1
|
Kim D, Ahn J, Kim D, Kim JY, Yoo S, Lee JH, Ghosh P, Luke MC, Kim C. Quantitative volumetric photoacoustic assessment of vasoconstriction by topical corticosteroid application in mice skin. PHOTOACOUSTICS 2024; 40:100658. [PMID: 39553383 PMCID: PMC11563941 DOI: 10.1016/j.pacs.2024.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Topical corticosteroids manage inflammatory skin conditions via their action on the immune system. An effect of application of corticosteroids to the skin is skin blanching caused by peripheral vasoconstriction. This has been used to characterize, in some cases relative potency and also as a way to compare skin penetration. Chromameters have been used to assess skin blanching-the outcome of vasoconstriction caused by topical corticosteroids-but do not directly measure vasoconstriction. Here, we demonstrate quantitative volumetric photoacoustic microscopy (PAM) as a tool for directly assessing the vasoconstriction followed by topical corticosteroid application, noninvasively visualizing skin vasculature without any exogeneous contrast agent. We photoacoustically differentiated the vasoconstrictive ability of four topical corticosteroids in small animals through multiparametric analyses, offering detailed 3D insights into vasoconstrictive mechanisms across different skin depths. Our findings highlight the potential of PAM as a noninvasive tool for measurement of comparative vasoconstriction with potential for clinical, pharmaceutical, and bioequivalence applications.
Collapse
Affiliation(s)
- Donggyu Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Joongho Ahn
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| | - Donghyun Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jin Young Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| | - Seungah Yoo
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Priyanka Ghosh
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Markham C. Luke
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chulhong Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Opticho Inc., Pohang, Republic of Korea
| |
Collapse
|
2
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2024; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
3
|
Xiao S, Sun Y, Vardaki M, Liu W. Theoretical framework for calibrating the depth-dependent optical scattering in layered human skin using spatially offset measurements. OPTICS LETTERS 2024; 49:6097-6100. [PMID: 39485420 DOI: 10.1364/ol.532793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Spatially offset spectroscopy offers an alternative non-invasive method for enabling deep probing of structures and chemical molecules, which is clinically significant for the characterization of chemical and physical alterations in human skin. However, a more precise depth-resolved quantification using the spatially offset measurements still remains a challenge due to the mixed inhomogeneous scattering. Herein, we report a Monte-Carlo-based quantification modeling platform combined with a novel, to the best of our knowledge, scattering spectrum decomposition method to explore the depth-dependent optical scattering contributions in human skin. In the simplified modeling, human skin was empirically set to be composed of multiple layers, and each layer possessed different photon weights for the spatially offset scattering intensity measurements. The modeling results of photon transportation in-and-out of the layered skin substantially discovered that the layer-dependent scattering contribution was compositely encoded into the spatially offset measurements and varied with the illumination incidence angle. For calibrating the layer-dependent scattering contribution, a modified nonlinear independent component processing algorithm was applied to the spatially offset measurements by decomposing the photon weights of each layer. The calibration results figured out the major scattering contribution of each layer along the offset axis under different incidence angles, which were consistent with previous experimental observations. The proposed theoretical framework establishes a feasible approach for spatially offset optical spectroscopies enabling non-invasive quantitative A-line characterization of the concentrations of skin components.
Collapse
|
4
|
Molani A, Pennati F, Ravazzani S, Scarpellini A, Storti FM, Vegetali G, Paganelli C, Aliverti A. Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:6682. [PMID: 39460161 PMCID: PMC11510803 DOI: 10.3390/s24206682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
The need for faster and more accessible alternatives to laboratory microscopy is driving many innovations throughout the image and data acquisition chain in the biomedical field. Benchtop microscopes are bulky, lack communications capabilities, and require trained personnel for analysis. New technologies, such as compact 3D-printed devices integrated with the Internet of Things (IoT) for data sharing and cloud computing, as well as automated image processing using deep learning algorithms, can address these limitations and enhance the conventional imaging workflow. This review reports on recent advancements in microscope miniaturization, with a focus on emerging technologies such as photoacoustic microscopy and more established approaches like smartphone-based microscopy. The potential applications of IoT in microscopy are examined in detail. Furthermore, this review discusses the evolution of image processing in microscopy, transitioning from traditional to deep learning methods that facilitate image enhancement and data interpretation. Despite numerous advancements in the field, there is a noticeable lack of studies that holistically address the entire microscopy acquisition chain. This review aims to highlight the potential of IoT and artificial intelligence (AI) in combination with portable microscopy, emphasizing the importance of a comprehensive approach to the microscopy acquisition chain, from portability to image analysis.
Collapse
|
5
|
Ranjan A, Swain JK, Ahluwalia BS, Melandsø F. 3-D Visualization of Atlantic salmon skin through Ultrasound and Photoacoustic Microscopy. PLoS Comput Biol 2024; 20:e1011709. [PMID: 39436836 PMCID: PMC11495546 DOI: 10.1371/journal.pcbi.1011709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
SIGNIFICANCE Three-dimensional photoacoustic imaging (PAM) has emerged as a promising technique for non-invasive label-free visualization and characterization of biological tissues with high spatial resolution and functional contrast. AIM The application of PAM and ultrasound as a microscopy technique of study for Atlantic salmon skin is presented here. APPROACH A custom ultrasound and photoacoustic experimental setup was used for conducting this experiment with a sample preparation method where the salmon skin is embedded in agarose and lifted from the bottom of the petridish. RESULTS The results of C-scan, B-scan, and overlayed images of ultrasound and photoacoustic are presented. The results are then analyzed for understanding the pigment map and its relation to salmon behavior to external stimuli. The photoacoustic images are compared with the optical images and analyzed further. A custom colormap and alpha map is designed and the matrices responsible for PAM and ultrasound are inserted together to overlay the ultrasound image and PAM image on top of each other. CONCLUSIONS In this study, we propose an approach that combines scanning acoustic microscopy (SAM) images with PAM images for providing a comprehensive understanding of the salmon skin tissue. Overlaying acoustic and photoacoustic images enabled unique visualization of tissue morphology, with respect to identification of structural features in the context of their pigment distribution.
Collapse
Affiliation(s)
- Abhishek Ranjan
- Department of Physics and Technology, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Jaya Kumari Swain
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT, The Arctic University of Norway, Tromsø, Norway
| | | | - Frank Melandsø
- Department of Physics and Technology, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Chohan DP, Biswas S, Wankhede M, Menon P, K A, Basha S, Rodrigues J, Mukunda DC, Mahato KK. Assessing Breast Cancer through Tumor Microenvironment Mapping of Collagen and Other Biomolecule Spectral Fingerprints─A Review. ACS Sens 2024; 9:4364-4379. [PMID: 39175278 PMCID: PMC11443534 DOI: 10.1021/acssensors.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Breast cancer is a major challenge in the field of oncology, with around 2.3 million cases and around 670,000 deaths globally based on the GLOBOCAN 2022 data. Despite having advanced technologies, breast cancer remains the major type of cancer among women. This review highlights various collagen signatures and the role of different collagen types in breast tumor development, progression, and metastasis, along with the use of photoacoustic spectroscopy to offer insights into future cancer diagnostic applications without the need for surgery or other invasive techniques. Through mapping of the tumor microenvironment and spotlighting key components and their absorption wavelengths, we emphasize the need for extensive preclinical and clinical investigations.
Collapse
Affiliation(s)
- Diya Pratish Chohan
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Shimul Biswas
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Mrunmayee Wankhede
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Poornima Menon
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Ameera K
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Shaik Basha
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Jackson Rodrigues
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | | | - Krishna Kishore Mahato
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| |
Collapse
|
7
|
Wang J, Li B, Zhou T, Liu C, Lu M, Gu W, Liu X, Ta D. Reconstructing Cancellous Bone From Down-Sampled Optical-Resolution Photoacoustic Microscopy Images With Deep Learning. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1459-1471. [PMID: 38972792 DOI: 10.1016/j.ultrasmedbio.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/21/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE Bone diseases deteriorate the microstructure of bone tissue. Optical-resolution photoacoustic microscopy (OR-PAM) enables high spatial resolution of imaging bone tissues. However, the spatiotemporal trade-off limits the application of OR-PAM. The purpose of this study was to improve the quality of OR-PAM images without sacrificing temporal resolution. METHODS In this study, we proposed the Photoacoustic Dense Attention U-Net (PADA U-Net) model, which was used for reconstructing full-scanning images from under-sampled images. Thereby, this approach breaks the trade-off between imaging speed and spatial resolution. RESULTS The proposed method was validated on resolution test targets and bovine cancellous bone samples to demonstrate the capability of PADA U-Net in recovering full-scanning images from under-sampled OR-PAM images. With a down-sampling ratio of [4, 1], compared to bilinear interpolation, the Peak Signal-to-Noise Ratio and Structural Similarity Index Measure values (averaged over the test set of bovine cancellous bone) of the PADA U-Net were improved by 2.325 dB and 0.117, respectively. CONCLUSION The results demonstrate that the PADA U-Net model reconstructed the OR-PAM images well with different levels of sparsity. Our proposed method can further facilitate early diagnosis and treatment of bone diseases using OR-PAM.
