1
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2024:iyae167. [PMID: 39693264 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
2
|
Watteyne J, Chudinova A, Ripoll-Sánchez L, Schafer WR, Beets I. Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior. Genetics 2024; 228:iyae141. [PMID: 39344922 PMCID: PMC11538413 DOI: 10.1093/genetics/iyae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Neuropeptides are abundant signaling molecules that control neuronal activity and behavior in all animals. Owing in part to its well-defined and compact nervous system, Caenorhabditis elegans has been one of the primary model organisms used to investigate how neuropeptide signaling networks are organized and how these neurochemicals regulate behavior. We here review recent work that has expanded our understanding of the neuropeptidergic signaling network in C. elegans by mapping the evolutionary conservation, the molecular expression, the receptor-ligand interactions, and the system-wide organization of neuropeptide pathways in the C. elegans nervous system. We also describe general insights into neuropeptidergic circuit motifs and the spatiotemporal range of peptidergic transmission that have emerged from in vivo studies on neuropeptide signaling. With efforts ongoing to chart peptide signaling networks in other organisms, the C. elegans neuropeptidergic connectome can serve as a prototype to further understand the organization and the signaling dynamics of these networks at organismal level.
Collapse
Affiliation(s)
- Jan Watteyne
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| | | | - Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Psychiatry, Cambridge University, Cambridge CB2 0SZ, UK
| | - William R Schafer
- Department of Biology, University of Leuven, Leuven 3000, Belgium
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Isabel Beets
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
3
|
Lo JY, Adam KM, Garrison JL. Neuropeptide inactivation regulates egg-laying behavior to influence reproductive health in Caenorhabditis elegans. Curr Biol 2024; 34:4715-4728.e4. [PMID: 39395417 DOI: 10.1016/j.cub.2024.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/11/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
Neural communication requires both fast-acting neurotransmitters and neuromodulators that function on slower timescales to communicate. Endogenous bioactive peptides, often called "neuropeptides," comprise the largest and most diverse class of neuromodulators that mediate crosstalk between the brain and peripheral tissues to regulate physiology and behaviors conserved across the animal kingdom. Neuropeptide signaling can be terminated through receptor binding and internalization or degradation by extracellular enzymes called neuropeptidases. Inactivation by neuropeptidases can shape the dynamics of signaling in vivo by specifying both the duration of signaling and the anatomic path neuropeptides can travel before they are degraded. For most neuropeptides, the identity of the relevant inactivating peptidase(s) is unknown. Here, we established a screening platform in C. elegans utilizing mass spectrometry-based peptidomics to discover neuropeptidases and simultaneously profile the in vivo specificity of these enzymes against each of more than 250 endogenous peptides. We identified NEP-2, a worm ortholog of the mammalian peptidase neprilysin-2, and demonstrated that it regulates specific neuropeptides, including those in the egg-laying circuit. We found that NEP-2 is required in muscle cells to regulate signals from neurons to modulate both behavior and health in the reproductive system. Taken together, our results demonstrate that peptidases, which are an important node of regulation in neuropeptide signaling, affect the dynamics of signaling to impact behavior, physiology, and aging.
