protein folding, and complex stoichiometry can thus all be probed directly. Here, we review recent developments in this new and exciting field of research. While this work is written primarily from a mass spectrometry perspective, it is targeted to all bioanalytical scientists who are interested in applying these methods to their own biochemistry and chemical biology research.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Frederik Lermyte
- Department of Chemistry, Institute of Chemistry and Biochemistry, Technical University of Darmstadt 64287 Darmstadt Germany
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège 4000 Liège Belgium
- School of Engineering, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
14
|
Zenaidee MA, Lantz C, Perkins T, Jung W, Ogorzalek Loo RR, Loo JA. Internal Fragments Generated by Electron Ionization Dissociation Enhance Protein Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1896-1902. [PMID: 32799534 PMCID: PMC7485267 DOI: 10.1021/jasms.0c00160] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Top-down proteomics by mass spectrometry (MS) involves the mass measurement of an intact protein followed by subsequent activation of the protein to generate product ions. Electron-based fragmentation methods like electron capture dissociation and electron transfer dissociation are widely used for these types of analyses. Recently, electron ionization dissociation (EID), which utilizes higher energy electrons (>20 eV) has been suggested to be more efficient for top-down protein fragmentation compared to other electron-based dissociation methods. Here, we demonstrate that the use of EID enhances protein fragmentation and subsequent detection of protein fragments. Protein product ions can form by either single cleavage events, resulting in terminal fragments containing the C-terminus or N-terminus of the protein, or by multiple cleavage events to give rise to internal fragments that include neither the C-terminus nor the N-terminus of the protein. Conventionally, internal fragments have been disregarded, as reliable assignments of these fragments were limited. Here, we demonstrate that internal fragments generated by EID can account for ∼20-40% of the mass spectral signals detected by top-down EID-MS experiments. By including internal fragments, the extent of the protein sequence that can be explained from a single tandem mass spectrum increases from ∼50 to ∼99% for 29 kDa carbonic anhydrase II and 8.6 kDa ubiquitin. When searching for internal fragments during data analysis, previously unassigned peaks can be readily and accurately assigned to confirm a given protein sequence and to enhance the utility of top-down protein sequencing experiments.
Collapse
Affiliation(s)
- Muhammad A. Zenaidee
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Taylor Perkins
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Wonhyuek Jung
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
15
|
Campuzano IDG, Nshanian M, Spahr C, Lantz C, Netirojjanakul C, Li H, Wongkongkathep P, Wolff JJ, Loo JA. High Mass Analysis with a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: From Inorganic Salt Clusters to Antibody Conjugates and Beyond. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1155-1162. [PMID: 32196330 PMCID: PMC7261417 DOI: 10.1021/jasms.0c00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Analysis of proteins and complexes under native mass spectrometric (MS) and solution conditions was typically performed using time-of-flight (ToF) analyzers, due to their routine high m/z transmission and detection capabilities. However, over recent years, the ability of Orbitrap-based mass spectrometers to transmit and detect a range of high molecular weight species is well documented. Herein, we describe how a 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer (15 T FT-ICR MS) is more than capable of analyzing a wide range of ions in the high m/z scale (>5000), in both positive and negative instrument polarities, ranging from the inorganic cesium iodide salt clusters; a humanized IgG1k monoclonal antibody (mAb; 148.2 kDa); an IgG1-mertansine drug conjugate (148.5 kDa, drug-to-antibody ratio; DAR 2.26); an IgG1-siRNA conjugate (159.1 kDa; ribonucleic acid to antibody ratio; RAR 1); the membrane protein aquaporin-Z (97.2 kDa) liberated from a C8E4 detergent micelle; the empty MSP1D1-nanodisc (142.5 kDa) and the tetradecameric chaperone protein complex GroEL (806.2 kDa; GroEL dimer at 1.6 MDa). We also investigate different regions of the FT-ICR MS that impact ion transmission and desolvation. Finally, we demonstrate how the transmission of these species and resultant spectra are highly consistent with those previously generated on both quadrupole-ToF (Q-ToF) and Orbitrap instrumentation. This report serves as an impactful example of how FT-ICR mass analyzers are competitive to Q-ToFs and Orbitraps for high mass detection at high m/z.