Collapse
Affiliation(s)
- Jingxian Wang
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Tianhua Zhou
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Mengyang Lu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Wenting Gu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Dean Ta
- Academy for Engineering and Technology, Fudan University, Shanghai, China; Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Park S, Nguyen VP, Wang X, Paulus YM. Gold Nanoparticles for Retinal Molecular Optical Imaging. Int J Mol Sci 2024; 25:9315. [PMID: 39273264 PMCID: PMC11395175 DOI: 10.3390/ijms25179315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
The incorporation of gold nanoparticles (GNPs) into retinal imaging signifies a notable advancement in ophthalmology, offering improved accuracy in diagnosis and patient outcomes. This review explores the synthesis and unique properties of GNPs, highlighting their adjustable surface plasmon resonance, biocompatibility, and excellent optical absorption and scattering abilities. These features make GNPs advantageous contrast agents, enhancing the precision and quality of various imaging modalities, including photoacoustic imaging, optical coherence tomography, and fluorescence imaging. This paper analyzes the unique properties and corresponding mechanisms based on the morphological features of GNPs, highlighting the potential of GNPs in retinal disease diagnosis and management. Given the limitations currently encountered in clinical applications of GNPs, the approaches and strategies to overcome these limitations are also discussed. These findings suggest that the properties and efficacy of GNPs have innovative applications in retinal disease imaging.
Collapse
Affiliation(s)
- Sumin Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Yannis M. Paulus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
9
|
Tajaldeen A, Alrashidi M, Alsaadi MJ, Alghamdi SS, Alshammari H, Alsleem H, Jafer M, Aljondi R, Alqahtani S, Alotaibi A, Alzandi AM, Alahmari AM. Photoacoustic imaging in prostate cancer: A new paradigm for diagnosis and management. Photodiagnosis Photodyn Ther 2024; 47:104225. [PMID: 38821240 DOI: 10.1016/j.pdpdt.2024.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The global health issue of prostate cancer (PCa) requires better diagnosis and treatment. Photoacoustic imaging (PAI) may change PCa management. This review examines PAI's principles, diagnostic role, and therapeutic guidance. PAI uses optical light excitation and ultrasonic detection for high-resolution functional and molecular imaging. PAI uses endogenous and exogenous contrast agents to distinguish cancerous and benign prostate tissues with greater sensitivity and specificity than PSA testing and TRUS-guided biopsy. In addition to diagnosing, PAI can guide and monitor PCa therapy. Its real-time imaging allows precise biopsies and brachytherapy seed placement. Photoacoustic temperature imaging allows non-invasive monitoring of thermal therapies like cryotherapy, improving treatment precision and success. Transurethral illumination probes, innovative contrast agents, integration with other imaging modalities, and machine learning analysis are being developed to overcome depth and data complexity restrictions. PAI could become an essential tool for PCa diagnosis and therapeutic guidance as the field advances.
Collapse
Affiliation(s)
- Abdulrahman Tajaldeen
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia.
| | - Muteb Alrashidi
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohamed J Alsaadi
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Salem Saeed Alghamdi
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Hamed Alshammari
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Haney Alsleem
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mustafa Jafer
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Rowa Aljondi
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Saeed Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Awatif Alotaibi
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Abdulrahman M Alzandi
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | | |
Collapse
|
10
|
Harary T, Nagli M, Suleymanov N, Goykhman I, Rosenthal A. Large-field-of-view optical-resolution optoacoustic microscopy using a stationary silicon-photonics acoustic detector. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11511. [PMID: 38187934 PMCID: PMC10768684 DOI: 10.1117/1.jbo.29.s1.s11511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Significance Optical-resolution optoacoustic microscopy (OR-OAM) enables label-free imaging of the microvasculature by using optical pulse excitation and acoustic detection, commonly performed by a focused optical beam and an ultrasound transducer. One of the main challenges of OR-OAM is the need to combine the excitation and detection in a coaxial configuration, often leading to a bulky setup that requires physically scanning the ultrasound transducer to achieve a large field of view. Aim The aim of this work is to develop an OR-OAM configuration that does not require physically scanning the ultrasound transducer or the acoustic beam path. Approach Our OR-OAM system is based on a non-coaxial configuration in which the detection is performed by a silicon-photonics acoustic detector (SPADE) with a semi-isotropic sensitivity. The system is demonstrated in both epi- and trans-illumination configurations, where in both configurations SPADE remains stationary during the imaging procedure and only the optical excitation beam is scanned. Results The system is showcased for imaging resolution targets and for the in vivo visualization of the microvasculature in a mouse ear. Optoacoustic imaging with focal spots down to 1.3 μ m , lateral resolution of 4 μ m , and a field of view higher than 4 mm in both lateral dimensions were demonstrated. Conclusions We showcase a new OR-OAM design, compatible with epi-illumination configuration. This setup enables relatively large fields of view without scanning the acoustic detector or acoustic beam path. Furthermore, it offers the potential for high-speed imaging within compact, miniature probe and could potentially facilitate the clinical translation of OR-OAM technology.
Collapse
Affiliation(s)
- Tamar Harary
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| | - Michael Nagli
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| | - Nathan Suleymanov
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| | - Ilya Goykhman
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
- The Hebrew University of Jerusalem, Institute of Applied Physics and Institute of Chemistry, Faculty of Science, Jerusalem, Israel
| | - Amir Rosenthal
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| |
Collapse
|
11
|
Huang B, Wong TTW. Review of low-cost light sources and miniaturized designs in photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11503. [PMID: 37869479 PMCID: PMC10587694 DOI: 10.1117/1.jbo.29.s1.s11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Significance Photoacoustic microscopy (PAM) is a promising imaging technique to provide structural, functional, and molecular information for preclinical and clinical studies. However, expensive and bulky lasers and motorized stages have limited the broad applications of conventional PAM systems. A recent trend is to use low-cost light sources and miniaturized designs to develop a compact PAM system and expand its applications from benchtop to bedside. Aim We provide (1) an overview of PAM systems and their limitations, (2) a comprehensive review of PAM systems with low-cost light sources and their applications, (3) a comprehensive review of PAM systems with miniaturized and handheld scanning designs, and (4) perspective applications and a summary of the cost-effective and miniaturized PAM systems. Approach Papers published before July 2023 in the area of using low-cost light sources and miniaturized designs in PAM were reviewed. They were categorized into two main parts: (1) low-cost light sources and (2) miniaturized or handheld designs. The first part was classified into two subtypes: pulsed laser diode and continuous-wave laser diode. The second part was also classified into two subtypes: galvanometer scanner and micro-electro-mechanical system scanner. Results Significant progress has been made in the development of PAM systems based on low-cost and compact light sources as well as miniaturized and handheld designs. Conclusions The review highlights the potential of these advancements to revolutionize PAM technology, making it more accessible and practical for various applications in preclinical studies, clinical practice, and long-term monitoring.
Collapse
Affiliation(s)
- Bingxin Huang
- Hong Kong University of Science and Technology, Department of Chemical and Biological Engineering, Translational and Advanced Bioimaging Laboratory, Hong Kong, China
| | - Terence T. W. Wong
- Hong Kong University of Science and Technology, Department of Chemical and Biological Engineering, Translational and Advanced Bioimaging Laboratory, Hong Kong, China
- Hong Kong University of Science and Technology, Research Center for Medical Imaging and Analysis, Hong Kong, China
| |
Collapse
|
12
|
Riksen JJM, Nikolaev AV, van Soest G. Photoacoustic imaging on its way toward clinical utility: a tutorial review focusing on practical application in medicine. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:121205. [PMID: 37304059 PMCID: PMC10249868 DOI: 10.1117/1.jbo.28.12.121205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Significance Photoacoustic imaging (PAI) enables the visualization of optical contrast with ultrasonic imaging. It is a field of intense research, with great promise for clinical application. Understanding the principles of PAI is important for engineering research and image interpretation. Aim In this tutorial review, we lay out the imaging physics, instrumentation requirements, standardization, and some practical examples for (junior) researchers, who have an interest in developing PAI systems and applications for clinical translation or applying PAI in clinical research. Approach We discuss PAI principles and implementation in a shared context, emphasizing technical solutions that are amenable to broad clinical deployment, considering factors such as robustness, mobility, and cost in addition to image quality and quantification. Results Photoacoustics, capitalizing on endogenous contrast or administered contrast agents that are approved for human use, yields highly informative images in clinical settings, which can support diagnosis and interventions in the future. Conclusion PAI offers unique image contrast that has been demonstrated in a broad set of clinical scenarios. The transition of PAI from a "nice-to-have" to a "need-to-have" modality will require dedicated clinical studies that evaluate therapeutic decision-making based on PAI and consideration of the actual value for patients and clinicians, compared with the associated cost.