Collapse
Affiliation(s)
- Jacqueline Y Lo
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Katelyn M Adam
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA; Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA; Center for Healthy Aging in Women, 8001 Redwood Boulevard, Novato, CA 94945, USA; Productive Health Global Consortium, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
4
|
Marquina-Solis J, Feng L, Vandewyer E, Beets I, Hawk J, Colón-Ramos DA, Yu J, Fox BW, Schroeder FC, Bargmann CI. Antagonism between neuropeptides and monoamines in a distributed circuit for pathogen avoidance. Cell Rep 2024; 43:114042. [PMID: 38573858 PMCID: PMC11063628 DOI: 10.1016/j.celrep.2024.114042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
Pathogenic infection elicits behaviors that promote recovery and survival of the host. After exposure to the pathogenic bacterium Pseudomonas aeruginosa PA14, the nematode Caenorhabditis elegans modifies its sensory preferences to avoid the pathogen. Here, we identify antagonistic neuromodulators that shape this acquired avoidance behavior. Using an unbiased cell-directed neuropeptide screen, we show that AVK neurons upregulate and release RF/RYamide FLP-1 neuropeptides during infection to drive pathogen avoidance. Manipulations that increase or decrease AVK activity accelerate or delay pathogen avoidance, respectively, implicating AVK in the dynamics of avoidance behavior. FLP-1 neuropeptides drive pathogen avoidance through the G protein-coupled receptor DMSR-7, as well as other receptors. DMSR-7 in turn acts in multiple neurons, including tyraminergic/octopaminergic neurons that receive convergent avoidance signals from the cytokine DAF-7/transforming growth factor β. Neuromodulators shape pathogen avoidance through multiple mechanisms and targets, in agreement with the distributed neuromodulatory connectome of C. elegans.
Collapse
Affiliation(s)
- Javier Marquina-Solis
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Likui Feng
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | | - Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Josh Hawk
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA; Instituto de Neurobiología José del Castillo, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan, PR 00901, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
6
|
Smith JJ, Taylor SR, Blum JA, Feng W, Collings R, Gitler AD, Miller DM, Kratsios P. A molecular atlas of adult C. elegans motor neurons reveals ancient diversity delineated by conserved transcription factor codes. Cell Rep 2024; 43:113857. [PMID: 38421866 PMCID: PMC11091551 DOI: 10.1016/j.celrep.2024.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generate a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database. Single-cell RNA sequencing of 13,200 cells reveals that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. Extending C. elegans Neuronal Gene Expression Map and Network (CeNGEN) findings, all MN subclasses are delineated by distinct expression codes of either neuropeptide or transcription factor gene families. Strikingly, combinatorial codes of homeodomain transcription factor genes succinctly delineate adult MN diversity in both C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs and uncovers organizing principles and conserved molecular codes of adult MN diversity.
Collapse
Affiliation(s)
- Jayson J Smith
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA; Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| | - Rebecca Collings
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA; Program in Neuroscience, Vanderbilt University, Nashville, TN 37240, USA.
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Al-Jawabreh R, Lastik D, McKenzie D, Reynolds K, Suleiman M, Mousley A, Atkinson L, Hunt V. Advancing Strongyloides omics data: bridging the gap with Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220437. [PMID: 38008117 PMCID: PMC10676819 DOI: 10.1098/rstb.2022.0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 11/28/2023] Open
Abstract
Among nematodes, the free-living model organism Caenorhabditis elegans boasts the most advanced portfolio of high-quality omics data. The resources available for parasitic nematodes, including Strongyloides spp., however, are lagging behind. While C. elegans remains the most tractable nematode and has significantly advanced our understanding of many facets of nematode biology, C. elegans is not suitable as a surrogate system for the study of parasitism and it is important that we improve the omics resources available for parasitic nematode species. Here, we review the omics data available for Strongyloides spp. and compare the available resources to those for C. elegans and other parasitic nematodes. The advancements in C. elegans omics offer a blueprint for improving omics-led research in Strongyloides. We suggest areas of priority for future research that will pave the way for expansions in omics resources and technologies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Reem Al-Jawabreh
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Dominika Lastik
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | - Kieran Reynolds
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Mona Suleiman
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Vicky Hunt
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
8
|
Van Bael S, Ludwig C, Baggerman G, Temmerman L. Identification and Targeted Quantification of Endogenous Neuropeptides in the Nematode Caenorhabditis elegans Using Mass Spectrometry. Methods Mol Biol 2024; 2758:341-373. [PMID: 38549024 DOI: 10.1007/978-1-0716-3646-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The nematode Caenorhabditis elegans lends itself as an excellent model organism for peptidomics studies. Its ease of cultivation and quick generation time make it suitable for high-throughput studies. The nervous system, with its 302 neurons, is probably the best-known and studied endocrine tissue. Moreover, its neuropeptidergic signaling pathways display numerous similarities with those observed in other metazoans. Here, we describe two label-free approaches for neuropeptidomics in C. elegans: one for discovery purposes, and another for targeted quantification and comparisons of neuropeptide levels between different samples. Starting from a detailed peptide extraction procedure, we here outline the liquid chromatography tandem mass spectrometry (LC-MS/MS) setup and describe subsequent data analysis approaches.
