1
|
Keener JE, Goh B, Yoo JS, Oh SF, Brodbelt JS. Top-Down Characterization of Bacterial Lipopolysaccharides and Lipooligosaccharides Using Activated-Electron Photodetachment Mass Spectrometry. Anal Chem 2024; 96:9151-9158. [PMID: 38758019 PMCID: PMC11384421 DOI: 10.1021/acs.analchem.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are located in the outer membrane of Gram-negative bacteria and are comprised of three distinctive parts: lipid A, core oligosaccharide (OS), and O-antigen. The structure of each region influences bacterial stability, toxicity, and pathogenesis. Here, we highlight the use of targeted activated-electron photodetachment (a-EPD) tandem mass spectrometry to characterize LPS and LOS from two crucial players in the human gut microbiota, Escherichia coli Nissle and Bacteroides fragilis. a-EPD is a hybrid activation method that uses ultraviolet photoirradiation to generate charge-reduced radical ions followed by collisional activation to produce informative fragmentation patterns. We benchmark the a-EPD method for top-down characterization of triacyl LOS from E. coli R2, then focus on characterization of LPS from E. coli Nissle and B. fragilis. Notably, a-EPD affords extensive fragmentation throughout the backbone of the core OS and O-antigen regions of LPS from E. coli Nissle. This hybrid approach facilitated the elucidation of structural details for LPS from B. fragilis, revealing a putative hexuronic acid (HexA) conjugated to lipid A.
Collapse
Affiliation(s)
- James E Keener
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Byoungsook Goh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Ji-Sun Yoo
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Sungwhan F Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Mikhael A, Hardie D, Smith D, Pětrošová H, Ernst RK, Goodlett DR. Structural Elucidation of Intact Rough-type Lipopolysaccharides Using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots. Anal Chem 2023; 95:16796-16800. [PMID: 37943784 PMCID: PMC10666081 DOI: 10.1021/acs.analchem.3c02947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 11/12/2023]
Abstract
Lipopolysaccharides (LPSs) are a hallmark virulence factor of Gram-negative bacteria. They are complex, structurally heterogeneous mixtures due to variations in number, type, and position of their simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of an intact R-type lipopolysaccharide complex mixture (lipooligosaccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas-phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and unequivocal structural assignments. In addition to FAIMS gas-phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [Na-H] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families, i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 181 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.
Collapse
Affiliation(s)
- Abanoub Mikhael
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Darryl Hardie
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Derek Smith
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Helena Pětrošová
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Robert K. Ernst
- Department
of Microbial Pathogenesis, University of
Maryland—Baltimore, Baltimore, Maryland 21201, United States
| | - David R. Goodlett
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| |
Collapse
|
3
|
Mikhael A, Hardie D, Smith D, Pětrošová H, Ernst RK, Goodlett DR. Structural Elucidation of Intact Rough-Type Lipopolysaccharides using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545950. [PMID: 37461651 PMCID: PMC10349945 DOI: 10.1101/2023.06.21.545950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Lipopolysaccharide (LPS) is a hallmark virulence factor of Gram-negative bacteria. It is a complex, structurally heterogeneous mixture due to variations in number, type, and position of its simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of intact R-type lipopolysaccharide complex mixture (lipooligosaccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and unequivocal structural assignments. In addition to FAIMS gas phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [NaH] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families; i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 179 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.