Collapse
Affiliation(s)
- Jonas J. M. Riksen
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Anton V. Nikolaev
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Gijs van Soest
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Harary T, Hazan Y, Rosenthal A. All-optical optoacoustic micro-tomography in reflection mode. Biomed Eng Lett 2023; 13:475-483. [PMID: 37519878 PMCID: PMC10382435 DOI: 10.1007/s13534-023-00278-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 08/01/2023] Open
Abstract
High-resolution optoacoustic imaging at depths beyond the optical diffusion limit is conventionally performed using a microscopy setup where a strongly focused ultrasound transducer samples the image object point-by-point. Although recent advancements in miniaturized ultrasound detectors enables one to achieve microscopic resolution with an unfocused detector in a tomographic configuration, such an approach requires illuminating the entire object, leading to an inefficient use of the optical power, and imposing a trans-illumination configuration that is limited to thin objects. We developed an optoacoustic micro-tomography system in an epi-illumination configuration, in which the illumination is scanned with the detector. The system is demonstrated in phantoms for imaging depths of up to 5 mm and in vivo for imaging the vasculature of a mouse ear. Although image-formation in optoacoustic tomography generally requires static illumination, our numerical simulations and experimental measurements show that this requirement is relaxed in practice due to light diffusion, which homogenizes the fluence in deep tissue layers.
Collapse
Affiliation(s)
- Tamar Harary
- Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City, Haifa, 32000 Israel
| | - Yoav Hazan
- Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City, Haifa, 32000 Israel
| | - Amir Rosenthal
- Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City, Haifa, 32000 Israel
| |
Collapse
|
14
|
Lin R, Zhang J, Gao W, Wang X, Lv S, Lam KH, Gong X. A Miniature Multi-Functional Photoacoustic Probe. MICROMACHINES 2023; 14:1269. [PMID: 37374854 DOI: 10.3390/mi14061269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Photoacoustic technology is a promising tool to provide morphological and functional information in biomedical research. To enhance the imaging efficiency, the reported photoacoustic probes have been designed coaxially involving complicated optical/acoustic prisms to bypass the opaque piezoelectric layer of ultrasound transducers, but this has led to bulky probes and has hindered the applications in limited space. Though the emergence of transparent piezoelectric materials helps to save effort on the coaxial design, the reported transparent ultrasound transducers were still bulky. In this work, a miniature photoacoustic probe with an outer diameter of 4 mm was developed, in which an acoustic stack was made with a combination of transparent piezoelectric material and a gradient-index lens as a backing layer. The transparent ultrasound transducer exhibited a high center frequency of ~47 MHz and a -6 dB bandwidth of 29.4%, which could be easily assembled with a pigtailed ferrule of a single-mode fiber. The multi-functional capability of the probe was successfully validated through experiments of fluid flow sensing and photoacoustic imaging.
Collapse
Affiliation(s)
- Riqiang Lin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaming Zhang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wen Gao
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiatian Wang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shengmiao Lv
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kwok-Ho Lam
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Xiaojing Gong
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
15
|
Veverka M, Menozzi L, Yao J. The sound of blood: photoacoustic imaging in blood analysis. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023; 18:100219. [PMID: 37538444 PMCID: PMC10399298 DOI: 10.1016/j.medntd.2023.100219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Blood analysis is a ubiquitous and critical aspect of modern medicine. Analyzing blood samples requires invasive techniques, various testing systems, and samples are limited to relatively small volumes. Photoacoustic imaging (PAI) is a novel imaging modality that utilizes non-ionizing energy that shows promise as an alternative to current methods. This paper seeks to review current applications of PAI in blood analysis for clinical use. Furthermore, we discuss obstacles to implementation and future directions to overcome these challenges. Firstly, we discuss three applications to cellular analysis of blood: sickle cell, bacteria, and circulating tumor cell detection. We then discuss applications to the analysis of blood plasma, including glucose detection and anticoagulation quantification. As such, we hope this article will serve as inspiration for PAI's potential application in blood analysis and prompt further studies to ultimately implement PAI into clinical practice.
Collapse
|
16
|
Taboada C, Delia J, Chen M, Ma C, Peng X, Zhu X, Jiang L, Vu T, Zhou Q, Yao J, O’Connell L, Johnsen S. Glassfrogs conceal blood in their liver to maintain transparency. Science 2022; 378:1315-1320. [PMID: 36548427 PMCID: PMC9984244 DOI: 10.1126/science.abl6620] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transparency in animals is a complex form of camouflage involving mechanisms that reduce light scattering and absorption throughout the organism. In vertebrates, attaining transparency is difficult because their circulatory system is full of red blood cells (RBCs) that strongly attenuate light. Here, we document how glassfrogs overcome this challenge by concealing these cells from view. Using photoacoustic imaging to track RBCs in vivo, we show that resting glassfrogs increase transparency two- to threefold by removing ~89% of their RBCs from circulation and packing them within their liver. Vertebrate transparency thus requires both see-through tissues and active mechanisms that "clear" respiratory pigments from these tissues. Furthermore, glassfrogs' ability to regulate the location, density, and packing of RBCs without clotting offers insight in metabolic, hemodynamic, and blood-clot research.
Collapse
Affiliation(s)
- Carlos Taboada
- Biology Department, Duke University, Durham, NC, USA,Department of Biomedical Engineering, Duke University, Durham, NC, USA,Corresponding author.(C.T.);(J.D.);(J.Y.)
| | - Jesse Delia
- Department of Biomedical Engineering, Duke University, Durham, NC, USA,Department of Biology, Stanford University, Stanford, CA, USA,Division of Vertebrate Zoology and Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA,Corresponding author.(C.T.);(J.D.);(J.Y.)
| | - Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Xiaorui Peng
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Xiaoyi Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA,Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA,USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA,Corresponding author.(C.T.);(J.D.);(J.Y.)
| | | | - Sönke Johnsen
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
17
|
Barbosa RCS, Mendes PM. A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:9541. [PMID: 36502258 PMCID: PMC9736954 DOI: 10.3390/s22239541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The photoacoustic effect is an emerging technology that has sparked significant interest in the research field since an acoustic wave can be produced simply by the incidence of light on a material or tissue. This phenomenon has been extensively investigated, not only to perform photoacoustic imaging but also to develop highly miniaturized ultrasound probes that can provide biologically meaningful information. Therefore, this review aims to outline the materials and their fabrication process that can be employed as photoacoustic targets, both biological and non-biological, and report the main components' features to achieve a certain performance. When designing a device, it is of utmost importance to model it at an early stage for a deeper understanding and to ease the optimization process. As such, throughout this article, the different methods already implemented to model the photoacoustic effect are introduced, as well as the advantages and drawbacks inherent in each approach. However, some remaining challenges are still faced when developing such a system regarding its fabrication, modeling, and characterization, which are also discussed.
Collapse
|
18
|
Menozzi L, Yang W, Feng W, Yao J. Sound out the impaired perfusion: Photoacoustic imaging in preclinical ischemic stroke. Front Neurosci 2022; 16:1055552. [PMID: 36532279 PMCID: PMC9751426 DOI: 10.3389/fnins.2022.1055552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Acoustically detecting the optical absorption contrast, photoacoustic imaging (PAI) is a highly versatile imaging modality that can provide anatomical, functional, molecular, and metabolic information of biological tissues. PAI is highly scalable and can probe the same biological process at various length scales ranging from single cells (microscopic) to the whole organ (macroscopic). Using hemoglobin as the endogenous contrast, PAI is capable of label-free imaging of blood vessels in the brain and mapping hemodynamic functions such as blood oxygenation and blood flow. These imaging merits make PAI a great tool for studying ischemic stroke, particularly for probing into hemodynamic changes and impaired cerebral blood perfusion as a consequence of stroke. In this narrative review, we aim to summarize the scientific progresses in the past decade by using PAI to monitor cerebral blood vessel impairment and restoration after ischemic stroke, mostly in the preclinical setting. We also outline and discuss the major technological barriers and challenges that need to be overcome so that PAI can play a more significant role in preclinical stroke research, and more importantly, accelerate its translation to be a useful clinical diagnosis and management tool for human strokes.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
19
|
Nteroli G, Messa G, Dasa MK, Penttinen A, Härkönen A, Guina M, Podoleanu AG, Koutsikou S, Bradu A. Enhanced resolution optoacoustic microscopy using a picosecond high repetition rate Q-switched microchip laser. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:110501. [PMID: 36458112 PMCID: PMC9705569 DOI: 10.1117/1.jbo.27.11.110501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Conventional optoacoustic microscopy (OAM) instruments have at their core a nanosecond pulse duration laser. If lasers with a shorter pulse duration are used, broader, higher frequency ultrasound waves are expected to be generated and as a result, the axial resolution of the instrument is improved. Here, we exploit the advantage offered by a picosecond duration pulse laser to enhance the axial resolution of an OAM instrument. In comparison to an instrument equipped with a 2-ns pulse duration laser, an improvement in the axial resolution of 50% is experimentally demonstrated by using excitation pulses of only 85 ps. To illustrate the capability of the instrument to generate high-quality optoacoustic images, en-face, in-vivo images of the brain of Xenopus laevis tadpole are presented with a lateral resolution of 3.8 μ m throughout the entire axial imaging range.