Collapse
Affiliation(s)
- Sven Van Bael
- Department of Biology, Animal Physiology & Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Geert Baggerman
- Center for Proteomics, University of Antwerp, Antwerp, Belgium
| | - Liesbet Temmerman
- Department of Biology, Animal Physiology & Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium.
| |
Collapse
|
9
|
Ripoll-Sánchez L, Watteyne J, Sun H, Fernandez R, Taylor SR, Weinreb A, Bentley BL, Hammarlund M, Miller DM, Hobert O, Beets I, Vértes PE, Schafer WR. The neuropeptidergic connectome of C. elegans. Neuron 2023; 111:3570-3589.e5. [PMID: 37935195 PMCID: PMC7615469 DOI: 10.1016/j.neuron.2023.09.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023]
Abstract
Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.
Collapse
Affiliation(s)
- Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Psychiatry, Cambridge University, Cambridge, UK
| | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, Belgium
| | - HaoSheng Sun
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Fernandez
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexis Weinreb
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Barry L Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
| | - Marc Hammarlund
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Oliver Hobert
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Petra E Vértes
- Department of Psychiatry, Cambridge University, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
11
|
Smith JJ, Taylor SR, Blum JA, Gitler AD, Miller DM, Kratsios P. A molecular atlas of adult C. elegans motor neurons reveals ancient diversity delineated by conserved transcription factor codes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552048. [PMID: 37577463 PMCID: PMC10418256 DOI: 10.1101/2023.08.04.552048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generated a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database (http://celegans.spinalcordatlas.org). Single-cell RNA-sequencing of 13,200 cells revealed that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. All subclasses are delineated by unique expression codes of either neuropeptide or transcription factor gene families. Strikingly, we found that combinatorial codes of homeodomain transcription factor genes define adult MN diversity both in C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs, and uncovers organizing principles and conserved molecular codes of adult MN diversity.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL, 60637, USA
| | - Seth R. Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, 84602, USA
| | - Jacob A. Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David M. Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Program in Neuroscience, Vanderbilt University, Nashville, TN, 37240, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL, 60637, USA
| |
Collapse
|
12
|
Hellinger R, Sigurdsson A, Wu W, Romanova EV, Li L, Sweedler JV, Süssmuth RD, Gruber CW. Peptidomics. NATURE REVIEWS. METHODS PRIMERS 2023; 3:25. [PMID: 37250919 PMCID: PMC7614574 DOI: 10.1038/s43586-023-00205-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 05/31/2023]
Abstract
Peptides are biopolymers, typically consisting of 2-50 amino acids. They are biologically produced by the cellular ribosomal machinery or by non-ribosomal enzymes and, sometimes, other dedicated ligases. Peptides are arranged as linear chains or cycles, and include post-translational modifications, unusual amino acids and stabilizing motifs. Their structure and molecular size render them a unique chemical space, between small molecules and larger proteins. Peptides have important physiological functions as intrinsic signalling molecules, such as neuropeptides and peptide hormones, for cellular or interspecies communication, as toxins to catch prey or as defence molecules to fend off enemies and microorganisms. Clinically, they are gaining popularity as biomarkers or innovative therapeutics; to date there are more than 60 peptide drugs approved and more than 150 in clinical development. The emerging field of peptidomics comprises the comprehensive qualitative and quantitative analysis of the suite of peptides in a biological sample (endogenously produced, or exogenously administered as drugs). Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and innovative computational biology, with a specialized set of tools. The complex biological matrices and often low abundance of analytes typically examined in peptidomics experiments require optimized sample preparation and isolation, including in silico analysis. This Primer covers the combination of techniques and workflows needed for peptide discovery and characterization and provides an overview of various biological and clinical applications of peptidomics.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnar Sigurdsson