Collapse
Affiliation(s)
- Abanoub Mikhael
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Darryl Hardie
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Derek Smith
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Helena Pětrošová
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland - Baltimore, Baltimore, MD, 21201 USA
| | - David R Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| |
Collapse
|
4
|
Aguida B, Pooam M, Ahmad M, Jourdan N. Infrared light therapy relieves TLR-4 dependent hyper-inflammation of the type induced by COVID-19. Commun Integr Biol 2021; 14:200-211. [PMID: 34552685 PMCID: PMC8451450 DOI: 10.1080/19420889.2021.1965718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The leading cause of mortality from COVID-19 infection is respiratory distress due to an exaggerated host immune response, resulting in hyper-inflammation and ensuing cytokine storms in the lungs. Current drug-based therapies are of limited efficacy, costly, and have potential negative side effects. By contrast, photobiomodulation therapy, which involves periodic brief exposure to red or infrared light, is a noninvasive, safe, and affordable method that is currently being used to treat a wide range of diseases with underlying inflammatory conditions. Here, we show that exposure to two 10-min, high-intensity periods per day of infrared light causes a marked reduction in the TLR-4 dependent inflammatory response pathway, which has been implicated in the onset of cytokine storms in COVID-19 patients. Infrared light exposure resulted in a significant decline in NFkB and AP1 activity as measured by the reporter gene assay; decreased expression of inflammatory marker genes IL-6, IL-8, TNF-alpha, INF-alpha, and INF-beta as determined by qPCR gene expression assay; and an 80% decline in secreted cytokine IL6 as measured by ELISA assay in cultured human cells. All of these changes occurred after only 48 hours of treatment. We suggest that an underlying cellular mechanism involving modulation of ROS may downregulate the host immune response after Infrared Light exposure, leading to decrease in inflammation. We further discuss technical considerations involving light sources and exposure conditions to put these observations into potential clinical use to treat COVID-19 induced mortality.
Collapse
Affiliation(s)
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Margaret Ahmad
- Cnrs, Ibps, Sorbonne Université, Paris, France.,Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | | |
Collapse
|
5
|
Species-Specific Endotoxin Stimulus Determines Toll-Like Receptor 4- and Caspase 11-Mediated Pathway Activation Characteristics. mSystems 2021; 6:e0030621. [PMID: 34342534 PMCID: PMC8407122 DOI: 10.1128/msystems.00306-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate immune system is the body’s first line of defense against pathogens and its protection against infectious diseases. On the surface of host myeloid cells, Toll-like receptor 4 (TLR4) senses lipopolysaccharide (LPS), the major outer membrane component of Gram-negative bacteria. Intracellularly, LPS is recognized by caspase 11 through the noncanonical inflammasome to induce pyroptosis—an inflammatory form of lytic cell death. While TLR4-mediated signaling perturbations result in secretion of cytokines and chemokines that help clear infection and facilitate adaptive immunity, caspase 11-mediated pyroptosis leads to the release of damage-associated molecular patterns and inflammatory mediators. Although the core signaling events and many associated proteins in the TLR4 signaling pathway are known, the complex signaling events and protein networks within the noncanonical inflammasome pathway remain obscure. Moreover, there is mounting evidence for pathogen-specific innate immune tuning. We characterized the major LPS structures from two different pathogens, modeled their binding to the surface receptors, systematically examined macrophage inflammatory responses to these LPS molecules, and surveyed the temporal differences in global protein secretion resulting from TLR4 and caspase 11 activation in macrophages using mass spectrometry (MS)-based quantitative proteomics. This integrated strategy, spanning functional activity assays, top-down structural elucidation of endotoxins, and secretome analysis of stimulated macrophages, allowed us to identify crucial differences in TLR4- and caspase 11-mediated protein secretion in response to two Gram-negative bacterial endotoxins. IMPORTANCE Macrophages and monocytes are innate immune cells playing an important role in orchestrating the initial innate immune response to bacterial infection and the tissue damage. This response is facilitated by specific receptors on the cell surface and intracellularly. One of the bacterial molecules recognized is a Gram-negative bacteria cell wall component, lipopolysaccharide (LPS). The structure of LPS differs between different species. We have characterized the innate immune responses to the LPS molecules from two bacteria, Escherichia coli and Bordetella pertussis, administered either extracellularly or intracellularly, whose structures we first determined. We observed marked differences in the temporal dynamics and amounts of proteins secreted by the innate immune cells stimulated by any of these molecules and routes. This suggests that there is specificity in the first line of response to different Gram-negative bacteria that can be explored to tailor specific therapeutic interventions.