Collapse
Affiliation(s)
| | - Michael Nshanian
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Christopher Spahr
- Amgen Research, Amgen Inc, Thousand Oaks, California 91320, United States
| | - Carter Lantz
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | | | - Huilin Li
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Jeremy J. Wolff
- Bruker Daltonics Inc, Billerica, Massachusetts 01821, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Gault J, Liko I, Landreh M, Shutin D, Bolla JR, Jefferies D, Agasid M, Yen HY, Ladds MJGW, Lane DP, Khalid S, Mullen C, Remes PM, Huguet R, McAlister G, Goodwin M, Viner R, Syka JEP, Robinson CV. Combining native and 'omics' mass spectrometry to identify endogenous ligands bound to membrane proteins. Nat Methods 2020; 17:505-508. [PMID: 32371966 PMCID: PMC7332344 DOI: 10.1038/s41592-020-0821-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/25/2020] [Indexed: 02/08/2023]
Abstract
Ligands bound to protein assemblies provide critical information for function, yet are often difficult to capture and define. Here we develop a top-down method, 'nativeomics', unifying 'omics' (lipidomics, proteomics, metabolomics) analysis with native mass spectrometry to identify ligands bound to membrane protein assemblies. By maintaining the link between proteins and ligands, we define the lipidome/metabolome in contact with membrane porins and a mitochondrial translocator to discover potential regulators of protein function.
Collapse
Affiliation(s)
- Joseph Gault
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Idlir Liko
- Department of Chemistry, University of Oxford, Oxford, UK
- OMass Therapeutics, Oxford, UK
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Denis Shutin
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | - Mark Agasid
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Marcus J G W Ladds
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, UK
| | | | | | | | | | | | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, USA
| | | | | |
Collapse
|
17
|
Kafader JO, Melani RD, Schachner LF, Ives AN, Patrie SM, Kelleher NL, Compton PD. Native vs Denatured: An in Depth Investigation of Charge State and Isotope Distributions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:574-581. [PMID: 31971796 PMCID: PMC7539638 DOI: 10.1021/jasms.9b00040] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
New tools and techniques have dramatically accelerated the field of structural biology over the past several decades. One potent and relatively new technique that is now being utilized by an increasing number of laboratories is the combination of so-called "native" electrospray ionization (ESI) with mass spectrometry (MS) for the characterization of proteins and their noncovalent complexes. However, native ESI-MS produces species at increasingly higher m/z with increasing molecular weight, leading to substantial differences when compared to traditional mass spectrometric approaches using denaturing ESI solutions. Herein, these differences are explored both theoretically and experimentally to understand the role that charge state and isotopic distributions have on signal-to-noise (S/N) as a function of complex molecular weight and how the reduced collisional cross sections of proteins electrosprayed under native solution conditions can lead to improved data quality in image current mass analyzers, such as Orbitrap and FT-ICR. Quantifying ion signal differences under native and denatured conditions revealed enhanced S/N and a more gradual decay in S/N with increasing mass under native conditions. Charge state and isotopic S/N models, supported by experimental results, indicate that analysis of proteins under native conditions at 100 kDa will be 17 times more sensitive than analysis under denatured conditions at the same mass. Higher masses produce even larger sensitivity gains. Furthermore, reduced cross sections under native conditions lead to lower levels of ion decay within an Orbitrap scan event over long transient acquisition times, enabling isotopic resolution of species with molecular weights well in excess of those typically resolved under denatured conditions.
Collapse
Affiliation(s)
- Jared O Kafader
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Ashley N Ives
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Steven M Patrie
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Poltash ML, McCabe JW, Shirzadeh M, Laganowsky A, Russell DH. Native IM-Orbitrap MS: Resolving What Was Hidden. Trends Analyt Chem 2020; 124:115533. [PMID: 32189816 PMCID: PMC7079669 DOI: 10.1016/j.trac.2019.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Native ion mobility-mass spectrometry (IM-MS) is an emerging biophysical approach to probe the intricate details of protein structure and function. The instrument design enables measurements of accurate first-principle determinations of rotationally-averaged ion-neutral collision cross sections coupled with high-mass, high-resolution mass measurement capabilities of Orbitrap MS. The inherent duty-cycle mismatch between drift tube IM and Orbitrap MS is alleviated by operating the drift tube in a frequency modulated mode while continuously acquiring mass spectra with the Orbitrap MS. Fourier transform of the resulting time-domain signal, i.e., ion abundances as a function of the modulation frequency, yields a frequency domain spectrum that is then converted (s-1 to s) to IM drift time. This multiplexed approach allows for a duty-cycle of 25% compared to <1% for traditional "pulse-and-wait" IM-ToF-MS. Improvements in mobility and mass resolution of the IM-Orbitrap allows for accurate analysis of intact protein complexes and the possibility of capturing protein dynamics.