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Wenxin Wu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Cockx B, Van Bael S, Boelen R, Vandewyer E, Yang H, Le TA, Dalzell JJ, Beets I, Ludwig C, Lee J, Temmerman L. Mass Spectrometry-Driven Discovery of Neuropeptides Mediating Nictation Behavior of Nematodes. Mol Cell Proteomics 2023; 22:100479. [PMID: 36481452 PMCID: PMC9881375 DOI: 10.1016/j.mcpro.2022.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
Neuropeptides regulate animal physiology and behavior, making them widely studied targets of functional genetics research. While the field often relies on differential -omics approaches to build hypotheses, no such method exists for neuropeptidomics. It would nonetheless be valuable for studying behaviors suspected to be regulated by neuropeptides, especially when little information is otherwise available. This includes nictation, a phoretic strategy of Caenorhabditis elegans dauers that parallels host-finding strategies of infective juveniles of many pathogenic nematodes. We here developed a targeted peptidomics method for the model organism C. elegans and show that 161 quantified neuropeptides are more abundant in its dauer stage compared with L3 juveniles. Many of these have orthologs in the commercially relevant pathogenic nematode Steinernema carpocapsae, in whose infective juveniles, we identified 126 neuropeptides in total. Through further behavioral genetics experiments, we identify flp-7 and flp-11 as novel regulators of nictation. Our work advances knowledge on the genetics of nictation behavior and adds comparative neuropeptidomics as a tool to functional genetics workflows.
Collapse
Affiliation(s)
- Bram Cockx
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Sven Van Bael
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Rose Boelen
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Elke Vandewyer
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Heeseung Yang
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Tuan Anh Le
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Johnathan J Dalzell
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Isabel Beets
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Liesbet Temmerman
- Animal Physiology & Neurobiology, Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium.
| |
Collapse
|
14
|
Naranjo-Galindo FJ, Ai R, Fang EF, Nilsen HL, SenGupta T. C. elegans as an Animal Model to Study the Intersection of DNA Repair, Aging and Neurodegeneration. FRONTIERS IN AGING 2022; 3:916118. [PMID: 35821838 PMCID: PMC9261396 DOI: 10.3389/fragi.2022.916118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022]
Abstract
Since its introduction as a genetic model organism, Caenorhabditis elegans has yielded insights into the causes of aging. In addition, it has provided a molecular understanding of mechanisms of neurodegeneration, one of the devastating effects of aging. However, C. elegans has been less popular as an animal model to investigate DNA repair and genomic instability, which is a major hallmark of aging and also a cause of many rare neurological disorders. This article provides an overview of DNA repair pathways in C. elegans and the impact of DNA repair on aging hallmarks, such as mitochondrial dysfunction, telomere maintenance, and autophagy. In addition, we discuss how the combination of biological characteristics, new technical tools, and the potential of following precise phenotypic assays through a natural life-course make C. elegans an ideal model organism to study how DNA repair impact neurodegeneration in models of common age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco José Naranjo-Galindo
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Ruixue Ai
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Tanima SenGupta
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
15
|
Flavell SW, Gordus A. Dynamic functional connectivity in the static connectome of Caenorhabditis elegans. Curr Opin Neurobiol 2022; 73:102515. [PMID: 35183877 PMCID: PMC9621599 DOI: 10.1016/j.conb.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
A hallmark of adaptive behavior is the ability to flexibly respond to sensory cues. To understand how neural circuits implement this flexibility, it is critical to resolve how a static anatomical connectome can be modulated such that functional connectivity in the network can be dynamically regulated. Here, we review recent work in the roundworm Caenorhabditis elegans on this topic. EM studies have mapped anatomical connectomes of many C. elegans animals, highlighting the level of stereotypy in the anatomical network. Brain-wide calcium imaging and studies of specified neural circuits have uncovered striking flexibility in the functional coupling of neurons. The coupling between neurons is controlled by neuromodulators that act over long timescales. This gives rise to persistent behavioral states that animals switch between, allowing them to generate adaptive behavioral responses across environmental conditions. Thus, the dynamic coupling of neurons enables multiple behavioral states to be encoded in a physically stereotyped connectome.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Andrew Gordus