Collapse
|
6
|
Wang Y, Xu L, Lu YT, Sun FM, Wu DF, Wang JQ, Di B, Xu H, Hang TJ, Song M. Impurity profiling of alfentanil hydrochloride by liquid chromatography/quadrupole time-of-flight high-resolution mass spectrometric techniques for drug enforcement. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8847. [PMID: 32478878 DOI: 10.1002/rcm.8847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Fentanyl and its analogues play important roles in the hospital and clinic setting as anesthetics. However, illicitly manufactured fentanyl as well as the new psychoactive substances (NPS) account for 30% of all deaths in the United States. Since fentanyl derivatives and NPS are designed to produce similar effects, their related substances are similar or even have the same active groups. A comprehensive analysis of the related substances of alfentanil hydrochloride can provide a basis for the identification and supervision of fentanyl derivatives and NPS. METHODS A liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (LC/QTOF-MS/MS) method was developed for the separation and characterization of related substances in alfentanil hydrochloride. Degradation studies were conducted according to the ICH-prescribed stress conditions. The compounds were identified mainly through positive electrospray ionization QTOF high-resolution mass spectrometric measurements of the accurate masses of the precursor and product ions and their calculated elemental compositions. Their formation mechanisms were also discussed. RESULTS Seventeen related substances were detected in alfentanil hydrochloride and its stressed samples. Among them, nine were process-related substances and the other eight were degradation products. The stress study results demonstrated that alfentanil hydrochloride was unstable under acid, alkaline, and oxidative stress conditions, while relatively stable under dry photolytic and thermal stress conditions. Alfentanil hydrochloride was most susceptible for degradation at the N-phenylpropanamide and piperidine sites. CONCLUSIONS Process-related alfentanil hydrochloride compounds are useful for determination of synthetic routes and entangling of fentanyl analogues. The stress study results can provide a sound scientific basis for the waste water monitoring of alfentanil. These results are important for routine quality control in the manufacturing and storage of alfentanil hydrochloride, as well as for drug enforcement of fentanyl and its analogues.
Collapse
Affiliation(s)
- Ye Wang
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Lei Xu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Yu-Ting Lu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Fan-Mei Sun
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Dong-Feng Wu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Jing-Qi Wang
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Bin Di
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Hui Xu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China
| | - Tai-Jun Hang
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Min Song
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Shi RL, Xiao G, Dillon TM, Ricci MS, Bondarenko PV. Characterization of therapeutic proteins by cation exchange chromatography-mass spectrometry and top-down analysis. MAbs 2020; 12:1739825. [PMID: 32292112 PMCID: PMC7188404 DOI: 10.1080/19420862.2020.1739825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Recently, cation exchange chromatography (CEX) using aqueous volatile buffers was directly coupled with mass spectrometry (MS) and applied for intact analysis of therapeutic proteins and antibodies. In our study, chemical modifications responsible for charge variants were identified by CEX-UV-MS for a monoclonal antibody (mAb), a bispecific antibody, and an Fc-fusion protein. We also report post-CEX column addition of organic solvent and acid followed by mixing at elevated temperatures, which unfolded proteins, increased ion intensity (sensitivity) and facilitated top-down analysis. mAb stressed by hydrogen peroxide oxidation was used as a model system, which produced additional CEX peaks. The on-line CEX-UV-MS top-down analysis produced gas-phase fragments containing one or two methionine residues. Oxidation of some methionine residues contributed to earlier (acidic), some to later (basic) eluting peaks, while oxidation of other residues did not change CEX elution. The abundance of the oxidized and non-oxidized fragment ions also allowed estimation of the oxidation percentage of different methionine residues in stressed mAb. CEX-UV-MS measurement revealed a new intact antibody proteoform at 5% that eluted as a basic peak and included paired modifications: high-mannose glycosylation and remaining C-terminal lysine residue (M5/M5 + K). This finding was confirmed by peptide mapping and on-column disulfide reduction coupled with reversed-phase liquid chromatography - top-down MS analysis of the collected basic peak. Overall, our results demonstrate the utility of the on-line method in providing site-specific structural information of charge modifications without fraction collection and laborious peptide mapping.