Collapse
Affiliation(s)
- Gianni Nteroli
- University of Kent, Applied Optics Group, Canterbury, United Kingdom
| | - Giulia Messa
- University of Kent, Medway School of Pharmacy, Chatham, United Kingdom
| | - Manoj K. Dasa
- Technical University of Denmark, DTU Fotonik, Lyngby, Denmark
| | - Antti Penttinen
- Tampere University, Optoelectronics Research Centre, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere, Finland
| | - Antti Härkönen
- Tampere University, Optoelectronics Research Centre, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere, Finland
| | - Mircea Guina
- Tampere University, Optoelectronics Research Centre, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere, Finland
| | | | - Stella Koutsikou
- University of Kent, Medway School of Pharmacy, Chatham, United Kingdom
| | - Adrian Bradu
- University of Kent, Applied Optics Group, Canterbury, United Kingdom
| |
Collapse
|
20
|
Dimaridis I, Sridharan P, Ntziachristos V, Karlas A, Hadjileontiadis L. Image Quality Improvement Techniques and Assessment Adequacy in Clinical Optoacoustic Imaging: A Systematic Review. BIOSENSORS 2022; 12:901. [PMID: 36291038 PMCID: PMC9599915 DOI: 10.3390/bios12100901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Optoacoustic imaging relies on the detection of optically induced acoustic waves to offer new possibilities in morphological and functional imaging. As the modality matures towards clinical application, research efforts aim to address multifactorial limitations that negatively impact the resulting image quality. In an endeavor to obtain a clear view on the limitations and their effects, as well as the status of this progressive refinement process, we conduct an extensive search for optoacoustic image quality improvement approaches that have been evaluated with humans in vivo, thus focusing on clinically relevant outcomes. We query six databases (PubMed, Scopus, Web of Science, IEEE Xplore, ACM Digital Library, and Google Scholar) for articles published from 1 January 2010 to 31 October 2021, and identify 45 relevant research works through a systematic screening process. We review the identified approaches, describing their primary objectives, targeted limitations, and key technical implementation details. Moreover, considering comprehensive and objective quality assessment as an essential prerequisite for the adoption of such approaches in clinical practice, we subject 36 of the 45 papers to a further in-depth analysis of the reported quality evaluation procedures, and elicit a set of criteria with the intent to capture key evaluation aspects. Through a comparative criteria-wise rating process, we seek research efforts that exhibit excellence in quality assessment of their proposed methods, and discuss features that distinguish them from works with similar objectives. Additionally, informed by the rating results, we highlight areas with improvement potential, and extract recommendations for designing quality assessment pipelines capable of providing rich evidence.
Collapse
Affiliation(s)
- Ioannis Dimaridis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Patmaa Sridharan
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
| | - Angelos Karlas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Signal Processing and Biomedical Technology Unit, Telecommunications Laboratory, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Kaniyala Melanthota S, Kistenev YV, Borisova E, Ivanov D, Zakharova O, Boyko A, Vrazhnov D, Gopal D, Chakrabarti S, K SP, Mazumder N. Types of spectroscopy and microscopy techniques for cancer diagnosis: a review. Lasers Med Sci 2022; 37:3067-3084. [PMID: 35834141 PMCID: PMC9525344 DOI: 10.1007/s10103-022-03610-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Cancer is a life-threatening disease that has claimed the lives of many people worldwide. With the current diagnostic methods, it is hard to determine cancer at an early stage, due to its versatile nature and lack of genomic biomarkers. The rapid development of biophotonics has emerged as a potential tool in cancer detection and diagnosis. Using the fluorescence, scattering, and absorption characteristics of cells and tissues, it is possible to detect cancer at an early stage. The diagnostic techniques addressed in this review are highly sensitive to the chemical and morphological changes in the cell and tissue during disease progression. These changes alter the fluorescence signal of the cell/tissue and are detected using spectroscopy and microscopy techniques including confocal and two-photon fluorescence (TPF). Further, second harmonic generation (SHG) microscopy reveals the morphological changes that occurred in non-centrosymmetric structures in the tissue, such as collagen. Again, Raman spectroscopy is a non-destructive method that provides a fingerprinting technique to differentiate benign and malignant tissue based on Raman signal. Photoacoustic microscopy and spectroscopy of tissue allow molecule-specific detection with high spatial resolution and penetration depth. In addition, terahertz spectroscopic studies reveal the variation of tissue water content during disease progression. In this review, we address the applications of spectroscopic and microscopic techniques for cancer detection based on the optical properties of the tissue. The discussed state-of-the-art techniques successfully determines malignancy to its rapid diagnosis.
Collapse
Affiliation(s)
- Sindhoora Kaniyala Melanthota
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Yury V Kistenev
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
- Central Research Laboratory, Siberian State Medical University, Tomsk, 634050, Russia
| | - Ekaterina Borisova
- Laboratory of Biophotonics, Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd, 72, 1784, Sofia, Bulgaria.
- Biology Faculty, Saratov State University, 83, Astrakhanskaya Str, 410012, Saratov, Russia.
| | - Deyan Ivanov
- Laboratory of Biophotonics, Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd, 72, 1784, Sofia, Bulgaria
| | - Olga Zakharova
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Andrey Boyko
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Denis Vrazhnov
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Dharshini Gopal
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Shweta Chakrabarti
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Shama Prasada K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
22
|
Mac KD, Qureshi MM, Na M, Chang S, Eom TJ, Je HS, Kim YR, Kwon HS, Chung E. Fast volumetric imaging with line-scan confocal microscopy by electrically tunable lens at resonant frequency. OPTICS EXPRESS 2022; 30:19152-19164. [PMID: 36221700 PMCID: PMC9363030 DOI: 10.1364/oe.450745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/20/2023]
Abstract
In microscopic imaging of biological tissues, particularly real-time visualization of neuronal activities, rapid acquisition of volumetric images poses a prominent challenge. Typically, two-dimensional (2D) microscopy can be devised into an imaging system with 3D capability using any varifocal lens. Despite the conceptual simplicity, such an upgrade yet requires additional, complicated device components and usually suffers from a reduced acquisition rate, which is critical to properly document rapid neurophysiological dynamics. In this study, we implemented an electrically tunable lens (ETL) in the line-scan confocal microscopy (LSCM), enabling the volumetric acquisition at the rate of 20 frames per second with a maximum volume of interest of 315 × 315 × 80 µm3. The axial extent of point-spread-function (PSF) was 17.6 ± 1.6 µm and 90.4 ± 2.1 µm with the ETL operating in either stationary or resonant mode, respectively, revealing significant depth axial penetration by the resonant mode ETL microscopy. We further demonstrated the utilities of the ETL system by volume imaging of both cleared mouse brain ex vivo samples and in vivo brains. The current study showed a successful application of resonant ETL for constructing a high-performance 3D axially scanning LSCM (asLSCM) system. Such advances in rapid volumetric imaging would significantly enhance our understanding of various dynamic biological processes.
