1
|
Heng S, Sutheeworapong S, Wangnai C, Champreda V, Kosugi A, Ratanakhanokchai K, Tachaapaikoon C, Ceballos RM. Hydrolysis of ionic liquid-treated substrate with an Iocasia fonsfrigidae strain SP3-1 endoglucanase. Appl Microbiol Biotechnol 2024; 108:63. [PMID: 38189956 PMCID: PMC10774164 DOI: 10.1007/s00253-023-12918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Recently, we reported the discovery of a novel endoglucanase of the glycoside hydrolase family 12 (GH12), designated IfCelS12A, from the haloalkaliphilic anaerobic bacterium Iocasia fonsfrigidae strain SP3-1, which was isolated from a hypersaline pond in the Samut Sakhon province of Thailand (ca. 2017). IfCelS12A exhibits high substrate specificity on carboxymethyl cellulose and amorphous cellulose but low substrate specificity on b-1,3;1,4-glucan. Unlike some endoglucanases of the GH12 family, IfCelS12A does not exhibit hydrolytic activity on crystalline cellulose (i.e., Avicel™). High-Pressure Liquid Chromatography (HPLC) and Thin Layer Chromatography (TLC) analyses of products resulting from IfCelS12-mediated hydrolysis indicate mode of action for this enzyme. Notably, IfCelS12A preferentially hydrolyzes cellotetraoses, cellopentaoses, and cellohexaoses with negligible activity on cellobiose or cellotriose. Kinetic analysis with cellopentaose and barely b-D-glucan as cellulosic substrates were conducted. On cellopentaose, IfCelS12A demonstrates a 16-fold increase in activity (KM = 0.27 mM; kcat = 0.36 s-1; kcat/KM = 1.34 mM-1 s-1) compared to the enzymatic hydrolysis of barley b-D-glucan (KM: 0.04 mM, kcat: 0.51 s-1, kcat/KM = 0.08 mM-1 s-1). Moreover, IfCelS12A enzymatic efficacy is stable in hypersaline sodium chlorids (NaCl) solutions (up to 10% NaCl). Specifically, IfCel12A retains notable activity after 24 h at 2M NaCl (10% saline solution). IfCelS12A used as a cocktail component with other cellulolytic enzymes and in conjunction with mobile sequestration platform technology offers additional options for deconstruction of ionic liquid-pretreated cellulosic feedstock. KEY POINTS: • IfCelS12A from an anaerobic alkaliphile Iocasia fronsfrigidae shows salt tolerance • IfCelS12A in cocktails with other enzymes efficiently degrades cellulosic biomass • IfCelS12A used with mobile enzyme sequestration platforms enhances hydrolysis.
Collapse
Affiliation(s)
- Sobroney Heng
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- Department of Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chinnapong Wangnai
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road Klong Luang, Pathumthani, 12120, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Ibaraki, Japan
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chakrit Tachaapaikoon
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| | - Ruben Michael Ceballos
- Department of Molecular and Cell Biology, University of California, Merced, CA, 95343, USA.
- Quantitative Systems Biology Program, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
2
|
Xu L, Liu H, Wang X, Li Q, Xu S, Sun C, Suo H. Encapsulation of Immobilized β-Glucosidase with Calcium Metal-Organic Frameworks for Enhanced Stability in Hydrolysis of Cellobiose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18727-18735. [PMID: 39159299 DOI: 10.1021/acs.langmuir.4c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
β-Glucosidase (β-G) holds promising applications in various fields, such as biomass energy, food, pharmaceuticals, and environmental protection, yet its industrial application is still limited by issues of stability and recycling. Herein, we first immobilized β-G onto the surface of magnetic chitosan nanoparticles (MCS/β-G) through adsorption methods. Subsequently, utilizing the metal-organic framework (MOF), CaBDC, which possesses good stability under acidic conditions, we encapsulated MCS/β-G. The resulting biocatalyst (MCS/β-G@CaBDC) exhibited excellent activity and recyclability. MCS/β-G@CaBDC can convert 91.5% of cellobiose to glucose in 60 min and maintained 81.9% activity after 10 cycles. The apparent Km value of MCS/β-G@CaBDC was 0.148 mM, lower than free β-G (0.166 mM) and MCS/β-G (0.173 mM). The CaBDC layer increased the mass transfer resistance of the reaction but also triggered structural rearrangement of β-G during the encapsulation process. This resulted in the β-sheet content rising to 68.4%, which, in turn, contributed to enhancing the rigidity of β-G. Moreover, the saturated magnetic strength of this biocatalyst could reach 37.3 emu/g, facilitating its magnetic recovery. The biocatalyst prepared in this study exhibits promising application prospects, and the immobilization method can provide valuable insights into the field of enzyme immobilization.
