1
|
Zhang L, Chen W, Li X, Wang G, Xing F, Zhu X. Galectin-1 overexpression induces normal fibroblasts translate into cancer-associated fibroblasts and attenuates the sensitivity of anlotinib in lung cancer. Cell Adh Migr 2024; 18:1-11. [PMID: 38557441 PMCID: PMC10986763 DOI: 10.1080/19336918.2024.2335881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
We aimed to investigate galectin-1 overexpression induces normal fibroblasts (NFs) translates into cancer-associated fibroblasts (CAFs). Galectin-1 overexpression was conducted in Human embryonic lung fibroblasts (HFL1) cell. The motilities of H1299 and A549 cells were measured. Human umbilical vein endothelial cell (HUVEC) proliferation and tube formation ability were assessed. Tumor volume and tumor weight was recorded. Cells motilities were increased, while apoptosis rates were decreased after CMs co-cultured. B-cell lymphoma-2 (Bcl-2) expression level was increased, while Bcl2-associatedX (Bax) and cleaved-caspase3 decreased. CMs treatment enhanced HUVEC proliferation and tube formation. Tumor volume and weight in CMs treated mice were increased, and the sensitivity of anlotinib in co-cultured cells was decreased. Our results revealed that galectin-1 overexpression induced NFs translated into CAFs.
Collapse
Affiliation(s)
- Lei Zhang
- 0Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Wenbang Chen
- 0Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaojun Li
- 0Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Gengming Wang
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fubao Xing
- 0Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xiao Zhu
- 0Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
2
|
Kalita B, Coumar MS. Deciphering Breast Cancer Metastasis Cascade: A Systems Biology Approach Integrating Transcriptome and Interactome Insights for Target Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:148-161. [PMID: 38484298 DOI: 10.1089/omi.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Breast cancer is the lead cause of cancer-related deaths among women globally. Breast cancer metastasis is a complex and still inadequately understood process and a key dimension of mortality attendant to breast cancer. This study reports dysregulated genes across metastatic stages and tissues, shedding light on their molecular interplay in disease pathogenesis and new possibilities for drug discovery. Comprehensive analyses of gene expression data from primary breast tumor, circulating tumor cells, and distant metastatic sites in the brain, lung, liver, and bone were conducted. Genes dysregulated across multiple stages and tissues were identified as metastatic cascade genes, and are further classified based on functional associations with metastasis-related mechanisms. Their interactions with HUB genes in interactome networks were scrutinized, followed by pathway enrichment analysis. Validation for their potential as targets included assessments for survival, druggability, prognostic marker status, secretome annotation, protein expression, and cell type marker association. Results displayed critical genes in the metastatic cascade and those specific to metastatic sites, revealing the involvement of the collagen degradation and assembly of collagen fibrils and other multimeric structure pathways in driving metastasis. Notably, pivotal cascade genes FABP4, CXCL12, APOD, and IGF1 emerged with high metastatic potential, linked to significant druggability and survival scores, establishing them as potential molecular targets. The significance of this research lies in its potential to uncover novel biomarkers for early detection, therapeutic targets, and a deeper understanding of the molecular mechanisms underpinning the metastatic cascade in breast cancer, and with an eye to precision/personalized medicine.
Collapse
Affiliation(s)
- Bikashita Kalita
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
3
|
Shi Q, Zeng Y, Xue C, Chu Q, Yuan X, Li L. Development of a promising PPAR signaling pathway-related prognostic prediction model for hepatocellular carcinoma. Sci Rep 2024; 14:4926. [PMID: 38418897 PMCID: PMC10902383 DOI: 10.1038/s41598-024-55086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
The peroxisome proliferator-activated receptor (PPAR) signaling pathway plays a crucial role in systemic cell metabolism, energy homeostasis and immune response inhibition. However, its significance in hepatocellular carcinoma (HCC) has not been well documented. In our study, based on the RNA sequencing data of HCC, consensus clustering analyses were performed to identify PPAR signaling pathway-related molecular subtypes, each of which displaying varying survival probabilities and immune infiltration status. Following, a prognostic prediction model of HCC was developed by using the random survival forest method and Cox regression analysis. Significant difference in survival outcome, immune landscape, drug sensitivity and pathological features were observed between patients with different prognosis. Additionally, decision tree and nomogram models were adopted to optimize the prognostic prediction model. Furthermore, the robustness of the model was verified through single-cell RNA-sequencing data. Collectively, this study systematically elucidated that the PPAR signaling pathway-related prognostic model has good predictive efficacy for patients with HCC. These findings provide valuable insights for further research on personalized treatment approaches for HCC.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| |
Collapse
|
4
|
Li F, Chen H, Lu X, Wei Y, Zhao Y, Fu J, Xiao X, Bu H. Combining the tumor-stroma ratio with tumor-infiltrating lymphocytes improves the prediction of pathological complete response in breast cancer patients. Breast Cancer Res Treat 2023; 202:173-183. [PMID: 37528265 DOI: 10.1007/s10549-023-07026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE The tumor-stroma ratio (TSR) is a common histological parameter that measures stromal abundance and is prognostic in breast cancer (BC). However, more evidence is needed on the predictive value of the TSR for the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). The purpose of this study was to determine the importance of the TSR in predicting pCR in NAC settings. METHOD We evaluated the TSR on pretreatment biopsies of 912 BC patients from four independent Chinese hospitals and investigated the potential value of the TSR for predicting pCR. Meanwhile, stromal tumor-infiltrating lymphocytes (sTILs) were assessed, and we evaluated the predictive value of the combination of sTILs and TSR (TSRILs). RESULTS Patients with low stroma showed a higher pCR rate than those with high stroma among the four independent hospitals, and in multivariate analysis, the TSR was proven to be an independent predictor for pCR to NAC with an odds ratio of 1.945 (95% CI 1.230-3.075, P = 0.004). Moreover, we found that TSRILs could improve the area under the curve (AUC) for predicting pCR from 0.750 to 0.785 (P = 0.039); especially in HER2-negative BCs, the inclusion of TSRILs increased the AUC from 0.801 to 0.835 in the discovery dataset (P = 0.048) and 0.734 to 0.801 in the validation dataset (P = 0.003). CONCLUSION TSR and sTILs can be easily measured in pathological routines and provide predictive information without additional cost; with more evidence from clinical trials, TSRILs could be a candidate to better stratify patients in NAC settings.
Collapse
Affiliation(s)
- Fengling Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Transplant Engineering and Immunology of the National Health Commission, West China Hospital, Sichuan University, Chengdu, China
| | - Xunxi Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yani Wei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Zhao
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jing Fu
- Department of Pathology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiuli Xiao
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Tu Z, Li K, Ji Q, Huang Y, Lv S, Li J, Wu L, Huang K, Zhu X. Pan-cancer analysis: predictive role of TAP1 in cancer prognosis and response to immunotherapy. BMC Cancer 2023; 23:133. [PMID: 36759763 PMCID: PMC9912572 DOI: 10.1186/s12885-022-10491-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/26/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Transporter associated with antigen processing 1 (TAP1) is a molecule involved in processing and presentation of major histocompatibility complex class I restricted antigens, including tumor-associated antigens. TAP1 participates in tumor immunity, and is aberrantly expressed in multiple cancer types; METHODS: Transcriptome profiles were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression databases. Genetic alterations, protein distribution, and interaction information for TAP1 were downloaded from cBioPortal, Human Protein Atlas and Compartmentalized Protein-Protein Interaction, respectively. Single-cell analyses of TAP1 across cancers were conducted via the Tumor Immune Single-cell Hub website. Gene set enrichment analysis was employed to investigate TAP1-associated functional mechanisms and processes. Immune cell infiltration was explored using Tumor Immune Estimation Resource 2.0. Pan-cancer correlations between TAP1 expression and immunotherapy biomarkers were explored using the Spearman's correlation test. Associations with immunotherapy responses were also investigated using clinicopathological and prognostic information from cohorts of patients with cancer receiving immune checkpoint inhibitors. RESULTS TAP1 expression was elevated in most cancer types and exhibited distinct prognostic value. Immune cells expressed more TAP1 than malignant cells within most tumors. TAP1 expression was significantly correlated with immune-related pathways, T-lymphocyte infiltration, and immunotherapeutic biomarkers. Clinical cohort validation revealed a significant correlation with immune therapeutic effects and verified the prognostic role of TAP1 in immunotherapy. Western blot assay indicated that TAP1 is upregulated in glioblastoma compared with adjacent normal brain tissues. CONCLUSION TAP1 is a robust tumor prognostic biomarker and a novel predictor of clinical prognosis and immunotherapeutic responses in various cancer types.
Collapse
Affiliation(s)
- Zewei Tu
- grid.412455.30000 0004 1756 5980Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006 Nanchang, P. R. China ,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi 330006 Nanchang, P. R. China ,grid.260463.50000 0001 2182 8825Institute of Neuroscience, Nanchang University, Jiangxi 330006 Nanchang, P. R. China ,JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006 Nanchang, P. R. China
| | - Kuangxun Li
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi 330006 Nanchang, P. R. China ,grid.260463.50000 0001 2182 8825Institute of Neuroscience, Nanchang University, Jiangxi 330006 Nanchang, P. R. China ,JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006 Nanchang, P. R. China ,grid.260463.50000 0001 2182 8825Queen Mary School, University of Nanchang, Jiangxi 330006 Nanchang, P. R. China
| | - Qiankun Ji
- grid.412455.30000 0004 1756 5980Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006 Nanchang, P. R. China ,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi 330006 Nanchang, P. R. China ,grid.260463.50000 0001 2182 8825Institute of Neuroscience, Nanchang University, Jiangxi 330006 Nanchang, P. R. China ,JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006 Nanchang, P. R. China
| | - Yuyang Huang
- grid.260463.50000 0001 2182 8825Queen Mary School, University of Nanchang, Jiangxi 330006 Nanchang, P. R. China
| | - Shigang Lv
- grid.412455.30000 0004 1756 5980Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006 Nanchang, P. R. China
| | - Jingying Li
- grid.412455.30000 0004 1756 5980Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi, 330006, Nanchang, P. R. China. .,Institute of Neuroscience, Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, P. R. China.