Collapse
Affiliation(s)
- Michael L. Poltash
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843
| | - Jacob W. McCabe
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843
| | - David H. Russell
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843
| |
Collapse
|
19
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Sipe SN, Patrick JW, Laganowsky A, Brodbelt JS. Enhanced Characterization of Membrane Protein Complexes by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2019; 92:899-907. [PMID: 31765130 DOI: 10.1021/acs.analchem.9b03689] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of chemical chaperones to solubilize membrane protein complexes in aqueous solutions has allowed for gas-phase analysis of their native-like assemblies, including rapid evaluation of stability and interacting partners. Characterization of protein primary sequence, however, has thus far been limited. Ultraviolet photodissociation (UVPD) generates a multitude of sequence ions for the E. coli ammonia channel (AmtB), provides improved localization of a possible post-translational modification of aquaporin Z (AqpZ), and surpasses previous reports of sequence coverage for mechanosensitive channel of large conductance (MscL). Variations in UVPD sequence ion abundance have been shown to correspond to structural changes induced upon some perturbation. Preliminary results are reported here for elucidating increased rigidity or flexibility of MscL when bound to various phospholipids.
Collapse
Affiliation(s)
- Sarah N Sipe
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - John W Patrick
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Arthur Laganowsky
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
21
|
Snyder DT, Panczyk E, Stiving AQ, Gilbert JD, Somogyi A, Kaplan D, Wysocki V. Design and Performance of a Second-Generation Surface-Induced Dissociation Cell for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Native Protein Complexes. Anal Chem 2019; 91:14049-14057. [PMID: 31584811 DOI: 10.1021/acs.analchem.9b03746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A second-generation ("Gen 2") device capable of surface-induced dissociation (SID) and collision-induced dissociation (CID) for Fourier transform ion cyclotron resonance mass spectrometry of protein complexes has been designed, simulated, fabricated, and experimentally compared to a first-generation device ("Gen 1"). The primary goals of the redesign were to (1) simplify SID by reducing the number of electrodes, (2) increase CID and SID sensitivity by lengthening the collision cell, and (3) increase the mass range of the device for analysis of larger multimeric proteins, all while maintaining the normal instrument configuration and operation. Compared to Gen 1, Gen 2 exhibits an approximately 10× increase in sensitivity in flythrough mode, 7× increase in CID sensitivity for protonated leucine enkephalin (m/z 556), and 14× increase of CID sensitivity of 53 kDa streptavidin tetramer. It also approximately doubles the useful mass range (from m/z 8000 to m/z 15 000) using a rectilinear ion trap with a smaller inscribed radius or triples it (to m/z 22 000) using a hexapole collision cell and yields a 3-10× increase in SID sensitivity. We demonstrate the increased mass range and sensitivity on a variety of model molecules spanning nearly 3 orders of magnitude in absolute mass and present examples where the high resolution of the FT-ICR is advantageous for deconvoluting overlapping SID fragments.