Collapse
Affiliation(s)
- Lili Xu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Huanruo Liu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Xiaohan Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qi Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Suli Xu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Caizheng Sun
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Hongbo Suo
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| |
Collapse
|
3
|
Kotwal N, Pathania D, Singh A, Din Sheikh ZU, Kothari R. Enzyme immobilization with nanomaterials for hydrolysis of lignocellulosic biomass: Challenges and future Perspectives. Carbohydr Res 2024; 543:109208. [PMID: 39013334 DOI: 10.1016/j.carres.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Enzyme immobilization has emerged as a prodigious strategy in the enzymatic hydrolysis of lignocellulosic biomass (LCB) promising enhanced efficacy and stability of the enzymes. Further, enzyme immobilization on magnetic nanoparticles (MNPs) facilitates the easy recovery and reuse of biocatalysts. This results in the development of a nanobiocatalytic system, that serves as an eco-friendly and inexpensive LCB deconstruction approach. This review provides an overview of nanomaterials used for immobilization with special emphasis on the nanomaterial-enzyme interactions and strategies of immobilization. After the succinct outline of the immobilization procedures and supporting materials, a comprehensive assessment of the catalysis enabled by nanomaterial-immobilized biocatalysts for the conversion and degradation of lignocellulosic biomasses is provided by gathering state-of-the-art examples. The challenges and future directions associated with this technique providing a potential solution in the present article. Insight on the recent advancements in the process of nanomaterial-based immobilization for the hydrolysis of lignocellulosic biomass has also been highlighted in the article.
Collapse
Affiliation(s)
- Neha Kotwal
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India.
| | - Anita Singh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India; Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India.
| | - Zaheer Ud Din Sheikh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| |
Collapse
|
4
|
Sakthivel S, Muthusamy K, Thangarajan AP, Thiruvengadam M, Venkidasamy B. Nano-based biofuel production from low-cost lignocellulose biomass: environmental sustainability and economic approach. Bioprocess Biosyst Eng 2024; 47:971-990. [PMID: 38554183 DOI: 10.1007/s00449-024-03005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024]
Abstract
The use of nanomaterials in biofuel production from lignocellulosic biomass offers a promising approach to simultaneously address environmental sustainability and economic viability. This review provides an overview of the environmental and economic implications of integrating nanotechnology into biofuel production from low-cost lignocellulosic biomass. In this review, we highlight the potential benefits and challenges of nano-based biofuel production. Nanomaterials provide opportunities to improve feedstock pretreatment, enzymatic hydrolysis, fermentation, and catalysis, resulting in enhanced process efficiency, lower energy consumption, and reduced environmental impact. Conducting life cycle assessments is crucial for evaluating the overall environmental footprint of biofuel production. An economic perspective that focuses on the cost implications of utilizing nanomaterials in biofuel production is also discussed. A comprehensive understanding of both environmental and economic dimensions is essential to fully harness the potential of nanomaterials in biofuel production from lignocellulosic biomass and to move towards sustainable future energy.
Collapse
Affiliation(s)
- Selvakumar Sakthivel
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, 629502, Tamil Nadu, India
| | - Kanthimathi Muthusamy
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tamil Nadu, India
| | | | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, Republic of Korea
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
5
|
Tikhonov BB, Lisichkin DR, Sulman AM, Sidorov AI, Bykov AV, Lugovoy YV, Karpenkov AY, Bronstein LM, Matveeva VG. Magnetic Nanoparticle Support with an Ultra-Thin Chitosan Layer Preserves the Catalytic Activity of the Immobilized Glucose Oxidase. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:700. [PMID: 38668193 PMCID: PMC11054521 DOI: 10.3390/nano14080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Here, we developed magnetically recoverable biocatalysts based on magnetite nanoparticles coated with an ultra-thin layer (about 0.9 nm) of chitosan (CS) ionically cross-linked by sodium tripolyphosphate (TPP). Excessive CS amounts were removed by multiple washings combined with magnetic separation. Glucose oxidase (GOx) was attached to the magnetic support via the interaction with N-hydroxysuccinimide (NHS) in the presence of carbodiimide (EDC) leading to a covalent amide bond. These steps result in the formation of the biocatalyst for D-glucose oxidation to D-gluconic acid to be used in the preparation of pharmaceuticals due to the benign character of the biocatalyst components. To choose the catalyst with the best catalytic performance, the amounts of CS, TPP, NHS, EDC, and GOx were varied. The optimal biocatalyst allowed for 100% relative catalytic activity. The immobilization of GOx and the magnetic character of the support prevents GOx and biocatalyst loss and allows for repeated use.