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi, 330006, Nanchang, P. R. China. .,Institute of Neuroscience, Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, P. R. China.
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Jiangxi, 330006, Nanchang, P. R. China. .,Institute of Neuroscience, Nanchang University, Jiangxi, 330006, Nanchang, P. R. China. .,JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, P. R. China.
| |
Collapse
|
6
|
Xu C, Liu Y, Zhang Y, Gao L. The role of a cuproptosis-related prognostic signature in colon cancer tumor microenvironment and immune responses. Front Genet 2022; 13:928105. [PMCID: PMC9596916 DOI: 10.3389/fgene.2022.928105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Colon adenocarcinoma (COAD) is a common malignant tumor of the digestive tract with poor clinical outcomes. Cuproptosis is a novel cell death mechanism and linked to mitochondrial respiration. However, the role of cuproptosis in colon cancer tumor microenvironment (TME) and immune responses remains unknown.Methods: We conducted difference analysis to identify the differential expressed cuproptosis-related genes (CRGs). According to the CRGs, the TCGA-COAD samples were categorized using consensus clustering. The LASSO regression analysis was utilized to develop the cuproptosis-related signature. We then verified the model reliability by Kaplan–Meier, PCA, and ROC analysis. The GES39582 cohort served as the validation set. GO and KEGG functional analyses were conducted to investigate the underlying mechanism. We compared the infiltration levels of immune cells, the expression levels of immune checkpoints, and microsatellite instability (MSI) status between the high- and low-risk groups. Additionally, the relationships between the risk signature and immune cells and cancer stem cell (CSC) were analyzed.Results: Finally, we identified 9 differentially expressed CRGs in COAD. According to the expression of CRGs, the TCGA-COAD samples were separated into two clusters. The 11-gene signature was established by LASSO, and it had excellent predictive power for COAD prognosis. Besides, we used the GSE39582 cohort to validate the prognostic value of the model. GO and KEGG results demonstrated that the survival differences between two risk groups was mainly linked to the extracellular matrix (ECM). Further immune characterization analysis showed the significant differences in the immune cell infiltration and immune responses between two risk groups.Conclusion: Overall, the novel cuproptosis-related signature was able to accurately predict COAD prognosis and played important roles in COAD tumor microenvironment and immune responses.
Collapse
Affiliation(s)
- Chenyang Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yonghao Liu
- Department of Imaging, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxi Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Ling Gao,
| |
Collapse
|
7
|
Strous MTA, Faes TKE, Gubbels ALHM, van der Linden RLA, Mesker WE, Bosscha K, Bronkhorst CM, Janssen-Heijnen MLG, Vogelaar FJ, de Bruïne AP. A high tumour-stroma ratio (TSR) in colon tumours and its metastatic lymph nodes predicts poor cancer-free survival and chemo resistance. Clin Transl Oncol 2022; 24:1047-1058. [PMID: 35064453 DOI: 10.1007/s12094-021-02746-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Despite known high-risk features, accurate identification of patients at high risk of cancer recurrence in colon cancer remains a challenge. As tumour stroma plays an important role in tumour invasion and metastasis, the easy, low-cost and highly reproducible tumour-stroma ratio (TSR) could be a valuable prognostic marker, which is also believed to predict chemo resistance. METHODS Two independent series of patients with colon cancer were selected. TSR was estimated by microscopic analysis of 4 µm haematoxylin and eosin (H&E) stained tissue sections of the primary tumour and the corresponding metastatic lymph nodes. Patients were categorized as TSR-low (≤ 50%) or TSR-high (> 50%). Differences in overall survival and cancer-free survival were analysed by Kaplan-Meier curves and cox-regression analyses. Analyses were conducted for TNM-stage I-II, TNM-stage III and patients with an indication for chemotherapy separately. RESULTS We found that high TSR was associated with poor cancer-free survival in TNM-stage I-II colon cancer in two independent series, independent of other known high-risk features. This association was also found in TNM-stage III tumours, with an additional prognostic value of TSR in lymph node metastasis to TSR in the primary tumour alone. In addition, high TSR was found to predict chemo resistance in patients receiving adjuvant chemotherapy after surgical resection of a TNM-stage II-III colon tumour. CONCLUSION In colon cancer, the TSR of both primary tumour and lymph node metastasis adds significant prognostic value to current pathologic and clinical features used for the identification of patients at high risk of cancer recurrence, and also predicts chemo resistance.
Collapse
Affiliation(s)
- M T A Strous
- Department of Surgery, VieCuri Medical Centre, Tegelseweg 210, 5912 BL, Venlo, The Netherlands. .,Department of Epidemiology, GROW School for Oncology and Developmental Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | - T K E Faes
- Department of Pathology, VieCuri Medical Centre, Venlo, The Netherlands
| | - A L H M Gubbels
- Department of Pathology, VieCuri Medical Centre, Venlo, The Netherlands
| | | | - W E Mesker
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - K Bosscha
- Department of Surgery, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - C M Bronkhorst
- Department of Pathology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - M L G Janssen-Heijnen
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Epidemiology, VieCuri Medical Center, Venlo, The Netherlands
| | - F J Vogelaar
- Department of Surgery, VieCuri Medical Centre, Tegelseweg 210, 5912 BL, Venlo, The Netherlands
| | - A P de Bruïne
- Department of Pathology, VieCuri Medical Centre, Venlo, The Netherlands
| |
Collapse
|
8
|
Tian H, Shi H, Yu J, Ge S, Ruan J. Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100094. [PMID: 35712024 PMCID: PMC9189138 DOI: 10.1002/gch2.202100094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Oncological diseases have become the second leading cause of death from noncommunicable diseases worldwide and a major threat to human health. With the continuous progress in cancer research, the mechanical cues from the tumor microenvironment environment (TME) have been found to play an irreplaceable role in the progression of many cancers. As the main extracellular mechanical signal carrier, extracellular matrix (ECM) stiffness may influence cancer progression through biomechanical transduction to modify downstream gene expression, promote epithelial-mesenchymal transition (EMT), and regulate the stemness of cancer cells. EMT is an important mechanism that induces cancer cell metastasis and is closely influenced by ECM stiffness, either independently or in conjunction with other molecules. In this review, the unique role of ECM stiffness in EMT in different kinds of cancers is first summarized. By continually examining the significance of ECM stiffness in cancer progression, a biomimetic culture system based on 3D manufacturing and novel material technologies is developed to mimic ECM stiffness. The authors then look back on the novel development of the ECM stiffness biomimetic culture systems and finally provide new insights into ECM stiffness in cancer progression which can broaden the fields' horizons with a view toward developing new cancer diagnosis methods and therapies.
Collapse
Affiliation(s)
- Hao Tian
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Hanhan Shi
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jie Yu
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Shengfang Ge
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jing Ruan
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| |
Collapse
|
9
|
Xu JF, Wan Y, Tang F, Chen L, Yang Y, Xia J, Wu JJ, Ao H, Peng C. Emerging Significance of Ginsenosides as Potentially Reversal Agents of Chemoresistance in Cancer Therapy. Front Pharmacol 2022; 12:720474. [PMID: 34975466 PMCID: PMC8719627 DOI: 10.3389/fphar.2021.720474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance has become a prevalent phenomenon in cancer therapy, which alleviates the effect of chemotherapy and makes it difficult to break the bottleneck of the survival rate of tumor patients. Current approaches for reversing chemoresistance are poorly effective and may cause numerous new problems. Therefore, it is urgent to develop novel and efficient drugs derived from natural non-toxic compounds for the reversal of chemoresistance. Researches in vivo and in vitro suggest that ginsenosides are undoubtedly low-toxic and effective options for the reversal of chemoresistance. The underlying mechanism of reversal of chemoresistance is correlated with inhibition of drug transporters, induction of apoptosis, and modulation of the tumor microenvironment(TME), as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (NRF2)/AKT, lncRNA cancer susceptibility candidate 2(CASC2)/ protein tyrosine phosphatase gene (PTEN), AKT/ sirtuin1(SIRT1), epidermal growth factor receptor (EGFR)/ phosphatidylinositol 3-kinase (PI3K)/AKT, PI3K/AKT/ mammalian target of rapamycin(mTOR) and nuclear factor-κB (NF-κB). Since the effects and the mechanisms of ginsenosides on chemoresistance reversal have not yet been reviewed, this review summarized comprehensively experimental data in vivo and in vitro to elucidate the functional roles of ginsenosides in chemoresistance reversal and shed light on the future research of ginsenosides.