- Department of Biology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
McKay FM, McCoy CJ, Crooks B, Marks NJ, Maule AG, Atkinson LE, Mousley A. In silico analyses of neuropeptide-like protein (NLP) profiles in parasitic nematodes. Int J Parasitol 2022; 52:77-85. [PMID: 34450132 PMCID: PMC8764417 DOI: 10.1016/j.ijpara.2021.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/06/2023]
Abstract
Nematode parasite infections cause disease in humans and animals and threaten global food security by reducing productivity in livestock and crop farming. The escalation of anthelmintic resistance in economically important nematode parasites underscores the need for the identification of novel drug targets in these worms. Nematode neuropeptide signalling is an attractive system for chemotherapeutic exploitation, with neuropeptide G-protein coupled receptors (NP-GPCRs) representing the lead targets. In order to successfully validate NP-GPCRs for parasite control it is necessary to characterise their function and importance to nematode biology. This can be aided through identification of receptor activating ligand(s) via deorphanisation. Such efforts require the identification of all neuropeptide ligands within parasites. Here we mined the genomes of nine therapeutically relevant pathogenic nematodes to characterise the neuropeptide-like protein complements and demonstrate that: (i) parasitic nematodes possess a reduced complement of neuropeptide-like protein-encoding genes relative to Caenorhabditis elegans; (ii) parasite neuropeptide-like protein profiles are broadly conserved between nematode clades; (iii) five Ce-nlps are completely conserved across the nematode species examined; (iv) the extent and position of neuropeptide-like protein-motif conservation is variable; (v) novel RPamide-encoding genes are present in parasitic nematodes; (vi) novel Allatostatin-C-like peptide encoding genes are present in both C. elegans and parasitic nematodes; (vii) novel neuropeptide-like protein families are absent in C. elegans; and (viii) highly conserved nematode neuropeptide-like proteins are bioactive. These data highlight the complexity of nematode neuropeptide-like proteins and reveal the need for nomenclature revision in this diverse neuropeptide family. The identification of neuropeptide-like protein ligands, and characterisation of those with functional relevance, advance our understanding of neuropeptide signalling to support exploitation of the neuropeptidergic system as an anthelmintic target.
Collapse
Affiliation(s)
- Fiona M McKay
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Ciaran J McCoy
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Bethany Crooks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Nikki J Marks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Aaron G Maule
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Louise E Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
17
|
Reilly DK, McGlame EJ, Vandewyer E, Robidoux AN, Muirhead CS, Northcott HT, Joyce W, Alkema MJ, Gegear RJ, Beets I, Srinivasan J. Distinct neuropeptide-receptor modules regulate a sex-specific behavioral response to a pheromone. Commun Biol 2021; 4:1018. [PMID: 34465863 PMCID: PMC8408276 DOI: 10.1038/s42003-021-02547-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dioecious species are a hallmark of the animal kingdom, with opposing sexes responding differently to identical sensory cues. Here, we study the response of C. elegans to the small-molecule pheromone, ascr#8, which elicits opposing behavioral valences in each sex. We identify a novel neuropeptide-neuropeptide receptor (NP/NPR) module that is active in males, but not in hermaphrodites. Using a novel paradigm of neuropeptide rescue that we established, we leverage bacterial expression of individual peptides to rescue the sex-specific response to ascr#8. Concurrent biochemical studies confirmed individual FLP-3 peptides differentially activate two divergent receptors, NPR-10 and FRPR-16. Interestingly, the two of the peptides that rescued behavior in our feeding paradigm are related through a conserved threonine, suggesting that a specific NP/NPR combination sets a male state, driving the correct behavioral valence of the ascr#8 response. Receptor expression within pre-motor neurons reveals novel coordination of male-specific and core locomotory circuitries.