Collapse
Affiliation(s)
- Khuong Duy Mac
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | | | - Myeongsu Na
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080 Seoul, Republic of Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080 Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080 Seoul, Republic of Korea
| | - Tae Joong Eom
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
- Engineering Research Center (ERC) for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road 169857, Singapore
- Advanced Bioimaging Center, Academia, Ngee Ann Kongsi Discovery Tower Level 10, 20 College Road, 169855, Singapore
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
23
|
Isaiev M, Mussabek G, Lishchuk P, Dubyk K, Zhylkybayeva N, Yar-Mukhamedova G, Lacroix D, Lysenko V. Application of the Photoacoustic Approach in the Characterization of Nanostructured Materials. NANOMATERIALS 2022; 12:nano12040708. [PMID: 35215036 PMCID: PMC8876047 DOI: 10.3390/nano12040708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023]
Abstract
A new generation of sensors can be engineered based on the sensing of several markers to satisfy the conditions of the multimodal detection principle. From this point of view, photoacoustic-based sensing approaches are essential. The photoacoustic effect relies on the generation of light-induced deformation (pressure) perturbations in media, which is essential for sensing applications since the photoacoustic response is formed due to a contrast in the optical, thermal, and acoustical properties. It is also particularly important to mention that photoacoustic light-based approaches are flexible enough for the measurement of thermal/elastic parameters. Moreover, the photoacoustic approach can be used for imaging and visualization in material research and biomedical applications. The advantages of photoacoustic devices are their compact sizes and the possibility of on-site measurements, enabling the online monitoring of material parameters. The latter has significance for the development of various sensing applications, including biomedical ones, such as monitoring of the biodistribution of biomolecules. To extend sensing abilities and to find reliable measurement conditions, one needs to clearly understand all the phenomena taking place during energy transformation during photoacoustic signal formation. Therefore, the current paper is devoted to an overview of the main measurement principles used in the photoacoustic setup configurations, with a special focus on the key physical parameters.
Collapse
Affiliation(s)
- Mykola Isaiev
- Université de Lorraine, CNRS, LEMTA, 54000 Nancy, France; (M.I.); (D.L.)
| | - Gauhar Mussabek
- Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71, Al-Farabi Ave., Almaty 050040, Kazakhstan; (N.Z.); (G.Y.-M.)
- Institute of Information and Computational Technologies, 125, Pushkin Str., Almaty 050000, Kazakhstan
- Institute of Engineering Physics for Biomedicine, Laboratory “Bionanophotonics”, National Research Nuclear University “MEPhI”, 115409 Moscow, Russia;
- Correspondence:
| | - Pavlo Lishchuk
- Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., 01601 Kyiv, Ukraine; (P.L.); (K.D.)
| | - Kateryna Dubyk
- Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., 01601 Kyiv, Ukraine; (P.L.); (K.D.)
| | - Nazym Zhylkybayeva
- Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71, Al-Farabi Ave., Almaty 050040, Kazakhstan; (N.Z.); (G.Y.-M.)
- Institute of Information and Computational Technologies, 125, Pushkin Str., Almaty 050000, Kazakhstan
| | - Gulmira Yar-Mukhamedova
- Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71, Al-Farabi Ave., Almaty 050040, Kazakhstan; (N.Z.); (G.Y.-M.)
| | - David Lacroix
- Université de Lorraine, CNRS, LEMTA, 54000 Nancy, France; (M.I.); (D.L.)
| | - Vladimir Lysenko
- Institute of Engineering Physics for Biomedicine, Laboratory “Bionanophotonics”, National Research Nuclear University “MEPhI”, 115409 Moscow, Russia;
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon/CNRS, Université de Lyon, 69622 Villeurbanne, France
| |
Collapse
|
24
|
Mostafavi SM, Amjadian M, Kavehvash Z, Shabany M. Fourier photoacoustic microscope improved resolution on single-pixel imaging. APPLIED OPTICS 2022; 61:1219-1228. [PMID: 35201175 DOI: 10.1364/ao.442628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
A new single-pixel Fourier photoacoustic microscopy (PAM), to the best of our knowledge, is proposed to improve the resolution and region of interest (ROI) of an acquired image. In the previous structure of single-pixel Fourier PAM, called spatially invariant resolution PAM (SIR-PAM), the lateral resolution and ROI are limited by the digital micromirror device (DMD) pixel size and the number of pixels. This limitation is overcome here through illuminating fixed angle interfering plane waves, changing the fringe frequency via varying the frequency of the laser source. Given that the fringe sinusoidal patterns here can be produced by two mirrors, the DMD usage can be omitted. In this way, the fringe frequency can be changed in a wider spectrum, making it possible to capture a wider spectral bandwidth and thus a higher-resolution image. Also, the removal of the ROI limitation results in a high-resolution frequency-swept PAM structure. Monte Carlo simulations show 1.7 times improvement in lateral resolution compared to SIR-PAM based on the point-spread function and full-width-at-half-maximum.
Collapse
|
25
|
Ahn J, Kim JY, Choi W, Kim C. High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers. PHOTOACOUSTICS 2021; 23:100282. [PMID: 34258222 PMCID: PMC8259315 DOI: 10.1016/j.pacs.2021.100282] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/18/2021] [Accepted: 06/23/2021] [Indexed: 05/09/2023]
Abstract
Functional imaging of microvascular dynamics in extremities delivers intuitive information for early detection, diagnosis, and prognosis of vascular diseases. High-resolution and high-speed photoacoustic microscopy (PAM) visualizes and measures multiparametric information of microvessel networks in vivo such as morphology, flow, oxygen saturation, and metabolic rate. Here, we demonstrate high-resolution photoacoustic monitoring of vascular dynamics in human fingers. We photoacoustically monitored the position displacement of blood vessels associated with arterial pulsation in human fingers. Then, during and after arterial occlusion, we photoacoustically quantified oxygen consumption and blood perfusion in the fingertips. The results demonstrate that high-resolution functional PAM could be a vital tool in peripheral vascular examination for measuring heart rate, oxygen consumption, and/or blood perfusion.
Collapse
|
26
|
Three-dimensional virtual histology in unprocessed resected tissues with photoacoustic remote sensing (PARS) microscopy and optical coherence tomography (OCT). Sci Rep 2021; 11:13723. [PMID: 34215785 PMCID: PMC8253737 DOI: 10.1038/s41598-021-93222-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Histological images are critical in the diagnosis and treatment of cancers. Unfortunately, current methods for capturing these microscopy images require resource intensive tissue preparation that may delay diagnosis for days or weeks. To streamline this process, clinicians are limited to assessing small macroscopically representative subsets of tissues. Here, a combined photoacoustic remote sensing (PARS) microscope and swept source optical coherence tomography system designed to circumvent these diagnostic limitations is presented. The proposed multimodal microscope provides label-free three-dimensional depth resolved virtual histology visualizations, capturing nuclear and extranuclear tissue morphology directly on thick unprocessed specimens. The capabilities of the proposed method are demonstrated directly in unprocessed formalin fixed resected tissues. The first images of nuclear contrast in resected human tissues, and the first three-dimensional visualization of subsurface nuclear morphology in resected Rattus tissues, captured with a non-contact photoacoustic system are presented here. Moreover, the proposed system captures the first co-registered OCT and PARS images enabling direct histological assessment of unprocessed tissues. This work represents a vital step towards the development of a rapid histological imaging modality to circumvent the limitations of current histopathology techniques.
Collapse
|
27
|
Jeon J, Hwang Y, Lee J, Kong E, Moon J, Hong S, Kim P. Intravital Imaging of Circulating Red Blood Cells in the Retinal Vasculature of Growing Mice. Transl Vis Sci Technol 2021; 10:31. [PMID: 34004010 PMCID: PMC8083064 DOI: 10.1167/tvst.10.4.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose To establish a custom-built, high-speed 90 frame-per-second laser-scanning confocal microscope for real-time in vivo retinal imaging of individual flowing red blood cells (RBCs) in retinal vasculature of live mouse model. Methods Fluorescently labeled RBCs were injected into mice of different ages (3 to 62 weeks old). Anti-CD31 antibody conjugated with Alexa Fluor 647 was injected to visualize retinal endothelial cells (ECs). Longitudinal and cross-sectional intravital retinal imaging of flowing RBCs and ECs was performed in two strains (C57BL/6 and Balb/c) by using the custom-built confocal microscope. Results Simultaneous tracking of the routes of many fluorescently labeled individual RBCs flowing from a large artery and vein to a single capillary in the retina of live mice was achieved, which enabled in vivo measurement of retinal RBC flow velocities in each vessel type in growing mice from 3 to 62 weeks after birth. Average RBC flow velocities were gradually increased during growing from 3 to 14 weeks by more than two times. Then the average RBC flow velocity was maintained at about 20 mm/s in artery and 16 mm/s in vein until 62 weeks. Conclusions Our study successfully established a custom-built high-speed 90-Hz retinal confocal microscope for measuring RBC flow velocity at the single cell level. It could be a useful tool to investigate the pathophysiology of various retinal diseases associated with blood flow impairment. Translational Relevance This technological method could be a valuable assessment tool to help the development of novel therapeutics for retinal diseases.