Collapse
Affiliation(s)
- Rachel Liuqing Shi
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Gang Xiao
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Thomas M. Dillon
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Margaret S. Ricci
- Attribute Sciences, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | | |
Collapse
|
8
|
Crépin S, Ottosen EN, Chandler CE, Sintsova A, Ernst RK, Mobley HLT. The UDP-GalNAcA biosynthesis genes gna-gne2 are required to maintain cell envelope integrity and in vivo fitness in multi-drug resistant Acinetobacter baumannii. Mol Microbiol 2020; 113:153-172. [PMID: 31680352 PMCID: PMC7007346 DOI: 10.1111/mmi.14407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acinetobacter baumannii infects a wide range of anatomic sites including the respiratory tract and bloodstream. Despite its clinical importance, little is known about the molecular basis of A. baumannii pathogenesis. We previously identified the UDP-N-acetyl-d-galactosaminuronic acid (UDP-GalNAcA) biosynthesis genes, gna-gne2, as being critical for survival in vivo. Herein, we demonstrate that Gna-Gne2 are part of a complex network connecting in vivo fitness, cell envelope homeostasis and resistance to antibiotics. The ∆gna-gne2 mutant exhibits a severe fitness defect during bloodstream infection. Capsule production is abolished in the mutant strain, which is concomitant with its inability to survive in human serum. In addition, the ∆gna-gne2 mutant was more susceptible to vancomycin and unable to grow on MacConkey plates, indicating an alteration in cell envelope integrity. Analysis of lipid A by mass spectrometry showed that the hexa- and hepta-acylated species were affected in the gna-gne2 mutant. Finally, the ∆gna-gne2 mutant was more susceptible to several classes of antibiotics. Together, this study demonstrates the importance of UDP-GalNAcA in the pathobiology of A. baumannii. By interrupting its biosynthesis, we showed that this molecule plays a critical role in capsule biosynthesis and maintaining the cell envelope homeostasis.
Collapse
Affiliation(s)
- Sébastien Crépin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth N Ottosen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Anna Sintsova
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Klein DR, Powers MJ, Trent MS, Brodbelt JS. Top-Down Characterization of Lipooligosaccharides from Antibiotic-Resistant Bacteria. Anal Chem 2019; 91:9608-9615. [PMID: 31305072 PMCID: PMC6702669 DOI: 10.1021/acs.analchem.9b00940] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Modification of structures of lipooligosaccharides (LOS) represents one prevalent mechanism by which Gram-negative bacteria can become resistant to key antibiotics. Owing to the significant complexity of LOS, the structural characterization of these amphipathic lipids has largely focused on elucidation of the lipid A substructures. Analysis of intact LOS enables detection of core oligosaccharide modifications and gives insight into the heterogeneity that results from combinations of lipid A and oligosaccharide substructures. Top-down analysis of intact LOS also provides the opportunity to determine unknown oligosaccharide structures, which is particularly advantageous in the context of glycoconjugate vaccine development. Advances in mass spectrometry technologies, including the development of MSn capabilities and alternative ion activation techniques, have made top-down analysis an indispensable tool for structural characterization of complex biomolecules. Here we combine online chromatographic separations with MS3 utilizing ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD). HCD generally provides information about the presence of labile modifications via neutral loss fragments in addition to the saccharide linkage arrangement, whereas UVPD gives more detailed insight about saccharide branching and the positions of nonstoichiometric modifications. This integrated approach was used to characterize LOS from Acinetobacter baumannii 1205 and 5075. Notably, MS3 analysis of A. baumannii 1205, an antibiotic-resistant strain, confirmed phosphoethanolamine and hexosamine modification of the lipid A substructure and further enabled derivation of a core oligosaccharide structure.