Collapse
Affiliation(s)
- Boris B. Tikhonov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Daniil R. Lisichkin
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexandrina M. Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexander I. Sidorov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexey V. Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Yury V. Lugovoy
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexey Y. Karpenkov
- Department of Condensed Matter Physics, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia;
| | - Lyudmila M. Bronstein
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
| | - Valentina G. Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| |
Collapse
|
6
|
Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr Polym 2023; 321:121319. [PMID: 37739542 DOI: 10.1016/j.carbpol.2023.121319] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Cellulase-mediated lignocellulosic biorefinery plays a crucial role in the production of high-value biofuels and chemicals, with enzymatic hydrolysis being an essential component. The advent of cellulase immobilization has revolutionized this process, significantly enhancing the efficiency, stability, and reusability of cellulase enzymes. This review offers a thorough analysis of the fundamental principles underlying immobilization, encompassing various immobilization approaches such as physical adsorption, covalent binding, entrapment, and cross-linking. Furthermore, it explores a diverse range of carrier materials, including inorganic, organic, and hybrid/composite materials. The review also focuses on emerging approaches like multi-enzyme co-immobilization, oriented immobilization, immobilized enzyme microreactors, and enzyme engineering for immobilization. Additionally, it delves into novel carrier technologies like 3D printing carriers, stimuli-responsive carriers, artificial cellulosomes, and biomimetic carriers. Moreover, the review addresses recent obstacles in cellulase immobilization, including molecular-level immobilization mechanism, diffusion limitations, loss of cellulase activity, cellulase leaching, and considerations of cost-effectiveness and scalability. The knowledge derived from this review is anticipated to catalyze the evolution of more efficient and sustainable biocatalytic systems for lignocellulosic biomass conversion, representing the current state-of-the-art in cellulase immobilization techniques.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
7
|
Barik S, Dash AK, Saharay M. Immobilization of Cellulase Enzymes on Single-Walled Carbon Nanotubes for Recycling of Enzymes and Better Yield of Bioethanol Using Computer Simulations. J Chem Inf Model 2023; 63:5192-5203. [PMID: 37590465 DOI: 10.1021/acs.jcim.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The utilization of microbial cellulase enzymes for transforming plant biomass into biofuel or bioethanol, which can serve as a substitute for fossil fuel, is a subject of growing interest. Nonetheless, large-scale production of biofuel using cellulases is not economically feasible as the extraction of these enzymes from diverse microorganisms is an expensive process. To address this issue, immobilizing the enzyme to a substrate material, e.g., carbon nanotubes (CNTs), to recycle without a significant decline in its catalytic activity is a promising solution. Due to the hydrophobic nature of CNTs, we employed molecular docking and network analysis methodologies to identify potential CNT-binding sites on the outer surface of a wild-type cellulase enzyme, CelS. Classical molecular dynamics simulations of CNT-bound CelS through one of the selected binding sites resulted in negligible changes in the secondary structure of the enzyme and its catalytic domain, implying the least possible effect on the catalytic activity post-immobilization. Furthermore, our study reveals that while the unfolding near the CNT-binding region in CelS is more pronounced when the enzyme is interacting with a wider CNT, resulting in enhanced contact area and improved binding affinity, its impact on the overall CelS structure is relatively less significant when compared to thinner CNTs. Particularly, CNTs of diameter ∼12 Å can serve as a favorable option for substrate materials in cellulase immobilization. Our study also provides critical insights into the binding mechanisms between cellulase and CNTs, which could lead to the development of more efficient biocatalysts for biofuel production.
Collapse
Affiliation(s)
- Shubhashree Barik
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Akarsh Kumar Dash
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| |
Collapse
|
8
|
de Lima EA, Mandelli F, Kolling D, Matsusato Souza J, de Oliveira Filho CA, Ribeiro da Silva M, Lobo de Mesquita Sampaio I, Lopes Junqueira T, Ferreira Chagas M, Teodoro JC, de Morais ER, Murakami MT. Development of an economically competitive Trichoderma-based platform for enzyme production: Bioprocess optimization, pilot plant scale-up, techno-economic analysis and life cycle assessment. BIORESOURCE TECHNOLOGY 2022; 364:128019. [PMID: 36162784 DOI: 10.1016/j.biortech.2022.128019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Despite decades of research and industrial applications of Trichoderma reesei, the development of industrially relevant strains for enzyme production including a low-cost and scalable bioprocess remains elusive. Herein, bioprocess optimization, pilot plant scale-up, techno-economic analysis and life-cycle assessment for enzyme production by an engineered T. reesei strain are reported. The developed bioprocess increased in ∼ 2-fold protein productivity (0.39 g.L-1.h-1) and 1.6-fold FPase activity (196 FPU.L-1.h-1), reducing the fermentation in 4 days. Cultivation in a 65-L pilot plant bioreactor resulted in 54 g.L-1 protein in 7 days, highlighting the robustness and scalability of this bioprocess. Techno-economic analysis indicates an enzyme cost of ∼ 3.2 USD.kg-1, which is below to the target proposed (4.24 USD.kg-1) in the NREL/TP-5100-47764 report, while life-cycle assessment shows a carbon footprint reduction of approximately 50% compared to a typical commercial enzyme. This study provides the fundamental knowledge for the design of economically competitive Trichoderma technologies for industrial use.
Collapse
Affiliation(s)
- Evandro Antonio de Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Fernanda Mandelli
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Daniel Kolling
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Jaqueline Matsusato Souza
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Carlos Alberto de Oliveira Filho
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mateus Ribeiro da Silva
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Isabelle Lobo de Mesquita Sampaio
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Tassia Lopes Junqueira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mateus Ferreira Chagas
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Juliana Conceição Teodoro
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Edvaldo Rodrigo de Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
| |
Collapse
|