Collapse
Affiliation(s)
- Jin-Feng Xu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Roy SM, Garg V, Barman S, Ghosh C, Maity AR, Ghosh SK. Kinetics of Nanomedicine in Tumor Spheroid as an In Vitro Model System for Efficient Tumor-Targeted Drug Delivery With Insights From Mathematical Models. Front Bioeng Biotechnol 2021; 9:785937. [PMID: 34926430 PMCID: PMC8671936 DOI: 10.3389/fbioe.2021.785937] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Numerous strategies have been developed to treat cancer conventionally. Most importantly, chemotherapy shows its huge promise as a better treatment modality over others. Nonetheless, the very complex behavior of the tumor microenvironment frequently impedes successful drug delivery to the tumor sites that further demands very urgent and effective distribution mechanisms of anticancer drugs specifically to the tumor sites. Hence, targeted drug delivery to tumor sites has become a major challenge to the scientific community for cancer therapy by assuring drug effects to selective tumor tissue and overcoming undesired toxic side effects to the normal tissues. The application of nanotechnology to the drug delivery system pays heed to the design of nanomedicine for specific cell distribution. Aiming to limit the use of traditional strategies, the adequacy of drug-loaded nanocarriers (i.e., nanomedicine) proves worthwhile. After systemic blood circulation, a typical nanomedicine follows three levels of disposition to tumor cells in order to exhibit efficient pharmacological effects induced by the drug candidates residing within it. As a result, nanomedicine propounds the assurance towards the improved bioavailability of anticancer drug candidates, increased dose responses, and enhanced targeted efficiency towards delivery and distribution of effective therapeutic concentration, limiting toxic concentration. These aspects emanate the proficiency of drug delivery mechanisms. Understanding the potential tumor targeting barriers and limiting conditions for nanomedicine extravasation, tumor penetration, and final accumulation of the anticancer drug to tumor mass, experiments with in vivo animal models for nanomedicine screening are a key step before it reaches clinical translation. Although the study with animals is undoubtedly valuable, it has many associated ethical issues. Moreover, individual experiments are very expensive and take a longer time to conclude. To overcome these issues, nowadays, multicellular tumor spheroids are considered a promising in vitro model system that proposes better replication of in vivo tumor properties for the future development of new therapeutics. In this review, we will discuss how tumor spheroids could be used as an in vitro model system to screen nanomedicine used in targeted drug delivery, aiming for better therapeutic benefits. In addition, the recent proliferation of mathematical modeling approaches gives profound insight into the underlying physical principles and produces quantitative predictions. The hierarchical tumor structure is already well decorous to be treated mathematically. To study targeted drug delivery, mathematical modeling of tumor architecture, its growth, and the concentration gradient of oxygen are the points of prime focus. Not only are the quantitative models circumscribed to the spheroid, but also the role of modeling for the nanoparticle is equally inevitable. Abundant mathematical models have been set in motion for more elaborative and meticulous designing of nanomedicine, addressing the question regarding the objective of nanoparticle delivery to increase the concentration and the augmentative exposure of the therapeutic drug molecule to the core. Thus, to diffuse the dichotomy among the chemistry involved, biological data, and the underlying physics, the mathematical models play an indispensable role in assisting the experimentalist with further evaluation by providing the admissible quantitative approach that can be validated. This review will provide an overview of the targeted drug delivery mechanism for spheroid, using nanomedicine as an advantageous tool.
Collapse
Affiliation(s)
| | - Vrinda Garg
- Department of Physics, National Institute of Technology, Warangal, India
| | - Sourav Barman
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Chitrita Ghosh
- Department of Pharmacology, Burdwan Medical College and Hospital, Burdwan, India
| | | | - Surya K. Ghosh
- Department of Physics, National Institute of Technology, Warangal, India
| |
Collapse
|
11
|
Jiao K, Zhen J, Wu M, Teng M, Yang K, Zhou Q, Hu C, Zhou M, Li Y, Li Z. 27-Hydroxycholesterol-induced EndMT acts via STAT3 signaling to promote breast cancer cell migration by altering the tumor microenvironment. Cancer Biol Med 2021; 17:88-100. [PMID: 32296578 PMCID: PMC7142833 DOI: 10.20892/j.issn.2095-3941.2019.0262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Objective: The endothelial to mesenchymal transition (EndMT) plays a major role in cancer metastasis by regulating the complexity of the tumor microenvironment (TME). Here, we investigated whether 27-hydroxycholesterol (27HC) induces EndMT in endothelial cells (ECs). Methods: EndMT markers in the human microvascular endothelial cell-1 (HMEC-1) cell line and human umbilical vein endothelial cells (HUVECs) stimulated with 27HC were evaluated with Western blot. Epithelial to mesenchymal transition (EMT) markers in breast cancer (BC) cells cultured in conditioned medium were investigated with quantitative real time polymerase chain reaction (qRT-PCR). The MMP-2 and MMP-9 mRNA expression and activity were detected with qRT-PCR and gelatin zymography assays, respectively. The effect of activated STAT3 on 27HC-induced EndMT was validated by Western blot, immunofluorescence staining, and cell transfection assays. The migration ability of BC cells was evaluated with Transwell assays. Results: We found that 27HC induced EndMT in HMEC-1 and HUVECs, and 27HC-induced EndMT facilitated EMT and BC cell migration. The 27HC-induced EMT of BC cells also promoted EndMT and HUVEC migration. Investigation of the underlying molecular mechanisms revealed that STAT3 knockdown repressed EndMT in HUVECs as well as migration in BC cells induced with 27HC. In addition, C646 and resveratrol, inhibitors of STAT3 acetylation, repressed the expression of Ac-STAT3, p-STAT3, and EndMT markers in HUVECs exposed to 27HC; these HUVECs in turn attenuated the migration ability of BC cells in 27HC-induced EndMT. Conclusions: Cross-talk between 27HC-induced EndMT and EMT was observed in the TME. Moreover, activation of STAT3 signaling was found to be involved in 27HC-induced EndMT.
Collapse
Affiliation(s)
- Kailin Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Maoxuan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mengying Teng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Keke Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qian Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
12
|
Karimnia V, Rizvi I, Slack FJ, Celli JP. Photodestruction of Stromal Fibroblasts Enhances Tumor Response to PDT in 3D Pancreatic Cancer Coculture Models. Photochem Photobiol 2021; 97:416-426. [PMID: 33011973 PMCID: PMC7965253 DOI: 10.1111/php.13339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/21/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human cancers. The dismal response of PDAC to virtually all therapeutics is associated, in part, with a characteristically dense fibrotic stroma. This stroma not only acts as a barrier to drug perfusion, but also promotes tumor survival through paracrine crosstalk and biophysical interactions. Photodynamic therapy (PDT) is being explored for PDAC treatment, though the impact of tumor-promoting stromal crosstalk on PDT response in PDAC is not well-characterized. The current study assesses the effect of tumor-stroma interactions on response to PDT or chemotherapy in heterocellular 3D cocultures using PDAC cells and two different fibroblastic cell types (pancreatic stellate cells, PSCs, and a normal human fibroblast cell line, MRC5) embedded in extracellular matrix (ECM). While stromal fibroblasts promote resistance to chemotherapy as expected, PDAC 3D nodules in coculture with fibroblasts exhibit increased response to PDT relative to homotypic cultures. These results point to the potential for PDT to overcome tumor-promoting stromal interactions associated with poor therapeutic response in PDAC.
Collapse
Affiliation(s)
- Vida Karimnia
- Department of Physics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Frank J. Slack
- Department of Pathology, BIDMC Cancer Center/Harvard Medical School; 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Jonathan P. Celli
- Department of Physics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| |
Collapse
|
13
|
Ham J, Wang B, Po JW, Singh A, Niles N, Lee CS. Cancer-associated fibroblasts (CAFs) in thyroid papillary carcinoma: molecular networks and interactions. J Clin Pathol 2021; 74:759-765. [PMID: 33619218 DOI: 10.1136/jclinpath-2020-207357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023]
Abstract
In 1989, Stephen Paget proposed the 'seed and soil' theory of cancer metastasis. This theory has led to previous researchers focusing on the role of a tumour as a cancer seed and antiangiogenesis agents as cancer soil fumigant; for the latter to be effective, it is important for them to be able to distinguish cancer cells from stromal cells. However, antiangiogenesis agents have not produced dramatic survival benefits in vivo. This may be related to their inability to destroy the supporting stroma that promote cancer cell growth. Therefore, in order to effectively arrest cancer cell growth for therapeutic purposes, a paradigm shift is required in our fundamental approach to decipher the molecular events and networks in the stromal environment that cancer cells can thrive and proliferate. The pathogenesis of cancer is a multidimensional process of pathological molecular and cellular pathways, influencing different stromal properties and achieving a mutually negotiated crosstalk between cancer cells and stromal cells. This review summarises the clinical presentation of current knowledge of classical papillary thyroid carcinoma (PTC), emerging molecular diagnostics and future directions of classical PTC research.
Collapse
Affiliation(s)
- Jeehoon Ham
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia
| | - Bin Wang
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Joseph William Po
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Surgical Innovation Unit, Department of Surgery, Westmead Hospital, Sydney, New South Wales, Australia
| | - Amandeep Singh
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Thyroid Cancer Group, Ingham Institute, Liverpool, New South Wales, Australia.,Department of Head & Neck Surgery, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Navin Niles
- CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,Thyroid Cancer Group, Ingham Institute, Liverpool, New South Wales, Australia.,Department of Head & Neck Surgery, Liverpool Hospital, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown Campus, Campbelltown, New South Wales, Australia
| | - Cheok Soon Lee
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia .,Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown Campus, Campbelltown, New South Wales, Australia.,Central Clinical School, University of Sydney, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Department of Anatomical Pathology, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
14
|
Paciorek P, Żuberek M, Grzelak A. Rola miRNA w rozwoju wybranych nowotworów – potencjalne zastosowanie w diagnostyce*. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
MikroRNA (miRNA) są małymi cząsteczkami kwasu rybonukleinowego, które mimo że nie podlegają procesowi translacji, pełnią ważną funkcję regulacyjną w komórkach eukariotycznych. Ich fizjologiczną funkcją jest utrzymywanie homeostazy komórek. Zaburzona ekspresja miRNA może spowodować rozwój wielu chorób, w tym chorób nowotworowych. Działanie miRNA polega na hamowaniu tworzenia się białek, w tym białek o właściwościach onkogennych i antyonkogennych. Mutacje w miejscach kodowania miRNA mogą prowadzić do nadmiernego lub zmniejszonego wytwarzania wspomnianych białek. Odkrycie miRNA i poznanie ich roli w komórce otworzyło nowe możliwości dla diagnostyki chorób nowotworowych. Zmiany poziomu odpowiednich miRNA, w krwiobiegu lub innych płynach ustrojowych, mogą być markerem diagnostycznym chorób. Diagnostyka onkologiczna mogłaby przebiegać na podstawie badań profilu miRNA pacjenta i porównania go z opracowanymi wcześniej profilami zmian miRNA powiązanymi z występowaniem danego rodzaju choroby nowotworowej. Informacja o zmianach profilu miRNA podstawowych w regulacji ekspresji genów związanych z procesami nowotworzenia, mogłaby się przyczynić do opracowania terapii eksperymentalnych opartych na przywróceniu pierwotnego poziomu miRNA w komórkach, a tym samym, na przywróceniu prawidłowej regulacji ekspresji genów. Coraz nowsze metody wyciszania i włączania ekspresji miRNA mogą w przyszłości zaowocować skutecznymi rozwiązaniami terapeutycznymi.