Collapse
Affiliation(s)
- Dustin R. Klein
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Matthew J. Powers
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, GA 30602
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, GA 30602
| | - M. Stephen Trent
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, GA 30602
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, GA 30602
| | | |
Collapse
|
10
|
Khan MM, Ernst O, Manes NP, Oyler BL, Fraser IDC, Goodlett DR, Nita-Lazar A. Multi-Omics Strategies Uncover Host-Pathogen Interactions. ACS Infect Dis 2019; 5:493-505. [PMID: 30857388 DOI: 10.1021/acsinfecdis.9b00080] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the success of the Human Genome Project, large-scale systemic projects became a reality that enabled rapid development of the systems biology field. Systems biology approaches to host-pathogen interactions have been instrumental in the discovery of some specifics of Gram-negative bacterial recognition, host signal transduction, and immune tolerance. However, further research, particularly using multi-omics approaches, is essential to untangle the genetic, immunologic, (post)transcriptional, (post)translational, and metabolic mechanisms underlying progression from infection to clearance of microbes. The key to understanding host-pathogen interactions lies in acquiring, analyzing, and modeling multimodal data obtained through integrative multi-omics experiments. In this article, we will discuss how multi-omics analyses are adding to our understanding of the molecular basis of host-pathogen interactions and systemic maladaptive immune response of the host to microbes and microbial products.
Collapse
Affiliation(s)
- Mohd M. Khan
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20814, United States
- University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland 21201, United States
| | - Orna Ernst
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20814, United States
| | - Nathan P. Manes
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20814, United States
| | - Benjamin L. Oyler
- University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland 21201, United States
| | - Iain D. C. Fraser
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20814, United States
| | - David R. Goodlett
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 North Pine Street, Baltimore, Maryland 21201, United States
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20814, United States
| |
Collapse
|
11
|
Crittenden CM, Escobar EE, Williams PE, Sanders JD, Brodbelt JS. Characterization of Antigenic Oligosaccharides from Gram-Negative Bacteria via Activated Electron Photodetachment Mass Spectrometry. Anal Chem 2019; 91:4672-4679. [PMID: 30844257 DOI: 10.1021/acs.analchem.9b00048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lipooligosaccharides (LOS), composed of hydrophilic oligosaccharides and hydrophobic lipid A domains, are found on the outer membranes of Gram-negative bacteria. Here we report the characterization of deacylated LOS of LPS by activated-electron photodetachment mass spectrometry. Collision induced dissociation (CID) of these phosphorylated oligosaccharides produces simple MS/MS spectra with most fragment ions arising from cleavages near the reducing end of the molecule where the phosphate groups are located. In contrast, 193 nm ultraviolet photodissociation (UVPD) generates a wide array of product ions throughout the oligosaccharide including cross-ring fragments that illuminate the branching patterns. However, there are also product ions that are redundant or uninformative, resulting in more congested spectra that complicate interpretation. In this work, a hybrid UVPD-CID approach known as activated-electron photodetachment (a-EPD) affords less congested spectra than UVPD alone and richer fragmentation patterns than CID alone. a-EPD combines UVPD of negatively charged oligosaccharides to yield abundant charge-reduced radical ions which are subsequently interrogated by collisional activation. CID of the charge-reduced precursors results in extensive fragmentation throughout the backbone of the oligosaccharide. This hybridized a-EPD approach was employed to characterize the structure and branching pattern of deacylated LOS of E. coli.