Collapse
Affiliation(s)
| | | | | | | | | | - Desmond Kaplan
- KapScience LLC , Tewksbury , Massachusetts 01876 , United States
| | | |
Collapse
|
22
|
Campuzano IDG, Robinson JH, Hui JO, Shi SDH, Netirojjanakul C, Nshanian M, Egea PF, Lippens JL, Bagal D, Loo JA, Bern M. Native and Denaturing MS Protein Deconvolution for Biopharma: Monoclonal Antibodies and Antibody-Drug Conjugates to Polydisperse Membrane Proteins and Beyond. Anal Chem 2019; 91:9472-9480. [PMID: 31194911 PMCID: PMC6703902 DOI: 10.1021/acs.analchem.9b00062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a ubiquitously used analytical method applied across multiple departments in biopharma, ranging from early research discovery to process development. Accurate, efficient, and consistent protein MS spectral deconvolution across multiple instrument and detector platforms (time-of-flight, Orbitrap, Fourier-transform ion cyclotron resonance) is essential. When proteins are ionized during the ESI process, a distribution of consecutive multiply charged ions are observed on the m/z scale, either positive [M + nH]n+ or negative [M - nH]n- depending on the ionization polarity. The manual calculation of the neutral molecular weight (MW) of single proteins measured by ESI-MS is simple; however, algorithmic deconvolution is required for more complex protein mixtures to derive accurate MWs. Multiple deconvolution algorithms have evolved over the past two decades, all of which have their advantages and disadvantages, in terms of speed, user-input parameters (or ideally lack thereof), and whether they perform optimally on proteins analyzed under denatured or native-MS and solution conditions. Herein, we describe the utility of a parsimonious deconvolution algorithm (explaining the observed spectra with a minimum number of masses) to process a wide range of highly diverse biopharma relevant and research grade proteins and complexes (PEG-GCSF; an IgG1k; IgG1- and IgG2-biotin covalent conjugates; the membrane protein complex AqpZ; a highly polydisperse empty MSP1D1 nanodisc and the tetradecameric chaperone protein complex GroEL) analyzed under native-MS, denaturing LC-MS, and positive and negative modes of ionization, using multiple instruments and therefore multiple data formats. The implementation of a comb filter and peak sharpening option is also demonstrated to be highly effective for deconvolution of highly polydisperse and enhanced separation of a low level lysine glycation post-translational modification (+162.1 Da), partially processed heavy chain lysine residues (+128.1 Da), and loss of N-acetylglucosamine (GlcNAc; -203.1 Da).
Collapse
Affiliation(s)
- Iain D. G. Campuzano
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - John H. Robinson
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - John O. Hui
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Stone D.-H. Shi
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Chawita Netirojjanakul
- Amgen Discovery Research, Hybrid Modality Engineering, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Michael Nshanian
- University of California-Los Angeles, Dept. Chemistry and Biochemistry, Los Angeles, CA, 90095, USA
| | - Pascal F. Egea
- University of California-Los Angeles, Dept. Biological Chemistry, Los Angeles, CA, USA
| | - Jennifer L. Lippens
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Dhanashri Bagal
- Amgen Discovery Research, Discovery Attribute Sciences, Veterans Ways, South San Francisco, CA, 94080, USA
| | - Joseph A. Loo
- Amgen Discovery Research, Hybrid Modality Engineering, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
- University of California-Los Angeles, Dept. Biological Chemistry, Los Angeles, CA, USA
| | | |
Collapse
|
23
|
A new optimization strategy for MALDI FTICR MS tissue analysis for untargeted metabolomics using experimental design and data modeling. Anal Bioanal Chem 2019; 411:3891-3903. [PMID: 31093699 DOI: 10.1007/s00216-019-01863-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Abstract
Ultra-high-resolution imaging mass spectrometry using matrix-assisted laser desorption ionization (MALDI) MS coupled to a Fourier transform ion cyclotron resonance (FTICR) mass analyzer is a powerful technique for the visualization of small molecule distribution within biological tissues. The FTICR MS provides ultra-high resolving power and mass accuracy that allows large molecular coverage and molecular formula assignments, both essential for untargeted metabolomics analysis. These performances require fine optimizations of the MALDI FTICR parameters. In this context, this study proposes a new strategy, using experimental design, for the optimization of ion transmission voltages and MALDI parameters, for tissue untargeted metabolomics analysis, in both positive and negative ionization modes. These experiments were conducted by assessing the effects of nine factors for ion transmission voltages and four factors for MALDI on the number of peaks, the weighted resolution, and the mean error within m/z 150-1000 mass range. For this purpose, fractional factorial designs were used with multiple linear regression (MLR) to evaluate factor effects and to optimize parameter values. The optimized values of ion transmission voltages (RF amplitude TOF, RF amplitude octopole, frequency transfer optic, RF frequency octopole, deflector plate, funnel 1, skimmer, funnel RF amplitude, time-of-flight, capillary exit), MALDI parameters (laser fluence, number of laser shots), and detection parameters (data size, number of scans) led to an increase of 32% and 18% of the number of peaks, an increase of 8% and 39% of the resolution, and a decrease of 56% and 34% of the mean error in positive and negative ionization modes, respectively. Graphical abstract.