Collapse
Affiliation(s)
- Patrycja Paciorek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Mariusz Żuberek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Agnieszka Grzelak
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| |
Collapse
|
15
|
Zraikat M, Alshelleh T. Comparison Between Different 3D Spheroid Tumor Invasion Models. Assay Drug Dev Technol 2020; 18:239-242. [PMID: 32466657 DOI: 10.1089/adt.2020.978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study aims to make a comparison between different forms of three-dimensional (3D) spheroid U87 tumor cell models that contain fibroblast cells as part of the tumor microenvironment. This purpose is to select the best representative tumor model to be used for further studies to investigate the effects of the anti-invasive pharmacological agents. For this purpose, different options to prepare the 3D spherical invasion model were tested based on the ability of the spheroids to invade in collagen microenvironment. There was a significant positive effect of the fibroblasts on the invasion of the U87 cells in the 3D invasion model compared with the control model that contains U87 cells alone. This result gives proof of the positive effect of the fibroblasts on invasion of tumor cells. Furthermore, these results add more proofs on the importance of adding cells of the tumor microenvironments to the tumor models to make the models more representative to the real in vivo tumor situation.
Collapse
Affiliation(s)
- Manar Zraikat
- Department of Pharmacology, University of Jordan, Amman, Jordan
| | | |
Collapse
|
16
|
The value of tumor-stroma ratio as predictor of pathologic response after neoadjuvant chemoradiotherapy in esophageal cancer. Clin Transl Radiat Oncol 2019; 20:39-44. [PMID: 31886418 PMCID: PMC6906651 DOI: 10.1016/j.ctro.2019.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/24/2019] [Indexed: 02/06/2023] Open
Abstract
Scoring the tumor-stroma ratio is a simple and reproducible method. Tumor-stroma ratio and response to neoadjuvant chemoradiotherapy are correlated. Stroma-low tumors are likely to respond better to neoadjuvant chemoradiotherapy.
Background and purpose With currently available techniques, the prediction of pathologic complete response after neoadjuvant chemoradiotherapy is insufficient. The tumor-stroma ratio (TSR) has proven to be a predictor of survival for several types of cancer, including esophageal. The aim of this study was to investigate the value of TSR in predicting pathologic response after neoadjuvant chemoradiotherapy in esophageal cancer patients. Materials and methods Patients with esophageal adenocarcinoma or squamous cell carcinoma who received neoadjuvant chemoradiotherapy followed by a resection were selected. Haematoxylin and eosin (H&E) stained sections of diagnostic biopsies were collected and TSR was independently assessed by two investigators. Patients were categorized in stroma-low (≤50% stroma) and stroma-high (>50% stroma) groups for further analyses. The tumor regression grade (TRG) was assessed on H&E stained sections of the resected primary tumor to determine pathologic response. Results A total of 94 patients were included in this study, of which 76 patients were categorized as stroma-low and 18 as stroma-high. Forty-two (45%) patients had a major pathologic response (TRG 1–2), whereas 52 (55%) were considered non-responders. After adjustment for gender, tumor type, cT-status and differentiation grade, patients with a stroma-high tumor showed a higher chance of no response compared to patients with a stroma-low tumor (OR 3.57, 95%CI 1.03–12.31, P = 0.04). Conclusion TSR showed to have the potential to aid in the prediction of pathologic response in esophageal cancer patients receiving neoadjuvant chemoradiotherapy. Larger validation studies are necessary before implementing this method in daily practice.
Collapse
|
17
|
Medeiros M, Ribeiro AO, Lupi LA, Romualdo GR, Pinhal D, Chuffa LGDA, Delella FK. Mimicking the tumor microenvironment: Fibroblasts reduce miR-29b expression and increase the motility of ovarian cancer cells in a co-culture model. Biochem Biophys Res Commun 2019; 516:96-101. [PMID: 31200958 DOI: 10.1016/j.bbrc.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022]
Abstract
Ovarian cancer (OC) is a highly prevalent gynecological malignancy worldwide. Throughout ovarian carcinogenesis, the crosstalk between cellular components of the microenvironment, including tumor cells and fibroblasts, is proposed to play critical roles in cancer progression. The dysregulation of microRNA expression is also a pronounced feature of the OC. The screening of microRNAs, mainly those involved in OC microenvironment, could have diagnostic and/or therapeutic potential for this malignancy. Thus, we assessed the influence of fibroblasts on microRNA expression and the motility of OC cells. To achieve this goal, SKOV-3 cancer cells were co-cultured with human normal fibroblasts derived from primary culture (FP-96). Cell viability, expression of tumor suppressor microRNAs and oncomiRs by RT-qPCR, cell migration by wound healing assay and analysis of MMP-2 activity by zymography were performed in SKOV-3 cells. Moreover, α-smooth muscle actin (α-SMA) expression was evaluated by Western blot in FP-96 fibroblasts. Notably, the co-culture downregulated the tumor suppressor miR-29b and increased migration of SKOV-3 cells. In addition, co-culture increased the activity of MMP-2, which is a miR-29 target, and accounted for extracellular matrix remodeling and augmented cellular motility. Concomitantly, the co-culture system induced α-SMA expression in FP-96 fibroblasts, the commonly expressed marker in cancer-associated fibroblasts (CAFs). Our findings suggest that the potential crosstalk between OC cells and fibroblasts in tumor microenvironment may play a key role in the progression of OC.
Collapse
Affiliation(s)
- Mariana Medeiros
- Sao Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, Sao Paulo, Brazil
| | - Amanda Oliveira Ribeiro
- Sao Paulo State University (UNESP), Institute of Biosciences, Department of Genetics, Botucatu, Sao Paulo, Brazil
| | - Luiz Antônio Lupi
- Sao Paulo State University (UNESP), Institute of Biosciences, Department of Anatomy, Botucatu, Sao Paulo, Brazil
| | - Guilherme Ribeiro Romualdo
- Sao Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, Sao Paulo, Brazil
| | - Danillo Pinhal
- Sao Paulo State University (UNESP), Institute of Biosciences, Department of Genetics, Botucatu, Sao Paulo, Brazil
| | | | - Flávia Karina Delella
- Sao Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
18
|
Stavrovskaya AA, Rybalkina EY. Recent Advances in the Studies of Molecular Mechanisms Regulating Multidrug Resistance in Cancer Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:779-786. [PMID: 30200862 DOI: 10.1134/s0006297918070015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we present new approaches to better understanding multidrug resistance (MDR) development in cancer cells, such as identification of components of a complex process of MDR evolution. Recent advances in the studies of MDR are discussed: 1) chemotherapy agents might be involved in the selection of cancer stem cells resulting in the elevated drug resistance and enhanced tumorigenicity; 2) cell-cell interactions have a great effect on the MDR emergence and evolution; 3) mechanotransduction is an important signaling mechanism in cell-cell interactions; 4) proteins of the ABC transporter family which are often involved in MDR might be transferred between cells via microvesicles (epigenetic MDR regulation); 5) proteins providing cell-to-cell transfer of functional P-glycoprotein (MDR1 protein) via microvesicles have been investigated; 6) P-glycoprotein may serve to regulate apoptosis, as well as transcription and translation of target genes/proteins. Although proving once again that MDR is a complex multi-faceted process, these data open new approaches to overcoming it.
Collapse
Affiliation(s)
- A A Stavrovskaya
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| | - E Yu Rybalkina
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
19
|
LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 2018; 11:11/4/dmm029447. [PMID: 29686035 PMCID: PMC5963854 DOI: 10.1242/dmm.029447] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In malignant tumors, cancer cells adapt to grow within their host tissue. As a cancer progresses, an accompanying host stromal response evolves within and around the nascent tumor. Among the host stromal constituents associated with the tumor are cancer-associated fibroblasts, a highly abundant and heterogeneous population of cells of mesenchymal lineage. Although it is known that fibroblasts are present from the tumor's inception to the end-stage metastatic spread, their precise functional role in cancer is not fully understood. It has been suggested that cancer-associated fibroblasts play a key role in modulating the behavior of cancer cells, in part by promoting tumor growth, but evolving data also argue for their antitumor actions. Taken together, this suggests a putative bimodal function for cancer-associated fibroblasts in oncogenesis. As illustrated in this Review and its accompanying poster, cancer-associated fibroblasts are a dynamic component of the tumor microenvironment that orchestrates the interplay between the cancer cells and the host stromal response. Understanding the complexity of the relationship between cancer cells and cancer-associated fibroblasts could offer insights into the regulation of tumor progression and control of cancer. Summary: Cancer-associated fibroblasts constitute a functionally heterogeneous mesenchymal cell population in the tumor microenvironment. This ‘At a glance’ article reviews their origin and their pro- and antitumor properties.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| |
Collapse
|
20
|
Urokinase plasminogen activator secreted by cancer-associated fibroblasts induces tumor progression via PI3K/AKT and ERK signaling in esophageal squamous cell carcinoma. Oncotarget 2018; 8:42300-42313. [PMID: 28404945 PMCID: PMC5522068 DOI: 10.18632/oncotarget.15857] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are believed to influence tumor behavior and clinical outcomes. We previously showed that conditioned medium (CM) from CAFs induces proliferation and motility of esophageal squamous cell carcinoma (ESCC) cells. Here, we investigated the molecular mechanisms by which the CAF-secreted proteins induce ESCC development and progression. Using antibody arrays, we identified urokinase plasminogen activator (uPA) as one of the main proteins whose release was increased in CAFs compared to normal fibroblasts (NFs). Immunohistochemical analysis of pathological sections showed that uPA-positive cells were localized at the boundaries of tumor and stroma tissues, in stroma between tumor nests, and within the tumors. Increased stromal uPA levels (132/146 cases) correlated with tumor invasion (p < 0.05) and overall survival of ESCC patients (p < 0.05). In vitro assays showed that uPA promotes ESCC cell proliferation, migration, and invasion via PI3K/AKT and ERK signaling pathways. In vivo, anti-uPA antibody suppressed tumor growth in ESCC xenografts. These results suggest that uPA released from stroma, and especially from CAFs, might be a predictive marker for ESCC diagnosis and prognosis, as well as an effective therapeutic target.