Collapse
Affiliation(s)
| | - Edwin E Escobar
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Peggy E Williams
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - James D Sanders
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
12
|
Khan MM, Chattagul S, Tran BQ, Freiberg JA, Nita-Lazar A, Shirtliff ME, Sermswan RW, Ernst RK, Goodlett DR. Temporal proteomic profiling reveals changes that support Burkholderia biofilms. Pathog Dis 2019; 77:ftz005. [PMID: 30759239 PMCID: PMC6482045 DOI: 10.1093/femspd/ftz005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Melioidosis associated with opportunistic pathogen Burkholderia pseudomallei imparts a huge medical burden in Southeast Asia and Australia. At present there is no available human vaccine that protects against B. pseudomallei infection and antibiotic treatments are limited particularly for drug-resistant strains and bacteria in biofilm forms. Biofilm forming bacteria exhibit phenotypic features drastically different to their planktonic states, often exhibiting a diminished response to antimicrobial therapies. Our earlier work on global profiling of bacterial biofilms using transcriptomics and proteomics revealed transcript-decoupled protein abundance in bacterial biofilms. Here we employed reverse phase liquid chromatography tandem mass spectrometry (LC-MS/MS) to deduce temporal proteomic differences in planktonic and biofilm forms of Burkholderia thailandensis, which is weakly surrogate model of pathogenic B. pseudomallei as sharing a key element in genomic similarity. The proteomic analysis of B. thailandensis in biofilm versus planktonic states revealed that proteome changes support biofilm survival through decreased abundance of metabolic proteins while increased abundance of stress-related proteins. Interestingly, the protein abundance including for the transcription protein TEX, outer periplasmic TolB protein, and the exopolyphosphatase reveal adaption in bacterial biofilms that facilitate antibiotic tolerance through a non-specific mechanism. The present proteomics study of B. thailandensis biofilms provides a global snapshot of protein abundance differences and antimicrobial sensitivities in planktonic and sessile bacteria.
Collapse
Affiliation(s)
- Mohd M Khan
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Supaksorn Chattagul
- Melioidosis Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Bao Q Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jeffrey A Freiberg
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Rasana W Sermswan
- Melioidosis Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - David R Goodlett
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-308 Gdańsk, Poland
| |
Collapse
|
13
|
Liang T, Leung LM, Opene B, Fondrie WE, Lee YI, Chandler CE, Yoon SH, Doi Y, Ernst RK, Goodlett DR. Rapid Microbial Identification and Antibiotic Resistance Detection by Mass Spectrometric Analysis of Membrane Lipids. Anal Chem 2019; 91:1286-1294. [PMID: 30571097 DOI: 10.1021/acs.analchem.8b02611] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infectious diseases have a substantial global health impact. Clinicians need rapid and accurate diagnoses of infections to direct patient treatment and improve antibiotic stewardship. Current technologies employed in routine diagnostics are based on bacterial culture followed by morphological trait differentiation and biochemical testing, which can be time-consuming and labor-intensive. With advances in mass spectrometry (MS) for clinical diagnostics, the U.S. Food and Drug Administration has approved two microbial identification platforms based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis of microbial proteins. We recently reported a novel and complementary approach by comparing MALDI-TOF mass spectra of microbial membrane lipid fingerprints to identify ESKAPE pathogens. However, this lipid-based approach used a sample preparation method that required more than a working day from sample collection to identification. Here, we report a new method that extracts lipids efficiently and rapidly from microbial membranes using an aqueous sodium acetate (SA) buffer that can be used to identify clinically relevant Gram-positive and -negative pathogens and fungal species in less than an hour. The SA method also has the ability to differentiate antibiotic-susceptible and antibiotic-resistant strains, directly identify microbes from biological specimens, and detect multiple pathogens in a mixed sample. These results should have positive implications for the manner in which bacteria and fungi are identified in general hospital settings and intensive care units.
Collapse
Affiliation(s)
- Tao Liang
- Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 20742 , United States
| | - Lisa M Leung
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 20742 , United States.,Divisions of Microbiology and Molecular Biology, Laboratories Administration , Maryland Department of Health , Baltimore , Maryland 21215 , United States
| | - Belita Opene
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 20742 , United States
| | - William E Fondrie
- Center for Vascular and Inflammatory Diseases , University of Maryland , Baltimore , Maryland 20742 , United States
| | - Young In Lee
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 20742 , United States
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 20742 , United States
| | - Sung Hwan Yoon
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 20742 , United States
| | - Yohei Doi
- Division of Infectious Diseases, School of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 20742 , United States
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 20742 , United States
| |
Collapse
|
14
|
Mass Spectrometry-based Structural Analysis and Systems Immunoproteomics Strategies for Deciphering the Host Response to Endotoxin. J Mol Biol 2018; 430:2641-2660. [PMID: 29949751 DOI: 10.1016/j.jmb.2018.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.
Collapse
|