Collapse
Affiliation(s)
- Douglas K. Reilly
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.429997.80000 0004 1936 7531Present Address: Tufts University, Medford, MA USA
| | - Emily J. McGlame
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,Present Address: AbbVie Foundational Neuroscience Center, Cambridge, MA USA
| | - Elke Vandewyer
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Annalise N. Robidoux
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Caroline S. Muirhead
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Haylea T. Northcott
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.423532.10000 0004 0516 8515Present Address: Optum, Hartford, CT USA
| | - William Joyce
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Mark J. Alkema
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Robert J. Gegear
- grid.266686.a0000000102217463Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA USA
| | - Isabel Beets
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jagan Srinivasan
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| |
Collapse
|
18
|
Buzy A, Allain C, Harrington J, Lesuisse D, Mikol V, Bruhn DF, Maule AG, Guillemot JC. Peptidomics of Haemonchus contortus. ACS OMEGA 2021; 6:10288-10305. [PMID: 34056183 PMCID: PMC8153747 DOI: 10.1021/acsomega.1c00650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The nematode Haemonchus contortus (the barber's pole worm) is an endoparasite infecting wild and domesticated ruminants worldwide. Widespread anthelmintic resistance of H. contortus requires alternative strategies to control this parasite. Neuropeptide signaling represents a promising target for anthelmintic drugs. Identification and relative quantification of nematode neuropeptides are, therefore, required for the development of such therapeutic targets. In this work, we undertook the profiling of the whole H. contortus larvae at different stages for the direct sequencing of the neuropeptides expressed at low levels in these tissues. We set out a peptide extraction protocol and a peptidomic workflow to biochemically characterize bioactive peptides from both first-stage (L1) and third-stage larvae (L3) of H. contortus. This work led to the identification and quantification at the peptidomic level of more than 180 mature neuropeptides, including amidated and nonamidated peptides, arising from 55 precursors of H. contortus. The differential peptidomic approach provided evidence that both life stages express most FMRFamide-like peptides (FLPs) and neuropeptide-like proteins (NLPs). The H. contortus peptidome resource, established in this work, could add the discovery of neuropeptide system-targeting drugs for ruminants.
Collapse
Affiliation(s)
- Armelle Buzy
- Sanofi
R&D, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Camille Allain
- Sanofi
R&D, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - John Harrington
- Boehringer
Ingelheim Animal Health, Duluth, Georgia 30096, United States
| | | | - Vincent Mikol
- Sanofi
R&D, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - David F. Bruhn
- Boehringer
Ingelheim Animal Health, Duluth, Georgia 30096, United States
| | - Aaron G. Maule
- School
of Biological Sciences, Queens’s
University Belfast, Belfast BT9 7BL, U.K.
| | | |
Collapse
|
19
|
Stretton AOW. My life with Sydney, 1961-1971. J Neurogenet 2021; 34:225-237. [PMID: 33446021 DOI: 10.1080/01677063.2020.1834544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
During the 1961-1971 decade, Sydney Brenner made several significant contributions to molecular biology-showing that the genetic code is a triplet code; discovery of messenger RNA; colinearity of gene and protein; decoding of chain terminating codons; and then an important transition: the development of the nematode Caenorhabditis elegans into the model eucaryote genetic system that has permeated the whole of recent biology.