Collapse
|
21
|
Wei M, Yang T, Chen X, Wu Y, Deng X, He W, Yang J, Wang Z. Malignant ascites-derived exosomes promote proliferation and induce carcinoma-associated fibroblasts transition in peritoneal mesothelial cells. Oncotarget 2018; 8:42262-42271. [PMID: 28178689 PMCID: PMC5522065 DOI: 10.18632/oncotarget.15040] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/13/2017] [Indexed: 02/05/2023] Open
Abstract
Malignant ascites-derived exosomes have been demonstrated to participate in tumor metastasis. In peritoneal metastasis, normal mesothelial cells (MCs) can be converted into carcinoma-associated fibroblasts (CAFs) by mesothelial-mesenchymal transition (MMT). Herein, we evaluated the effect of malignant ascites-derived exosomes on peritoneal MCs in vitro and in vivo experiments to determine whether exosomes could educate MCs and contribute to peritoneal metastasis. Under the treatment of ascites-derived exosomes, peritoneal MCs showed increased ability to proliferate and migrate. Expression of CAFs specific proteins markers in MCs, including fibroblast activation protein (FAP), alpha-smooth muscle actin (α-SMA), and fibronectin, were increased after treatment of exosomes. In clinical samples test, TGF-β1 was found to be overexpressed in both malignant ascites and malignant ascites-derived exosomes, and the high volume of TGF-β1 may be responsible for peritoneum fibrosis. In addition, exosomes can increase xenograft tumor growth by suppressing the inhibitive ability on tumor cells by MCs. Besides, CAFs specific proteins markers including FAP, α-SMA, and vimentin were increased in clinical peritoneal biopsies. The immunohistochemical staining for mice tumor biopsies also revealed increased expression of fibronectin and FAP, along with decreased expression of E-cadherin and VCAM-1 after exosomes treatment. Thus, malignant ascites-derived exosomes may be of importance in the development of peritoneal metastasis by facilitating MCs to proliferate and convert into CAFs by TGF-β1 induced MMT.
Collapse
Affiliation(s)
- Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tinghan Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangzheng Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yangping Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangbing Deng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wanbin He
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
22
|
Biopsy proportion of tumour predicts pathological tumour response and benefit from chemotherapy in resectable oesophageal carcinoma: results from the UK MRC OE02 trial. Oncotarget 2018; 7:77565-77575. [PMID: 27769054 PMCID: PMC5363605 DOI: 10.18632/oncotarget.12723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 10/01/2016] [Indexed: 12/18/2022] Open
Abstract
Background Neoadjuvant chemotherapy followed by surgery is the standard of care for UK patients with locally advanced resectable oesophageal carcinoma (OeC). However, not all patients benefit from multimodal treatment and there is a clinical need for biomarkers which can identify chemotherapy responders. This study investigated whether the proportion of tumour cells per tumour area (PoT) measured in the pre-treatment biopsy predicts chemotherapy benefit for OeC patients. Patients and methods PoT was quantified using digitized haematoxylin/eosin stained pre-treatment biopsy slides from 281 OeC patients from the UK MRC OE02 trial (141 treated by surgery alone (S); 140 treated by 5-fluorouracil/cisplatin followed by surgery (CS)). The relationship between PoT and clinicopathological data including tumour regression grade (TRG), overall survival and treatment interaction was investigated. Results PoT was associated with chemotherapy benefit in a non-linear fashion (test for interaction, P=0.006). Only patients with a biopsy PoT between 40% and 70% received a significant survival benefit from neoadjuvant chemotherapy (N=129; HR (95%CI):1.94 (1.39-2.71), unlike those with lower or higher PoT (PoT<40%, N=39, HR:1.25 (0.66-2.35); PoT>70% (N=28, HR:0.65 (0.36-1.18)). High pre-treatment PoT was related to lack of primary tumour regression (TRG 4 or 5), P=0.0402. Conclusions This is the first study to identify in a representative subgroup of OeC patients from a large randomized phase III trial that the proportion of tumour in the pre-chemotherapy biopsy predicts benefit from chemotherapy and may be a clinically useful biomarker for patient treatment stratification. Proportion of tumour is a novel biomarker which can be measured in the pre-treatment diagnostic biopsy and which may enable the identification of chemotherapy responders and non-responders among patients with oesophageal carcinoma. Proportion of tumour could easily become part of the routine reporting of oesophageal cancer biopsies and may aid in managing patients with borderline resectable cancer.
Collapse
|
23
|
Chen Y, Du M, Wang J, Xing P, Zhang Y, Li F, Lu X. MiRNA-200a expression is inverse correlation with hepatocyte growth factor expression in stromal fibroblasts and its high expression predicts a good prognosis in patients with non-small cell lung cancer. Oncotarget 2018; 7:48432-48442. [PMID: 27374174 PMCID: PMC5217029 DOI: 10.18632/oncotarget.10302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play an important role in favoring tumor progression. However, little is known concerning expression of miRNA-200a and its potential target gene hepatocyte growth factor (HGF) in CAFs. In the present study, we investigated expression levels and prognostic significance of miRNA-200a and HGF in stromal fibroblasts of non-small cell lung cancer (NSCLC), and evaluated the correlation between miRNA-200a and HGF. In situ hybridization and immunohistochemical staining were used to investigate expression levels of miRNA-200a and HGF in 134 formalin-fixed paraffin-embedded tumor specimens from clinical stage I -IIIA NSCLC, respectively. The results showed a significant inverse correlation existed between miRNA-200a and HGF expression level in stromal fibroblasts (χ2 = 21.778, p = 0.000). In vitro, the upregulation of miRNA-200a reduced expression of HGF protein in human CAFs. The 3-year overall survival (OS) rates with low and high miRNA-200a expression in stromal fibroblasts were 39.0% and 53.4%, respectively (χ2=4.25, p=0.039). The 3-year OS rates with low and high HGF expression in stromal fibroblasts were 60.3% and 31.8%, respectively (χ2=12.55, p=0.000). The multivariate analysis showed that clinical stage and HGF expression level in stromal fibroblasts were the independent predictive factors of OS. These results suggested that miRNA-200a expression was inverse correlation with HGF expression in stromal fibroblasts. High miRNA-200a and low HGF expression in stromal fibroblasts may predict a good prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Yongbing Chen
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Menghua Du
- Department of Oncology & Radiotherapy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Wang
- Department of Oncology & Radiotherapy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Xing
- Department of Oncology & Radiotherapy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongsheng Zhang
- Department of Pathology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Li
- Department of Pathology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueguan Lu
- Department of Oncology & Radiotherapy, the Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
24
|
Despotović SZ, Milićević NM, Milošević DP, Despotović N, Erceg P, Svorcan P, Schumacher U, Ullrich S, Mihajlović G, Kalem D, Marković S, Lalić IM, Krmpot AJ, Rabasović MD, Pantelić DV, Jovanić SZ, Rösch T, Milićević Ž. Remodeling of extracellular matrix of the lamina propria in the uninvolved human rectal mucosa 10 and 20 cm away from the malignant tumor. Tumour Biol 2017; 39:1010428317711654. [PMID: 28718368 DOI: 10.1177/1010428317711654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In recent years, it has been demonstrated that malignancy arises and advances through the molecular interplay between tumor cells and non-malignant elements of the tumor stroma, that is, fibroblasts and extracellular matrix. However, in contrast to the mounting evidence about the role of tumor stroma in the genesis and progression of the malignant disease, there are very few data regarding the uninvolved stromal tissue in the remote surrounding of the tumor. Using the objective morphometric approach in patients with adenocarcinoma, we demonstrate the remodeling of extracellular matrix of the lamina propria in the uninvolved rectal mucosa 10 and 20 cm away from the neoplasm. We show that the representation of basic extracellular matrix constituents (reticular and collagen fibers and ground substance) is decreased. Also, the diameter of empty spaces that appear within the extracellular matrix of the lamina propria is increased. These spaces do not represent the blood or lymphatic vessel elements. Very likely, they reflect the development of tissue edema in the remote, uninvolved lamina propria of the mucosa in patients with the malignant tumor of the rectum. We hypothesize that the remodeling of extracellular matrix in lamina propria of the rectal mucosa may increase its stiffness, modulating the mechano-signal transduction, and thus promote the progression of the malignant disease.