Collapse
Affiliation(s)
- Jehwi Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yoonha Hwang
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jingu Lee
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Eunji Kong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jieun Moon
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sujung Hong
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
28
|
Zhou J, He D, Shang X, Guo Z, Chen SL, Luo J. Photoacoustic microscopy with sparse data by convolutional neural networks. PHOTOACOUSTICS 2021; 22:100242. [PMID: 33763327 PMCID: PMC7973247 DOI: 10.1016/j.pacs.2021.100242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 05/02/2023]
Abstract
The point-by-point scanning mechanism of photoacoustic microscopy (PAM) results in low-speed imaging, limiting the application of PAM. In this work, we propose a method to improve the quality of sparse PAM images using convolutional neural networks (CNNs), thereby speeding up image acquisition while maintaining good image quality. The CNN model utilizes attention modules, residual blocks, and perceptual losses to reconstruct the sparse PAM image, which is a mapping from a 1/4 or 1/16 low-sampling sparse PAM image to a latent fully-sampled one. The model is trained and validated mainly on PAM images of leaf veins, showing effective improvements quantitatively and qualitatively. Our model is also tested using in vivo PAM images of blood vessels of mouse ears and eyes. The results suggest that the model can enhance the quality of the sparse PAM image of blood vessels in several aspects, which facilitates fast PAM and its clinical applications.
Collapse
Affiliation(s)
- Jiasheng Zhou
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Da He
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Shang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhendong Guo
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sung-Liang Chen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding authors.
| | - Jiajia Luo
- Biomedical Engineering Department, Peking University, Beijing 100191, China
- Corresponding authors.
| |
Collapse
|
29
|
Vu T, DiSpirito A, Li D, Wang Z, Zhu X, Chen M, Jiang L, Zhang D, Luo J, Zhang YS, Zhou Q, Horstmeyer R, Yao J. Deep image prior for undersampling high-speed photoacoustic microscopy. PHOTOACOUSTICS 2021; 22:100266. [PMID: 33898247 PMCID: PMC8056431 DOI: 10.1016/j.pacs.2021.100266] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 05/02/2023]
Abstract
Photoacoustic microscopy (PAM) is an emerging imaging method combining light and sound. However, limited by the laser's repetition rate, state-of-the-art high-speed PAM technology often sacrifices spatial sampling density (i.e., undersampling) for increased imaging speed over a large field-of-view. Deep learning (DL) methods have recently been used to improve sparsely sampled PAM images; however, these methods often require time-consuming pre-training and large training dataset with ground truth. Here, we propose the use of deep image prior (DIP) to improve the image quality of undersampled PAM images. Unlike other DL approaches, DIP requires neither pre-training nor fully-sampled ground truth, enabling its flexible and fast implementation on various imaging targets. Our results have demonstrated substantial improvement in PAM images with as few as 1.4 % of the fully sampled pixels on high-speed PAM. Our approach outperforms interpolation, is competitive with pre-trained supervised DL method, and is readily translated to other high-speed, undersampling imaging modalities.
Collapse
Affiliation(s)
- Tri Vu
- Photoacoustic Imaging Lab, Duke University, Durham, NC, 27708, USA
| | | | - Daiwei Li
- Photoacoustic Imaging Lab, Duke University, Durham, NC, 27708, USA
| | - Zixuan Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xiaoyi Zhu
- Photoacoustic Imaging Lab, Duke University, Durham, NC, 27708, USA
| | - Maomao Chen
- Photoacoustic Imaging Lab, Duke University, Durham, NC, 27708, USA
| | - Laiming Jiang
- Department of Biomedical Engineering and USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dong Zhang
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianwen Luo
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Junjie Yao
- Photoacoustic Imaging Lab, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
30
|
杜 洁, 孙 正. [Progress of motion artifact correction in photoacoustic microscopy and photoacoustic tomography]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:369-378. [PMID: 33913298 PMCID: PMC9927676 DOI: 10.7507/1001-5515.202009062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Photoacoustic imaging (PAI) is a rapidly developing hybrid biomedical imaging technology, which is capable of providing structural and functional information of biological tissues. Due to inevitable motion of the imaging object, such as respiration, heartbeat or eye rotation, motion artifacts are observed in the reconstructed images, which reduce the imaging resolution and increase the difficulty of obtaining high-quality images. This paper summarizes current methods for correcting and compensating motion artifacts in photoacoustic microscopy (PAM) and photoacoustic tomography (PAT), discusses their advantages and limits and forecasts possible future work.
Collapse
Affiliation(s)
- 洁洁 杜
- 华北电力大学 电子与通信工程系(河北保定 071003)Department of Electronic and Communication Engineering, North China Electric Power University, Baoding, Hebei 071003, P.R.China
- 华北电力大学 河北省电力物联网技术重点实验室(河北保定 071003)Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding, Hebei 071003, P.R.China
| | - 正 孙
- 华北电力大学 电子与通信工程系(河北保定 071003)Department of Electronic and Communication Engineering, North China Electric Power University, Baoding, Hebei 071003, P.R.China
- 华北电力大学 河北省电力物联网技术重点实验室(河北保定 071003)Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding, Hebei 071003, P.R.China
| |
Collapse
|
31
|
Jang J, Kim J, Lee HJ, Chang JH. Transrectal Ultrasound and Photoacoustic Imaging Probe for Diagnosis of Prostate Cancer. SENSORS 2021; 21:s21041217. [PMID: 33572287 PMCID: PMC7915711 DOI: 10.3390/s21041217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022]
Abstract
A combined transrectal ultrasound and photoacoustic (TRUS-PA) imaging probe was developed for the clear visualization of morphological changes and microvasculature distribution in the prostate, as this is required for accurate diagnosis and biopsy. The probe consisted of a miniaturized 128-element 7 MHz convex array transducer with 134.5° field-of-view (FOV), a bifurcated optical fiber bundle, and two optical lenses. The design goal was to make the size of the TRUS-PA probe similar to that of general TRUS probes (i.e., about 20 mm), for the convenience of the patients. New flexible printed circuit board (FPCB), acoustic structure, and optical lens were developed to meet the requirement of the probe size, as well as to realize a high-performance TRUS-PA probe. In visual assessment, the PA signals obtained with the optical lens were 2.98 times higher than those without the lens. Moreover, the in vivo experiment with the xenograft BALB/c (Albino, Immunodeficient Inbred Strain) mouse model showed that TRUS-PA probe was able to acquire the entire PA image of the mouse tight behind the porcine intestine about 25 mm depth. From the ex vivo and in vivo experimental results, it can be concluded that the developed TRUS-PA probe is capable of improving PA image quality, even though the TRUS-PA probe has a cross-section size and an FOV comparable to those of general TRUS probes.
Collapse
Affiliation(s)
- Jihun Jang
- Department of Electronic Engineering, Sogang University, Seoul 04107, Korea;
| | - Jinwoo Kim
- Department of Information and Communnication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| | - Hak Jong Lee
- Department of Radiology, Seoul National University of Bundang Hospital, Seongnam-si 13620, Korea;
| | - Jin Ho Chang
- Department of Information and Communnication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
- Correspondence: ; Tel.: +82-53-785-6330
| |
Collapse
|
32
|
Widyaningrum R, Mitrayana M, Sola Gracea R, Agustina D, Mudjosemedi M, Miyosi Silalahi H. The Influence of Diode Laser Intensity Modulation on Photoacoustic Image Quality for Oral Soft Tissue Imaging. J Lasers Med Sci 2020; 11:S92-S100. [PMID: 33995976 PMCID: PMC7956033 DOI: 10.34172/jlms.2020.s15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Introduction: Imaging technologies have been developed to assist physicians and dentists in detecting various diseases. Photoacoustic imaging (PAI) is a new technique that shows great applicability to soft tissues. This study aimed to investigate the effect of diode laser intensity modulation on photoacoustic (PA) image quality. Methods: The prototype of the PAI system in this study utilized a non-ionizing 532 nm continuouswave (CW) diode laser illumination. Samples in this study were oral soft tissues of Sprague-Dawley rats fixed in 10% formalin solution. PA images were taken ex vivo by using the PAI system. The laser exposure for oral soft tissue imaging was set in various duty cycles (16%, 24%, 31%, 39%, and 47%). The samples were embedded in paraffin, and PA images were taken from the paraffinembedded tissue blocks in a similar method by using duty cycles of 40%, 45%, 50%, 55%, 60% respectively to reveal the influence of the laser duty cycle on PA image quality. Results: The oral soft tissue is clearly shown as a yellow to red area in PA images, whereas the nonbiological material appears as a blue background. The color of the PA image is determined by the PA intensity. Hence, the PA intensity of oral soft tissue was generally higher than that of the nonbiological material around it. The Kruskal-Wallis test followed by Mann-Whitney post-hoc analysis revealed significant differences (P<0.05) in the quality of PA images produced by using a 16%-47% duty cycle of laser intensity modulation for direct imaging of oral soft tissue fixed in 10% formalin solution. The PA image quality of paraffin-embedded tissue was higher than that of direct oral soft tissue images, but no significant differences in PA image quality were found between the groups. Conclusion: The PAI system built in this study can image oral soft tissue. The sample preparation and the diode laser intensity modulation may influence the PA image quality for oral soft tissue imaging. Nonetheless, the influence of diode laser intensity modulation is not significant for the PA image quality of paraffin-embedded tissue.