Collapse
|
20
|
De Fruyt N, Yu AJ, Rankin CH, Beets I, Chew YL. The role of neuropeptides in learning: Insights from C. elegans. Int J Biochem Cell Biol 2020; 125:105801. [DOI: 10.1016/j.biocel.2020.105801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
|
21
|
Fadda M, De Fruyt N, Borghgraef C, Watteyne J, Peymen K, Vandewyer E, Naranjo Galindo FJ, Kieswetter A, Mirabeau O, Chew YL, Beets I, Schoofs L. NPY/NPF-Related Neuropeptide FLP-34 Signals from Serotonergic Neurons to Modulate Aversive Olfactory Learning in Caenorhabditis elegans. J Neurosci 2020; 40:6018-6034. [PMID: 32576621 PMCID: PMC7392509 DOI: 10.1523/jneurosci.2674-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/26/2020] [Accepted: 06/12/2020] [Indexed: 02/03/2023] Open
Abstract
Aversive learning is fundamental for animals to increase chances of survival. In addition to classical neurotransmitters, neuropeptides have emerged to modulate such complex behaviors. Among them, neuropeptide Y (NPY) is well known to promote aversive memory acquisition in mammals. Here we identify an NPY/neuropeptide F (NPF)-related neuropeptide system in Caenorhabditis elegans and show that this FLP-34/NPR-11 system is required for learning negative associations, a process that is reminiscent of NPY signaling in mammals. The Caenorhabditis elegans NPY/NPF ortholog FLP-34 displays conserved structural hallmarks of bilaterian-wide NPY/NPF neuropeptides. We show that it is required for aversive olfactory learning after pairing diacetyl with the absence of food, but not for appetitive olfactory learning in response to butanone. To mediate diacetyl learning and thus integrate the aversive food context with the diacetyl odor, FLP-34 is released from serotonergic neurons and signals through its evolutionarily conserved NPY/NPF GPCR, NPR-11, in downstream AIA interneurons. NPR-11 activation in the AIA integration center results in avoidance of a previously attractive stimulus. This study opens perspectives for a deeper understanding of stress conditions in which aversive learning results in excessive avoidance.SIGNIFICANCE STATEMENT Aversive learning evolved early in evolution to promote avoidance of dangerous and stressful situations. In addition to classical neurotransmitters, neuropeptides are emerging as modulators of complex behaviors, including learning and memory. Here, we identified the evolutionary ortholog of neuropeptide Y/neuropeptide F in the nematode Caenorhabditis elegans, and we discovered that it is required for olfactory aversive learning. In addition, we elucidated the neural circuit underlying this avoidance behavior, and we discovered a novel coordinated action of Caenorhabditis elegans neuropeptide Y/neuropeptide F and serotonin that could aid in our understanding of the molecular mechanisms underlying stress disorders in which excessive avoidance results in maladaptive behaviors.