Collapse
Affiliation(s)
- Sanja Z Despotović
- 1 Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Novica M Milićević
- 1 Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragoslav P Milošević
- 2 Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,3 Department of Geriatrics, Zvezdara University Clinical Center, Belgrade, Serbia
| | - Nebojša Despotović
- 2 Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,3 Department of Geriatrics, Zvezdara University Clinical Center, Belgrade, Serbia
| | - Predrag Erceg
- 2 Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,3 Department of Geriatrics, Zvezdara University Clinical Center, Belgrade, Serbia
| | - Petar Svorcan
- 2 Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,4 Center for Gastroenterology and Hepatology, Zvezdara University Clinical Center, Belgrade, Serbia
| | - Udo Schumacher
- 5 Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Ullrich
- 5 Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gordana Mihajlović
- 3 Department of Geriatrics, Zvezdara University Clinical Center, Belgrade, Serbia
| | - Dragan Kalem
- 4 Center for Gastroenterology and Hepatology, Zvezdara University Clinical Center, Belgrade, Serbia
| | - Srđan Marković
- 4 Center for Gastroenterology and Hepatology, Zvezdara University Clinical Center, Belgrade, Serbia
| | - Ivana M Lalić
- 1 Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | - Dejan V Pantelić
- 6 Institute of Physics, University of Belgrade, Belgrade, Serbia
| | | | - Thomas Rösch
- 7 Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Živana Milićević
- 1 Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Ouyang L, Chang W, Fang B, Qin J, Qu X, Cheng F. Estrogen-induced SDF-1α production promotes the progression of ER-negative breast cancer via the accumulation of MDSCs in the tumor microenvironment. Sci Rep 2016; 6:39541. [PMID: 27996037 PMCID: PMC5172230 DOI: 10.1038/srep39541] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/24/2016] [Indexed: 02/04/2023] Open
Abstract
Estrogen plays a role in the processes of tumorigenesis, metastasis, and drug resistance in estrogen receptor (ER)-positive breast cancer (BC). Whether estrogen contributes to ER-negative BC is unclear. Here, we aimed to investigate whether estrogen could stimulate the secretion of stromal-derived factor-1 (SDF-1α) by cancer-associated fibroblasts (CAFs) to promote the progression of ER-negative BC. We transplanted ER-negative BC cells into ovariectomized mice, which was followed by continuous injection of estrogen, and found that estrogen promoted the tumorigenesis of BC. Furthermore, High levels of SDF-1α and tumor-infiltrating myeloid-derived suppressor cells (MDSCs) were detected in the estrogen treatment group. Estrogen stimulates secretion of SDF-1α by CAFs extracted from BC patients. Recombinant SDF-1α could recruit MDSCs isolated from bone marrow cells of mice. In addition, the co-culture of CAFs and MDSCs demonstrated that the recruitment of MDSCs was increased when CAFs were exposed to estrogen. Using AMD3100 to block the SDF-1α/CXCR4 axis or gemcitabine to delete MDSCs, we observed that both of these agents could neutralize the effect of estrogen on tumorigenesis. Together, these results suggest that estrogen may promote the progression of ER-negative BC by stimulating CAFs to secrete SDF-1α, which can recruit MDSCs to the tumor microenvironment to exert tumor-promoting effects.
Collapse
Affiliation(s)
- Liquan Ouyang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weilong Chang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bin Fang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jieting Qin
- Department of Clinical Medicine, Yichang Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Yichang 443000, Hubei, China
| | - Xincai Qu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science And Technology, Wuhan 430022, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
26
|
Abstract
BACKGROUND Metastasis is the main cause of mortality in cancer patients. Two major routes of cancer cell spread are currently being recognized: dissemination via blood vessels (hematogenous spread) and dissemination via the lymphatic system (lymphogenous spread). Here, our current knowledge on the role of both blood and lymphatic vessels in cancer cell metastasis is summarized. In addition, I will discuss why cancer cells select one or both of the two routes to disseminate and I will provide a short description of the passive and active models of intravasation. Finally, lymphatic vessel density (LVD), blood vessel density (BVD), interstitial fluid pressure (IFP) and tumor hypoxia, as well as regional lymph node metastasis and the recently discovered primo vascular system (PVS) will be highlighted as important factors influencing tumor cell motility and spread and, ultimately, clinical outcome. CONCLUSIONS Lymphangiogenesis and angiogenesis are important phenomena involved in the spread of cancer cells and they are associated with a poor prognosis. It is anticipated that new discoveries and advancing knowledge on these phenomena will allow an improvement in the treatment of cancer patients.
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
27
|
Qiao J, Fang CY, Chen SX, Wang XQ, Cui SJ, Liu XH, Jiang YH, Wang J, Zhang Y, Yang PY, Liu F. Stroma derived COL6A3 is a potential prognosis marker of colorectal carcinoma revealed by quantitative proteomics. Oncotarget 2016; 6:29929-46. [PMID: 26338966 PMCID: PMC4745773 DOI: 10.18632/oncotarget.4966] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) represents the third most common cancer in males and second in females worldwide. Here, we performed a quantitative 8-plex iTRAQ proteomics analysis of the secreted proteins from five colonic fibroblast cultures and three colon cancer epithelial cell lines. We identified 1114 proteins at 0% FDR, including 587 potential secreted proteins. We further recognized 116 fibroblast-enriched proteins which were significantly associated with cell movement, angiogenesis, proliferation and wound healing, and 44 epithelial cell-enriched proteins. By interrogation of Oncomine database, we found that 20 and 8 fibroblast-enriched proteins were up- and downregulated in CRC, respectively. Western blots confirmed the fibroblast-specific secretion of filamin C, COL6A3, COL4A1 and spondin-2. Upregulated mRNA and stroma expression of COL6A3 in CRC, which were revealed by Oncomine analyses and tissue-microarray-immunohistochemistry, indicated poor prognosis. COL6A3 expression was significantly associated with Dukes stage, T stage, stage, recurrence and smoking status. Circulating plasma COL6A3 in CRC patients was upregulated significantly comparing with healthy peoples. Receiver operating characteristic curve analysis revealed that COL6A3 has better predictive performance for CRC with an area under the curve of 0.885 and the best sensitivity/specificity of 92.9%/81.3%. Thus we demonstrated that COL6A3 was a potential diagnosis and prognosis marker of CRC.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Medical Systems Biology, School of Basic Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Cai-Yun Fang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Sun-Xia Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Qing Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shu-Jian Cui
- College of Bioscience and Biotechnology, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xiao-Hui Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yang Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng-Yuan Yang
- Department of Medical Systems Biology, School of Basic Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Feng Liu
- Department of Medical Systems Biology, School of Basic Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Abstract
BACKGROUND The histopathological structure of malignant tumours involves two essential compartments - the tumour parenchyma with the actual transformed cells, and the supportive tumour stroma. The latter consists of specialized mesenchymal cells, such as fibroblasts, macrophages, lymphocytes and vascular cells, as well as of their secreted products, including components of the extracellular matrix, matrix modifying enzymes and numerous regulatory growth factors and cytokines. In consequence, the tumour stroma has the ability to influence virtually all aspects of tumour development and progression, including therapeutic response. AIM In this article we review the current knowledge of tumor stroma interactions in urothelial carcinoma and present various experimental systems that are currently in use to unravel the biological basis of these heterotypic cell interactions. RESULTS For urothelial carcinoma, an extensive tumour stroma is quite typical and markers of activated fibroblasts correlate significantly with clinical parameters of advanced disease. Another clinically important variable is provided by the stromal expression of syndecan-1. CONCLUSION Integration of markers of activated stroma into clinical risk evaluation could aid to better stratification of urothelial bladder carcinoma patients. Elucidation of biological mechanisms underlying tumour-stroma interactions could provide new therapeutical targets.
Collapse
|
29
|
Ferreira JA, Peixoto A, Neves M, Gaiteiro C, Reis CA, Assaraf YG, Santos LL. Mechanisms of cisplatin resistance and targeting of cancer stem cells: Adding glycosylation to the equation. Drug Resist Updat 2016; 24:34-54. [DOI: 10.1016/j.drup.2015.11.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023]
|
30
|
A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts. Sci Rep 2015; 5:14421. [PMID: 26394925 PMCID: PMC4585784 DOI: 10.1038/srep14421] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/19/2015] [Indexed: 02/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are common components of the tumor-suppressive microenvironment, and are a major determinant of the poor outcome of therapeutic vaccination. In this study, we modified tumor cells to express the fibroblast activation protein (FAP), which is highly expressed by CAFs, to potentially improve whole-cell tumor vaccines by targeting both tumor cells and CAFs. Tumor cells were transfected with murine FAP plasmids bearing the cationic lipid DOTAP. Its antitumor effects were investigated in three established tumor models. Vaccination with tumor cells expressing FAP eliminated solid tumors and tumors resulting from hematogenous dissemination. This antitumor immune response was mediated by CD8+ T cells. Additionally, we found that CAFs were significantly reduced within the tumors. Furthermore, this vaccine enhanced the infiltration of CD8+ T lymphocytes, and suppressed the accumulation of immunosuppressive cells in the tumor microenvironment. Our results indicated that the FAP-modified whole-cell tumor vaccine induced strong antitumor immunity against both tumor cells and CAFs and reversed the immunosuppressive effects of tumors by decreasing the recruitment of immunosuppressive cells and enhancing the recruitment of effector T cells. This conclusion may have important implications for the clinical use of genetically modified tumor cells as cancer vaccines.
Collapse
|
31
|
NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell Oncol (Dordr) 2015; 38:327-39. [PMID: 26318853 DOI: 10.1007/s13402-015-0236-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are regulated by several signaling pathways that ultimately control their maintenance and expansion. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) forms a protein complex that controls DNA transcription and, as such, plays an important role in proliferation, inflammation, angiogenesis, invasion and metastasis. The NF-κB signaling pathway, which has been found to be constitutively activated in CSCs from a variety of cancers, participates in the maintenance, expansion, proliferation and survival of CSCs. Targeted disruption of this pathway may profoundly impair the adverse phenotype of CSCs and may provide a therapeutic opportunity to remove the CSC fraction. In particular, it may be attractive to use specific NF-κB inhibitors in chronic therapeutic schemes to reduce disease progression. Exceptional low toxicity profiles of these inhibitors are a prerequisite for use in combined treatment regimens and to avoid resistance. CONCLUSION Although still preliminary, recent evidence shows that such targeted strategies may be useful in adjuvant chemo-preventive settings.
Collapse
|
32
|
Pottier C, Wheatherspoon A, Roncarati P, Longuespée R, Herfs M, Duray A, Delvenne P, Quatresooz P. The importance of the tumor microenvironment in the therapeutic management of cancer. Expert Rev Anticancer Ther 2015; 15:943-54. [PMID: 26098949 DOI: 10.1586/14737140.2015.1059279] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor prognosis is generally defined by various tumor parameters. However, it is well known that paracrine, endocrine and cell-cell interactions between the tumor and its microenvironment contribute to its growth. The tumor microenvironment (TME) can also influence disease prognosis and is likely to be considered as an important prognostic factor. In addition, conventional therapies can influence the microenvironment and antitumor immunity. Similarly, the TME will influence the effectiveness of therapy. The purpose of this review is to demonstrate how TME is important in therapeutic management. Key interactions between TME and different cancer therapies as well as their current clinical consequences have been described. More research is needed to establish the important network between tumor cells and their environment to highlight their relationships with conventional therapies and develop global therapeutic strategies.