Collapse
|
24
|
Keener JE, Zambrano DE, Zhang G, Zak CK, Reid DJ, Deodhar BS, Pemberton JE, Prell JS, Marty MT. Chemical Additives Enable Native Mass Spectrometry Measurement of Membrane Protein Oligomeric State within Intact Nanodiscs. J Am Chem Soc 2019; 141:1054-1061. [PMID: 30586296 DOI: 10.1021/jacs.8b11529] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Membrane proteins play critical biochemical roles but remain challenging to study. Recently, native or nondenaturing mass spectrometry (MS) has made great strides in characterizing membrane protein interactions. However, conventional native MS relies on detergent micelles, which may disrupt natural interactions. Lipoprotein nanodiscs provide a platform to present membrane proteins for native MS within a lipid bilayer environment, but previous native MS of membrane proteins in nanodiscs has been limited by the intermediate stability of nanodiscs. It is difficult to eject membrane proteins from nanodiscs for native MS but also difficult to retain intact nanodisc complexes with membrane proteins inside. Here, we employed chemical reagents that modulate the charge acquired during electrospray ionization (ESI). By modulating ESI conditions, we could either eject the membrane protein complex with few bound lipids or capture the intact membrane protein nanodisc complex-allowing measurement of the membrane protein oligomeric state within an intact lipid bilayer environment. The dramatic differences in the stability of nanodiscs under different ESI conditions opens new applications for native MS of nanodiscs.
Collapse
Affiliation(s)
- James E Keener
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Dane Evan Zambrano
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Ciara K Zak
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Deseree J Reid
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Bhushan S Deodhar
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - James S Prell
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| |
Collapse
|
25
|
Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. Anal Chem 2019; 91:190-209. [PMID: 30412666 PMCID: PMC6571034 DOI: 10.1021/acs.analchem.8b05071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Samantha H. Sarni
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
26
|
Lippens JL, Egea PF, Spahr C, Vaish A, Keener JE, Marty MT, Loo JA, Campuzano ID. Rapid LC-MS Method for Accurate Molecular Weight Determination of Membrane and Hydrophobic Proteins. Anal Chem 2018; 90:13616-13623. [PMID: 30335969 PMCID: PMC6580849 DOI: 10.1021/acs.analchem.8b03843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Therapeutic target characterization involves many components, including accurate molecular weight (MW) determination. Knowledge of the accurate MW allows one to detect the presence of post-translational modifications, proteolytic cleavages, and importantly, if the correct construct has been generated and purified. Denaturing liquid chromatography-mass spectrometry (LC-MS) can be an attractive method for obtaining this information. However, membrane protein LC-MS methodology has remained relatively under-explored and under-incorporated in comparison to methods for soluble proteins. Here, systematic investigation of multiple gradients and column chemistries has led to the development of a 5 min denaturing LC-MS method for acquiring membrane protein accurate MW measurements. Conditions were interrogated with membrane proteins, such as GPCRs and ion channels, as well as bispecific antibody constructs of variable sizes with the aim to provide the community with rapid LC-MS methods necessary to obtain chromatographic and accurate MW measurements in a medium- to high-throughput manner. The 5 min method detailed has successfully produced MW measurements for hydrophobic proteins with a wide MW range (17.5 to 105.3 kDa) and provided evidence that some constructs indeed contain unexpected modifications or sequence clipping. This rapid LC-MS method is also capable of baseline separating formylated and nonformylated aquaporinZ membrane protein.
Collapse
Affiliation(s)
- Jennifer L. Lippens
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| | - Pascal F. Egea
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Chris Spahr
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| | - Amit Vaish
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| | - James E. Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Joseph A. Loo
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Iain D.G. Campuzano
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| |
Collapse
|
27
|
Zhou M, Yan J, Romano CA, Tebo BM, Wysocki VH, Paša-Tolić L. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:723-733. [PMID: 29388167 PMCID: PMC7305857 DOI: 10.1007/s13361-017-1882-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 05/11/2023]
Abstract
Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Jing Yan
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA.
| |
Collapse
|
28
|
Campuzano IDG, Netirojjanakul C, Nshanian M, Lippens JL, Kilgour DPA, Van Orden S, Loo JA. Native-MS Analysis of Monoclonal Antibody Conjugates by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 2017; 90:745-751. [DOI: 10.1021/acs.analchem.7b03021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Michael Nshanian
- Department
of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California−Los Angeles, Los Angeles, California 90095, United States
| | | | - David P. A. Kilgour
- Department
of Chemistry and Forensics, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Steve Van Orden
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Joseph A. Loo
- Department
of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California−Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|