Collapse
Affiliation(s)
- Rini Widyaningrum
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta, Sekip Utara, Yogyakarta, Indonesia
| | - Mitrayana Mitrayana
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Unit III BLS 21, Yogyakarta, Indonesia
| | - Rellyca Sola Gracea
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta, Sekip Utara, Yogyakarta, Indonesia
| | - Dewi Agustina
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta, Sekip Utara, Yogyakarta, Indonesia
| | - Munakhir Mudjosemedi
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta, Sekip Utara, Yogyakarta, Indonesia
| | | |
Collapse
|
33
|
Dadkhah A, Jiao S. Integrating photoacoustic microscopy with other imaging technologies for multimodal imaging. Exp Biol Med (Maywood) 2020; 246:771-777. [PMID: 33297735 DOI: 10.1177/1535370220977176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As a hybrid optical microscopic imaging technology, photoacoustic microscopy images the optical absorption contrasts and takes advantage of low acoustic scattering of biological tissues to achieve high-resolution anatomical and functional imaging. When combined with other imaging modalities, photoacoustic microscopy-based multimodal technologies can provide complementary contrast mechanisms to reveal complementary information of biological tissues. To achieve intrinsically and precisely registered images in a multimodal photoacoustic microscopy imaging system, either the ultrasonic transducer or the light source can be shared among the different imaging modalities. These technologies are the major focus of this minireview. It also covered the progress of the recently developed penta-modal photoacoustic microscopy imaging system featuring a novel dynamic focusing technique enabled by OCT contour scan.
Collapse
Affiliation(s)
- Arash Dadkhah
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
34
|
Cheng Z, Ma H, Wang Z, Yang S. In vivo volumetric monitoring of revascularization of traumatized skin using extended depth-of-field photoacoustic microscopy. FRONTIERS OF OPTOELECTRONICS 2020; 13:307-317. [PMID: 36641563 PMCID: PMC9743921 DOI: 10.1007/s12200-020-1040-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/27/2020] [Indexed: 05/08/2023]
Abstract
Faster and better wound healing is a critical medical issue. Because the repair process of wounds is closely related to revascularization, accurate early assessment and postoperative monitoring are very important for establishing an optimal treatment plan. Herein, we present an extended depth-of-field photoacoustic microscopy system (E-DOF-PAM) that can achieve a constant spatial resolution and relatively uniform excitation efficiency over a long axial range. The superior performance of the system was verified by phantom and in vivo experiments. Furthermore, the system was applied to the imaging of normal and trauma sites of volunteers, and the experimental results accurately revealed the morphological differences between the normal and traumatized skin of the epidermis and dermis. These results demonstrated that the E-DOF-PAM is a powerful tool for observing and understanding the pathophysiology of cutaneous wound healing.
Collapse
Affiliation(s)
- Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Haigang Ma
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhiyang Wang
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
35
|
Feasibility Study of Precise Balloon Catheter Tracking and Visualization with Fast Photoacoustic Microscopy. SENSORS 2020; 20:s20195585. [PMID: 33003536 PMCID: PMC7582572 DOI: 10.3390/s20195585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Correct guiding of the catheter is a critical issue in almost all balloon catheter applications, including arterial stenosis expansion, coronary arterial diseases, and gastrointestinal tracking. To achieve safe and precise guiding of the balloon catheter, a novel imaging method with high-resolution, sufficient depth of penetration, and real-time display is required. Here, we present a new balloon catheter guiding method using fast photoacoustic microscopy (PAM) technique for precise balloon catheter tracking and visualization as a feasibility study. We implemented ex vivo and in vivo experiments with three different medium conditions of balloon catheter: no air, air, and water. Acquired cross-sectional, maximum amplitude projection (MAP), and volumetric 3D PAM images demonstrated its capability as a new imaging guiding tool for balloon catheter tracking and visualization.
Collapse
|
36
|
Moon J, Kong E, Lee J, Jung J, Kim E, Park SB, Kim P. Intravital longitudinal imaging of hepatic lipid droplet accumulation in a murine model for nonalcoholic fatty liver disease. BIOMEDICAL OPTICS EXPRESS 2020; 11:5132-5146. [PMID: 33014604 PMCID: PMC7510864 DOI: 10.1364/boe.395890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 05/02/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a rapidly increasing chronic liver disorder worldwide accompanied by hepatic steatosis, inflammation, fibrosis, and severe liver failure. Unfortunately, an effective treatment strategy for NAFLD has not yet been established, which has been hampered by the limited understanding of the pathophysiological drivers for NAFLD. To examine the unknown cellular and molecular mechanisms in the pathogenesis of NAFLD, there is an increasing need for the direct in vivo observation of hepatic microenvironments over extended periods of time. In this work, using a custom-built intravital imaging system and a novel fluorescent lipid droplet labeling dye, Seoul-Fluor 44 (SF44), we established an intravital imaging method to visualize individual lipid droplets and microvasculature simultaneously in the liver of live mice in vivo. In addition, in the nonalcoholic steatosis and steatohepatitis mouse model induced by a methionine and choline-deficient diet, we longitudinally visualized and quantitatively analyzed the development of lipid droplets in hepatocytes and sinusoid at a subcellular resolution during the progression of NAFLD up to 21 days in vivo.
Collapse
Affiliation(s)
- Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology, (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Eunji Kong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology, (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jingu Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology, (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jinjoo Jung
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology, (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
37
|
Lee J, Kong E, Hong S, Moon J, Kim P. In vivo longitudinal visualization of the brain neuroinflammatory response at the cellular level in LysM-GFP mice induced by 3-nitropropionic acid. BIOMEDICAL OPTICS EXPRESS 2020; 11:4835-4847. [PMID: 32923081 PMCID: PMC7449715 DOI: 10.1364/boe.393690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/14/2020] [Accepted: 07/21/2020] [Indexed: 05/18/2023]
Abstract
Blood-brain barrier (BBB) dysfunction is related to the development of neuroinflammation in the central nervous system (CNS). Neuroinflammation has been implicated as one of the key factors in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. Despite its importance, the impacts and underlying cellular mechanisms of chronic BBB impairment in neurodegenerative diseases are poorly understood. In this work, we performed a longitudinal intravital brain imaging of mouse model with neuroinflammation induced by 3-nitropropionic acid (3-NP). For this, we obtained a transgenic LysM-GFP mouse expressing the green fluorescence protein (GFP) in a subset of leukocytes. By using intravenously injected fluorescence blood tracers, we longitudinally observed in vivo dynamic cellular behaviors and the BBB integrity through a 30-day neuroinflammatory state. Vascular leakages in the cerebral cortex reflecting BBB impairment were observed at two weeks, which persisted to the third week, followed by a severe inflammatory response with massive leukocytes infiltration at day 30. These descriptions can help in the development of novel approaches to treat neurodegenerative conditions.
Collapse
Affiliation(s)
- Jingu Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Eunji Kong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sujung Hong
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
38
|
Cho S, Baik J, Managuli R, Kim C. 3D PHOVIS: 3D photoacoustic visualization studio. PHOTOACOUSTICS 2020; 18:100168. [PMID: 32211292 PMCID: PMC7082691 DOI: 10.1016/j.pacs.2020.100168] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 05/05/2023]
Abstract
Photoacoustic (PA) imaging (or optoacoustic imaging) is a novel biomedical imaging method in biological and medical research. This modality performs morphological, functional, and molecular imaging with and without labels in both microscopic and deep tissue imaging domains. A variety of innovations have enhanced 3D PA imaging performance and thus has opened new opportunities in preclinical and clinical imaging. However, the 3D visualization tools for PA images remains a challenge. There are several commercially available software packages to visualize the generated 3D PA images. They are generally expensive, and their features are not optimized for 3D visualization of PA images. Here, we demonstrate a specialized 3D visualization software package, namely 3D Photoacoustic Visualization Studio (3D PHOVIS), specifically targeting photoacoustic data, image, and visualization processes. To support the research environment for visualization and fast processing, we incorporated 3D PHOVIS onto the MATLAB with graphical user interface and developed multi-core graphics processing unit modules for fast processing. The 3D PHOVIS includes following modules: (1) a mosaic volume generator, (2) a scan converter for optical scanning photoacoustic microscopy, (3) a skin profile estimator and depth encoder, (4) a multiplanar viewer with a navigation map, and (5) a volume renderer with a movie maker. This paper discusses the algorithms present in the software package and demonstrates their functions. In addition, the applicability of this software to ultrasound imaging and optical coherence tomography is also investigated. User manuals and application files for 3D PHOVIS are available for free on the website (www.boa-lab.com). Core functions of 3D PHOVIS are developed as a result of a summer class at POSTECH, "High-Performance Algorithm in CPU/GPU/DSP, and Computer Architecture." We believe our 3D PHOVIS provides a unique tool to PA imaging researchers, expedites its growth, and attracts broad interests in a wide range of studies.