Collapse
Affiliation(s)
- Charles Pottier
- Department of Pathology, University Hospital of Liège, Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Berardi DE, Flumian C, Campodónico PB, Urtreger AJ, Diaz Bessone MI, Motter AN, Bal de Kier Joffé ED, Farias EF, Todaro LB. Myoepithelial and luminal breast cancer cells exhibit different responses to all-trans retinoic acid. Cell Oncol (Dordr) 2015; 38:289-305. [PMID: 26044847 DOI: 10.1007/s13402-015-0230-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Breast cancer is the leading cause of death among women worldwide. The exact role of luminal epithelial (LEP) and myoephitelial (MEP) cells in breast cancer development is as yet unclear, as also how retinoids may affect their behaviour. Here, we set out to evaluate whether retinoids may differentially regulate cell type-specific processes associated with breast cancer development using the bi-cellular LM38-LP murine mammary adenocarcinoma cell line as a model. MATERIALS AND METHODS The bi-cellular LM38-LP murine mammary cell line was used as a model throughout all experiments. LEP and MEP subpopulations were separated using inmunobeads, and the expression of genes known to be involved in epithelial to mysenchymal transition (EMT) was assessed by qPCR after all-trans retinoic acid (ATRA) treatment. In vitro invasive capacities of LM38-LP cells were evaluated using 3D Matrigel cultures in conjunction with confocal microscopy. Also, in vitro proliferation, senescence and apoptosis characteristics were evaluated in the LEP and MEP subpopulations after ATRA treatment, as well as the effects of ATRA treatment on the clonogenic, adhesive and invasive capacities of these cells. Mammosphere assays were performed to detect stem cell subpopulations. Finally, the orthotopic growth and metastatic abilities of LM38-LP monolayer and mammosphere-derived cells were evaluated in vivo. RESULTS We found that ATRA treatment modulates a set of genes related to EMT, resulting in distinct gene expression signatures for the LEP or MEP subpopulations. We found that the MEP subpopulation responds to ATRA by increasing its adhesion to extracellular matrix (ECM) components and by reducing its invasive capacity. We also found that ATRA induces apoptosis in LEP cells, whereas the MEP compartment responded with senescence. In addition, we found that ATRA treatment results in smaller and more organized LM38-LP colonies in Matrigel. Finally, we identified a third subpopulation within the LM38-LP cell line with stem/progenitor cell characteristics, exhibiting a partial resistance to ATRA. CONCLUSIONS Our results show that the luminal epithelial (LEP) and myoephitelial (MEP) mammary LM38-P subpopulations respond differently to ATRA, i.e., the LEP subpopulation responds with increased cell cycle arrest and apoptosis and the MEP subpopulation responds with increased senescence and adhesion, thereby decreasing its invasive capacity. Finally, we identified a third subpopulation with stem/progenitor cell characteristics within the LM38-LP mammary adenocarcinoma cell line, which appears to be non-responsive to ATRA.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Models, Biological
- Receptors, Retinoic Acid/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tretinoin/pharmacology
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Damián E Berardi
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The 2014 joint meeting of the International Society for Cellular Oncology (ISCO) and the European Workshop on Cytogenetics and Molecular Genetics of Solid Tumors (EWCMST), organized by Nick Gilbert, Juan Cigudosa and Bauke Ylstra, was held from 11 to 14 May in Malaga, Spain. Since the previous meeting in 2012, the ever increasing availability of new sequencing technologies has enabled the analysis of cancer genomes at an increasingly greater detail. In addition to structural changes in the genome (i.e., translocations, deletions, amplifications), frequent mutations in important regulatory genes have been found to occur, as also frequent alterations in a large number of epigenetic factors. The challenge now is to relate structural changes in cancer genomes to the underlying disease mechanisms and to reveal opportunities for the design of novel (targeted) therapies. During the meeting, various topics related to these challenges and opportunities were addressed, including those dealing with functional genomics, genome instability, biomarkers and diagnostics, cancer genetics and epigenomics. Special attention was paid to therapy-driven cancer evolution (keynote lecture) and relationships between DNA repair, cancer and ageing (Prof. Ploem lecture). Based on the information presented at the meeting, several aspects of the cancer genome and its functional implications are provided in this report.
Collapse
|
35
|
Maier A, Peille AL, Vuaroqueaux V, Lahn M. Anti-tumor activity of the TGF-β receptor kinase inhibitor galunisertib (LY2157299 monohydrate) in patient-derived tumor xenografts. Cell Oncol (Dordr) 2015; 38:131-44. [PMID: 25573078 PMCID: PMC4412926 DOI: 10.1007/s13402-014-0210-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 11/13/2022] Open
Abstract
Purpose The transforming growth factor-beta (TGF-β) signaling pathway is known to play a critical role in promoting tumor growth. Consequently, blocking this pathway has been found to inhibit tumor growth. In order to achieve an optimal anti-tumor effect, however, it remains to be established whether blocking the TGF-β signaling pathway alone is sufficient, or whether the tumor microenvironment plays an additional, possibly synergistic, role. Methods To investigate the relevance of blocking TGF-β signaling in tumor cells within the context of their respective tissue microenvironments, we treated a panel of patient-derived xenografts (PDX) with the selective TGF-β receptor kinase inhibitor LY2157299 monohydrate (galunisertib) and assessed both the in vitro and in vivo effects. Results Galunisertib was found to inhibit the growth in an in vitro clonogenic assay in 6.3 % (5/79) of the examined PDX. Evaluation of the expression profiles of a number of genes, representing both canonical and non-canonical TGF-β signaling pathways, revealed that most PDX exhibited expression changes affecting TGF-β downstream signaling. Next, we subjected 13 of the PDX to an in vivo assessment and, by doing so, observed distinct response patterns. These results suggest that, next to intrinsic, also extrinsic or microenvironmental factors can affect galunisertib response. pSMAD2 protein expression and TGF-βRI mRNA expression levels were found to correlate with the in vivo galunisertib effects. Conclusions From our data we conclude that intrinsic, tumor-dependent TGF-β signaling does not fully explain the anti-tumor effect of galunisertib. Hence, in vivo xenograft models may be more appropriate than in vitro clonogenic assays to assess the anti-tumor activity of TGF-β inhibitors such as galunisertib. Electronic supplementary material The online version of this article (doi:10.1007/s13402-014-0210-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Armin Maier
- In Vitro Screening, Oncotest GmbH, Am Flughafen 12-14, 79108, Freiburg, Germany,
| | | | | | | |
Collapse
|
36
|
Abstract
INTRODUCTION There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. AREAS COVERED The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. EXPERT OPINION The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.
Collapse
Affiliation(s)
- Anton Yuryev
- Elsevier, Inc. , 5635 Fishers Lane, Rockville, MD 20852 USA
| |
Collapse
|
37
|
Aine M, Liedberg F, Sjödahl G, Höglund M. Re: David J. McConkey, Woonyoung Choi, Colin P.N. Dinney. New insights into subtypes of invasive bladder cancer: considerations of the clinician. Eur Urol 2014;66:609-10. Eur Urol 2014; 67:e73-5. [PMID: 25194907 DOI: 10.1016/j.eururo.2014.08.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/25/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Mattias Aine
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Liedberg
- Department of Urology, Skåne University Hospital, Lund University, Malmö, Sweden.
| | - Gottfrid Sjödahl
- Department of Urology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Chen SX, Xu XE, Wang XQ, Cui SJ, Xu LL, Jiang YH, Zhang Y, Yan HB, Zhang Q, Qiao J, Yang PY, Liu F. Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation. J Proteomics 2014; 110:155-71. [PMID: 25118038 DOI: 10.1016/j.jprot.2014.07.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 01/01/2023]
Abstract
UNLABELLED Stromal microenvironment influences tumor cell proliferation and migration. Fibroblasts represent the most abundant stromal constituents. Here, we established two pairs of normal fibroblast (NF) and cancer-associated fibroblast (CAF) cultures from colorectal adenocarcinoma tissues and the normal counterparts. The NFs and CAFs were stained positive for typical fibroblast markers and inhibited colon cancer (CC) cell proliferation in in vitro cocultures and in xenograft mouse models. The fibroblast conditioned media were analyzed using LC-MS and 227 proteins were identified at a false discovery rate of 1.3%, including 131 putative secretory and 20 plasma membrane proteins. These proteins were enriched for functional categories of extracellular matrix, adhesion, cell motion, inflammatory response, redox homeostasis and peptidase inhibitor. Secreted protein acidic and rich in cysteine, transgelin, follistatin-related protein 1 (FSTL1) and decorin was abundant in the fibroblast secretome as confirmed by Western blot. Silencing of FSTL1 and transgelin in colonic fibroblast cell line CCD-18Co induced an accelerated proliferation of CC cells in cocultures. Exogenous FSTL1 attenuates CC cell proliferation in a negative fashion. FSTL1 was upregulated in CC patient plasma and cancerous tissues but had no implication in prognosis. Our results provided novel insights into the molecular signatures and modulatory role of CC associated fibroblasts. BIOLOGICAL SIGNIFICANCE In this study, a label-free LC-MS was performed to analyze the secretomes of two paired primary fibroblasts, which were isolated from fresh surgical specimen of colorectal adenocarcinoma and adjacent normal colonic tissues and exhibited negative modulatory activity for colon cancer cell growth in in vitro cocultures and in vivo xenograph mouse models. Follistatin-related protein 1 was further revealed to be one of the stroma-derived factors of potential suppression role for colon cancer cell proliferation. Our results provide novel insights into the molecular signatures and the modulatory role of colon cancer associated fibroblasts, and establish a valuable resource for the development of therapeutic agents or novel clinic biomarker.