Collapse
Affiliation(s)
- Melissa Fadda
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | | | | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | | | | | | | | - Olivier Mirabeau
- Genetics and Biology of Cancers Unit, Institut Curie, Institut National de la Santé et de la Recherche Médicale U830, Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Yee Lian Chew
- Illawarra Health & Medical Research Institute School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, 2522 New South Wales, Australia
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | |
Collapse
|
22
|
Peymen K, Watteyne J, Borghgraef C, Van Sinay E, Beets I, Schoofs L. Myoinhibitory peptide signaling modulates aversive gustatory learning in Caenorhabditis elegans. PLoS Genet 2019; 15:e1007945. [PMID: 30779740 PMCID: PMC6380545 DOI: 10.1371/journal.pgen.1007945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Aversive learning and memories are crucial for animals to avoid previously encountered stressful stimuli and thereby increase their chance of survival. Neuropeptides are essential signaling molecules in the brain and are emerging as important modulators of learned behaviors, but their precise role is not well understood. Here, we show that neuropeptides of the evolutionarily conserved MyoInhibitory Peptide (MIP)-family modify salt chemotaxis behavior in Caenorhabditis elegans according to previous experience. MIP signaling, through activation of the G protein-coupled receptor SPRR-2, is required for short-term gustatory plasticity. In addition, MIP/SPRR-2 neuropeptide-receptor signaling mediates another type of aversive gustatory learning called salt avoidance learning that depends on de novo transcription, translation and the CREB transcription factor, all hallmarks of long-term memory. MIP/SPRR-2 signaling mediates salt avoidance learning in parallel with insulin signaling. These findings lay a foundation to investigate the suggested orphan MIP receptor orthologs in deuterostomians, including human GPR139 and GPR142. All animals rely on learning and memory processes to learn from experience and thereby increase their chance of survival. Neuropeptides are essential signaling molecules in the brain and are emerging as important modulators of learning and memory processes. We found that the C. elegans receptor SPRR-2 and its ligands, the MIP-1 neuropeptides—which are members of the evolutionarily conserved myoinhibitory peptide system—are required for aversive gustatory learning. Our results provide a basis for investigations into the poorly characterized MIP systems in deuterostomians, including humans, and suggest a possible function in learning for human MIP signaling.
Collapse
Affiliation(s)
- Katleen Peymen
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Watteyne
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | | | - Elien Van Sinay
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Isabel Beets
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail: (IB); (LS)
| | - Liliane Schoofs
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail: (IB); (LS)
| |
Collapse
|
23
|
Edwards SL, Mergan L, Parmar B, Cockx B, De Haes W, Temmerman L, Schoofs L. Exploring neuropeptide signalling through proteomics and peptidomics. Expert Rev Proteomics 2018; 16:131-137. [DOI: 10.1080/14789450.2019.1559733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bhavesh Parmar
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bram Cockx
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Wouter De Haes
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Chew YL, Grundy LJ, Brown AEX, Beets I, Schafer WR. Neuropeptides encoded by nlp-49 modulate locomotion, arousal and egg-laying behaviours in Caenorhabditis elegans via the receptor SEB-3. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170368. [PMID: 30201834 PMCID: PMC6158228 DOI: 10.1098/rstb.2017.0368] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2018] [Indexed: 12/23/2022] Open
Abstract
Neuropeptide signalling has been implicated in a wide variety of biological processes in diverse organisms, from invertebrates to humans. The Caenorhabditis elegans genome has at least 154 neuropeptide precursor genes, encoding over 300 bioactive peptides. These neuromodulators are thought to largely signal beyond 'wired' chemical/electrical synapse connections, therefore creating a 'wireless' network for neuronal communication. Here, we investigated how behavioural states are affected by neuropeptide signalling through the G protein-coupled receptor SEB-3, which belongs to a bilaterian family of orphan secretin receptors. Using reverse pharmacology, we identified the neuropeptide NLP-49 as a ligand of this evolutionarily conserved neuropeptide receptor. Our findings demonstrate novel roles for NLP-49 and SEB-3 in locomotion, arousal and egg-laying. Specifically, high-content analysis of locomotor behaviour indicates that seb-3 and nlp-49 deletion mutants cause remarkably similar abnormalities in movement dynamics, which are reversed by overexpression of wild-type transgenes. Overexpression of NLP-49 in AVK interneurons leads to heightened locomotor arousal, an effect that is dependent on seb-3. Finally, seb-3 and nlp-49 mutants also show constitutive egg-laying in liquid medium and alter the temporal pattern of egg-laying in similar ways. Together, these results provide in vivo evidence that NLP-49 peptides act through SEB-3 to modulate behaviour, and highlight the importance of neuropeptide signalling in the control of behavioural states.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Yee Lian Chew
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - André E X Brown
- MRC London Institute of Medical Sciences, London W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|