Collapse
Affiliation(s)
- Seonghee Cho
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jinwoo Baik
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ravi Managuli
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Hitachi Healthcare America, Twinsburg, OH, 44087, USA
| | - Chulhong Kim
- Departments of Creative IT Engineering, Mechanical Engineering, Electrical Engineering, and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Corresponding author.
| |
Collapse
|
39
|
Abstract
Abstract
Purpose
Photoacoustic (PA) microscopy has emerged as a useful tool in biomedical imaging applications such as visualization of microvasculature and hemoglobin oxygen saturation, single-cell, and label-free imaging of organs including cancer. Since the ultrasound transducers used for PA signal detection are not optically transparent, the integration of optical and acoustic modules for coaxial alignment of laser and acoustic beam fields in PA microscopy is complex and costly.
Methods
Here, we report a recently developed optically transparent focused transducer for combined PA and ultrasound (US) microscopy. All the acoustic layers including the acoustic lens are optically transparent, enabling simple integration of optical and acoustic modules for both imaging modalities.
Results
The mean light transmittance of the transducer’s backing layer and acoustic lens and of the transducer itself were measured at 92%, 83%, and 66%, respectively. Results from in vitro and in vivo experiments demonstrated the transducer to be suitable for both US and PA imaging.
Conclusions
The results of this study represent a step toward efficient construction of probes for combined PA and US microscopy.
Collapse
|
40
|
Seong M, Chen SL. Recent advances toward clinical applications of photoacoustic microscopy: a review. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1798-1812. [DOI: 10.1007/s11427-019-1628-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
41
|
Paulson B, Lee S, Jue M, Lee K, Lee S, Kim GB, Moon Y, Lee JY, Kim N, Kim JK. Stereotaxic endoscopy for the ocular imaging of awake, freely moving animal models. JOURNAL OF BIOPHOTONICS 2020; 13:e201960188. [PMID: 32017450 DOI: 10.1002/jbio.201960188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Stereotaxic instruments are increasingly used in research animals for the study of disease, but typically require restraints and anesthetic procedures. A stereotaxic head mount that enables imaging of the anterior chamber of the eye in alert and freely mobile mice is presented in this study. The head mount is fitted based on computed tomography scans and manufactured using 3D printing. The system is placed noninvasively using temporal mount bars and a snout mount, without breaking the skin or risking suffocation, while an instrument channel stabilizes the ocular probes. With a flexible micro-endoscopic probe and a confocal scanning laser microscopy system, <20 μm resolution is achieved in vivo with a field of view of nearly 1 mm. Discomfort is minimal, and further adaptations for minimally invasive neuroscience, optogenetics and auditory studies are possible.
Collapse
Affiliation(s)
- Bjorn Paulson
- Biomedical Engineering Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Sangwook Lee
- Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Miyeon Jue
- Biomedical Engineering Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Kyungsung Lee
- Biomedical Engineering Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Sanghwa Lee
- Biomedical Engineering Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | | | - Youngjin Moon
- Biomedical Engineering Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
- Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Joo Yong Lee
- Department of Ophthalmology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Namkug Kim
- Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
- Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, South Korea
| |
Collapse
|
42
|
Liu C, Liang Y, Wang L. Single-shot photoacoustic microscopy of hemoglobin concentration, oxygen saturation, and blood flow in sub-microseconds. PHOTOACOUSTICS 2020; 17:100156. [PMID: 31956486 PMCID: PMC6957791 DOI: 10.1016/j.pacs.2019.100156] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 05/04/2023]
Abstract
We present fast functional optical-resolution photoacoustic microscopy (OR-PAM) that can simultaneously image hemoglobin concentration, blood flow speed, and oxygen saturation with three-pulse excitation. To instantaneously determine the blood flow speed, dual-pulse photoacoustic flowmetry is developed to determine the blood flow speed from photoacoustic signal decay in sub-microseconds. Grueneisen relaxation effect is compensated for in the oxygen saturation calculation. The blood flow imaging is validated in phantom and in vivo experiments. The results show that the flow speed can be measured accurately in sub-microseconds by comparing the dual-pulse flowmetric method with photoacoustic Doppler flowmetry. Wide-field OR-PAM of hemoglobin concentration, blood flow speed, and oxygen saturation are demonstrated in the mouse ear. This technical advance enables more biomedical applications for fast functional OR-PAM.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave., Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, Shenzhen, Guang Dong, 518057, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- Corresponding author.
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave., Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, Shenzhen, Guang Dong, 518057, China
- Corresponding author at: Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave., Kowloon, Hong Kong, China.
| |
Collapse
|
43
|
Shrestha B, DeLuna F, Anastasio MA, Yong Ye J, Brey EM. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:79-102. [PMID: 31854242 PMCID: PMC7041335 DOI: 10.1089/ten.teb.2019.0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
Several imaging modalities are available for investigation of the morphological, functional, and molecular features of engineered tissues in small animal models. While research in tissue engineering and regenerative medicine (TERM) would benefit from a comprehensive longitudinal analysis of new strategies, researchers have not always applied the most advanced methods. Photoacoustic imaging (PAI) is a rapidly emerging modality that has received significant attention due to its ability to exploit the strong endogenous contrast of optical methods with the high spatial resolution of ultrasound methods. Exogenous contrast agents can also be used in PAI for targeted imaging. Applications of PAI relevant to TERM include stem cell tracking, longitudinal monitoring of scaffolds in vivo, and evaluation of vascularization. In addition, the emerging capabilities of PAI applied to the detection and monitoring of cancer and other inflammatory diseases could be exploited by tissue engineers. This article provides an overview of the operating principles of PAI and its broad potential for application in TERM. Impact statement Photoacoustic imaging, a new hybrid imaging technique, has demonstrated high potential in the clinical diagnostic applications. The optical and acoustic aspect of the photoacoustic imaging system works in harmony to provide better resolution at greater tissue depth. Label-free imaging of vasculature with this imaging can be used to track and monitor disease, as well as the therapeutic progression of treatment. Photoacoustic imaging has been utilized in tissue engineering to some extent; however, the full benefit of this technique is yet to be explored. The increasing availability of commercial photoacoustic systems will make application as an imaging tool for tissue engineering application more feasible. This review first provides a brief description of photoacoustic imaging and summarizes its current and potential application in tissue engineering.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Frank DeLuna
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Mark A. Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Yong Ye
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Eric M. Brey
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
44
|
Lee D, Park EY, Choi S, Kim H, Min JJ, Lee C, Kim C. GPU-accelerated 3D volumetric X-ray-induced acoustic computed tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:752-761. [PMID: 32133222 PMCID: PMC7041460 DOI: 10.1364/boe.381963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 05/29/2023]
Abstract
X-ray acoustic imaging is a hybrid biomedical imaging technique that can acoustically monitor X-ray absorption distribution in biological tissues through the X-ray induced acoustic effect. In this study, we developed a 3D volumetric X-ray-induced acoustic computed tomography (XACT) system with a portable pulsed X-ray source and an arc-shaped ultrasound array transducer. 3D volumetric XACT images are reconstructed via the back-projection algorithm, accelerated by a custom-developed graphics processing unit (GPU) software. Compared with a CPU-based software, the GPU software reconstructs an image over 40 times faster. We have successfully acquired 3D volumetric XACT images of various lead targets, and this work shows that the 3D volumetric XACT system can monitor a high-resolution X-ray dose distribution and image X-ray absorbing structures inside biological tissues.
Collapse
Affiliation(s)
- Donghyun Lee
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37674, South Korea
- These authors contributed equally to this work
| | - Eun-Yeong Park
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37674, South Korea
- These authors contributed equally to this work
| | - Seongwook Choi
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37674, South Korea
| | - Hyeongsub Kim
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37674, South Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Chonnam 58128, South Korea
| | - Changho Lee
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Chonnam 58128, South Korea
| | - Chulhong Kim
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37674, South Korea
| |
Collapse
|
45
|
Kim C, Chen Z. Multimodal photoacoustic imaging: systems, applications, and agents. Biomed Eng Lett 2018; 8:137-138. [PMID: 30603198 PMCID: PMC6208519 DOI: 10.1007/s13534-018-0071-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 10/16/2022] Open
Affiliation(s)
- Chulhong Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Namgu, Pohang, Gyeongbuk 37673 Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Namgu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Zhongping Chen
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA 92697 USA
| |
Collapse
|