Collapse
Affiliation(s)
- Sun-Xia Chen
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Xiao-En Xu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Xiao-Qing Wang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China; Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Shu-Jian Cui
- College of Bioscience and Biotechnology, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Lei-Lei Xu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Ying-Hua Jiang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Yang Zhang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Hai-Bo Yan
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Qian Zhang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Jie Qiao
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Peng-Yuan Yang
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China; Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Feng Liu
- Department of Medical Systems Biology of School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China.
| |
Collapse
|
39
|
Zhu J, Huang H, Dong S, Ge L, Zhang Y. Progress in aptamer-mediated drug delivery vehicles for cancer targeting and its implications in addressing chemotherapeutic challenges. Theranostics 2014; 4:931-44. [PMID: 25057317 PMCID: PMC4107293 DOI: 10.7150/thno.9663] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022] Open
Abstract
Aptamers are novel oligonucleotides with flexible three-dimensional configurations that recognize and bind to their cognate targets, including tumor surface receptors, in a high-affinity and highly specific manner. Because of their unique intrinsic properties, a variety of aptamer-mediated nanovehicles have been developed to directionally transport anti-cancer drugs to tumor sites to minimize systemic cytotoxicity and to enhance permeation by these tumoricidal agents. Despite advances in the selection and synthesis of aptamers and in the conjugation and self-assembly of nanotechnologies, current chemotherapy and drug delivery systems face great challenges. These challenges are due to the limitations of aptamers and vehicles and because of complicated tumor mechanisms, including heterogeneity, anti-cancer drug resistance, and hypoxia-induced aberrances. In this review, we will summarize current approaches utilizing tumor surface hallmarks and aptamers and their roles and mechanisms in therapeutic nanovehicles targeting tumors. Delivery forms include nanoparticles, nanotubes, nanogels, aptamer-drug conjugates, and novel molecular trains. Moreover, the obstacles posed by the aforementioned issues will be highlighted, and possible solutions will be acknowledged. Furthermore, future perspectives will be presented, including cutting-edge integration with RNA interference nanotechnology and personalized chemotherapy, which will facilitate innovative approaches to aptamer-based therapeutics.
Collapse
|
40
|
Techasen A, Namwat N, Loilome W, Duangkumpha K, Puapairoj A, Saya H, Yongvanit P. Tumor necrosis factor-α modulates epithelial mesenchymal transition mediators ZEB2 and S100A4 to promote cholangiocarcinoma progression. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:703-11. [PMID: 24867797 DOI: 10.1002/jhbp.125] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) process strongly contributes to cancer metastasis. This study was to investigate the alteration of EMT-related proteins (ZEB1, ZEB2 and S100A4) in cholangiocarcinoma (CCA) tissues. The effect of tumor necrosis factor-α (TNF-α) on the expression of those molecules in CCA cells was investigated. METHODS The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was used to quantify ZEB1, ZEB2 and S100A4 mRNA levels in 50 CCA tissues and related its expression to clinicopathological data. ZEB2 protein immunostaining was investigated in 165 CCA tissues. The effect of TNF-α on EMT-related CCA cell migration was evaluated using qRT-PCR, immunofluorescence and transwell migration assays. RESULTS ZEB2 and S100A4 mRNA levels were found to be higher in CCA tissues. High levels of S100A4 mRNA and ZEB2 protein were significantly associated with CCA metastasis (P = 0.04 and P = 0.03). Moreover, a trend toward statistical association was found with high levels of both ZEB2 mRNA and protein with shorter survival time (P = 0.10 and P = 0.19). In addition, TNF-α induced CCA cell migration by the induction of transforming growth factor-β (TGF-β) resulting in ZEB2 and S100A4 mRNA and protein activation. CONCLUSIONS These studies demonstrate that TNF-α plays crucial role in the progression of CCA by activating TGF-β signaling and the induction of ZEB2 and S100A4, EMT-related proteins expression.
Collapse
Affiliation(s)
- Anchalee Techasen
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | |
Collapse
|
41
|
S100 to receptor for advanced glycation end-products binding assay: Looking for inhibitors. Biochem Biophys Res Commun 2014; 446:404-9. [DOI: 10.1016/j.bbrc.2014.02.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 01/14/2023]
|
42
|
Li X, Deeg HJ. Murine xenogeneic models of myelodysplastic syndrome: an essential role for stroma cells. Exp Hematol 2014; 42:4-10. [PMID: 24125777 PMCID: PMC4053244 DOI: 10.1016/j.exphem.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 12/18/2022]
Abstract
The objective of is this article is to review murine xenotransplantation models for myelodysplastic syndromes (MDS). The difficulties in achieving sustained engraftment of MDS cells in immunodeficient mice may lie in innate characteristics of the MDS clones and microenvironmental factors. Engraftment of very low numbers of CD45(+) clonal MDS cells has been achieved with intravenous injection; higher rates of engraftment are obtained via the intramedullary route. Coinjection of certain stroma components with hematopoietic cells overcomes limitations of intravenous (IV) administration, allowing for engraftment of high proportions of human CD45(+) cells in mouse spleen and marrow. Expression of CD146 on stroma cells conveys an engraftment-facilitating effect. Clonal MDS cells have been propagated for periods beyond 6 months and have been transplanted successfully into secondary recipients. Engraftment of human clonal MDS cells with stem cell characteristics in immunodeficient mice is greatly facilitated by coinjection of stroma/mesenchymal cells, particularly with IV administration. CD146 expression on stroma is an essential factor; however, no model develops the laboratory and clinical features of human MDS. Additional work is needed to determine cellular and noncellular factors required for the full evolution of MDS.
Collapse
Affiliation(s)
- Xiang Li
- Wu'Xi Medical School, Jiangnan University, Wu'Xi, China
| | - H Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
43
|
Lu D, Insel PA. Cellular mechanisms of tissue fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis. Am J Physiol Cell Physiol 2013; 306:C779-88. [PMID: 24352335 DOI: 10.1152/ajpcell.00381.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tissue fibrosis occurs as a result of the dysregulation of extracellular matrix (ECM) synthesis. Tissue fibroblasts, resident cells responsible for the synthesis and turnover of ECM, are regulated via numerous hormonal and mechanical signals. The release of intracellular nucleotides and their resultant autocrine/paracrine signaling have been shown to play key roles in the homeostatic maintenance of tissue remodeling and in fibrotic response post-injury. Extracellular nucleotides signal through P2 nucleotide and P1 adenosine receptors to activate signaling networks that regulate the proliferation and activity of fibroblasts, which, in turn, influence tissue structure and pathologic remodeling. An important component in the signaling and functional responses of fibroblasts to extracellular ATP and adenosine is the expression and activity of ectonucleotideases that attenuate nucleotide-mediated signaling, and thereby integrate P2 receptor- and subsequent adenosine receptor-initiated responses. Results of studies of the mechanisms of cellular nucleotide release and the effects of this autocrine/paracrine signaling axis on fibroblast-to-myofibroblast conversion and the fibrotic phenotype have advanced understanding of tissue remodeling and fibrosis. This review summarizes recent findings related to purinergic signaling in the regulation of fibroblasts and the development of tissue fibrosis in the heart, lungs, liver, and kidney.
Collapse
Affiliation(s)
- David Lu
- Department of Pharmacology, University of California, San Diego, La Jolla, California; and
| | | |
Collapse
|
44
|
Faber A, Aderhold C, Goessler UR, Hoermann K, Schultz JD, Umbreit C, Walliczek U, Stern-Straeter J. Interaction of a CD44+ head and neck squamous cell carcinoma cell line with a stromal cell-derived factor-1-expressing supportive niche: An in vitro model. Oncol Lett 2013; 7:82-86. [PMID: 24348826 PMCID: PMC3861560 DOI: 10.3892/ol.2013.1673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/19/2013] [Indexed: 01/15/2023] Open
Abstract
The cancer stem cell (CSC) theory implies that CSCs are surrounded by supportive stromal cells, which are known as the CSC niche. Stromal cell-derived factor-1 (SDF-1) shows a multitude of functional effects in head and neck squamous cell carcinoma (HNSCC) cells, including migration and polarization. Therefore, the SDF-1-CXCR4 axis may be involved in the pathophysiology of the progression, recurrence and metastasis of malignant diseases of the head and neck. In the present study, the CD44+ HNSCC UM-SCC-11A cell line was used as a model for CSCs. The interaction between the UM-SCC-11A cells and the supportive microenvironmental cells, including fibrocytes, human umbilical vein endothelial cells (HUVECs) and human microvascular vein endothelial cells (HMVECs) was evaluated. All the cell types that were tested were shown to secrete different concentrations of SDF-1 into the surrounding culture medium [mean (m)fibro, 1243.3±156.2 pg/ml; mHMVEC, 1061.4±23.2 pg/ml; mHUVEC, 849.6±110.9 pg/ml]. The migration of the UM-SCC-11A cells towards the supportive cells was increased by a higher supply of SDF-1 (contrfibro, 315.23±61.55 μm; mfibro, 477.73±143.7 μm; Pfibro=0.003; contrHMVEC, 123.41±66.68 μm; mHMVEC, 249.04±111.95 μm; PHMVEC=0.004; contrHUVEC, 189.7±93.26 μm; mHUVEC, 260.82±161.58 μm). The amount of the UM-SCC-11A cells that migrated towards the differentiated fibrocytes was significantly higher than that which migrated towards the HMVECs or HUVECs (Pfibro/HMVEC=2.12E-11; Pfibro/HUVEC=2.28E-5). Cell-cell interaction by podia formation of the UM-SCC-11A cells was observed in all the supportive cell types that were tested. Broadly based cell-cell contacts were observed. By contrast, digitiform podia formations presented by the UM-SCC-11A cells were determined using fluorescence microscopy. The SDF-1-CXCR4 axis is postulated to be a crucial pathway in the interaction between CSCs and their surrounding supportive cells. Understanding the cell-cell interactions in the CSC niche using in vitro models may aid in gaining further insight into these mechanisms and finding new strategies of therapy in this field.
Collapse
Affiliation(s)
- Anne Faber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Christoph Aderhold
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Ulrich Reinhart Goessler
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Karl Hoermann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Johannes David Schultz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Claudia Umbreit
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Ute Walliczek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| | - Jens Stern-Straeter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre Mannheim, Mannheim D-68167, Germany
| |
Collapse
|