1
|
Balayan A, DeBoutray M, Molley TG, Ruoss S, Maceda M, Sevier A, Robertson CM, Ward SR, Engler AJ. Dispase/collagenase cocktail allows for coisolation of satellite cells and fibroadipogenic progenitors from human skeletal muscle. Am J Physiol Cell Physiol 2024; 326:C1193-C1202. [PMID: 38581669 PMCID: PMC11193520 DOI: 10.1152/ajpcell.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 04/08/2024]
Abstract
Satellite cells (SCs) and fibroadipogenic progenitors (FAPs) are progenitor populations found in muscle that form new myofibers postinjury. Muscle development, regeneration, and tissue-engineering experiments require robust progenitor populations, yet their isolation and expansion are difficult given their scarcity in muscle, limited muscle biopsy sizes in humans, and lack of methodological detail in the literature. Here, we investigated whether a dispase and collagenase type 1 and 2 cocktail could allow dual isolation of SCs and FAPs, enabling significantly increased yield from human skeletal muscle. Postdissociation, we found that single cells could be sorted into CD56 + CD31-CD45- (SC) and CD56-CD31-CD45- (FAP) cell populations, expanded in culture, and characterized for lineage-specific marker expression and differentiation capacity; we obtained ∼10% SCs and ∼40% FAPs, with yields twofold better than what is reported in current literature. SCs were PAX7+ and retained CD56 expression and myogenic fusion potential after multiple passages, expanding up to 1012 cells. Conversely, FAPs expressed CD140a and differentiated into either fibroblasts or adipocytes upon induction. This study demonstrates robust isolation of both SCs and FAPs from the same muscle sample with SC recovery more than two times higher than previously reported, which could enable translational studies for muscle injuries.NEW & NOTEWORTHY We demonstrated that a dispase/collagenase cocktail allows for simultaneous isolation of SCs and FAPs with 2× higher SC yield compared with other studies. We provide a thorough characterization of SC and FAP in vitro expansion that other studies have not reported. Following our dissociation, SCs and FAPs were able to expand by up to 1012 cells before reaching senescence and maintained differentiation capacity in vitro demonstrating their efficacy for clinical translation for muscle injury.
Collapse
Affiliation(s)
- Alis Balayan
- Biomedical Sciences Program, UC San Diego, La Jolla, California, United States
| | - Marie DeBoutray
- Department of ENT and Maxillofacial Surgery, Montpellier University, Montpellier, France
| | - Thomas G Molley
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, California, United States
| | - Severin Ruoss
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Matthew Maceda
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Ashley Sevier
- California State University, Bakersfield, Bakersfield, California, United States
| | - Catherine M Robertson
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Samuel R Ward
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
- Department of Radiology, UC San Diego, La Jolla, California, United States
| | - Adam J Engler
- Biomedical Sciences Program, UC San Diego, La Jolla, California, United States
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, California, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, California, United States
| |
Collapse
|
2
|
Three Pathways of Cancer Cachexia: Inflammation, Changes in Adipose Tissue and Loss of Muscle Mass—The Role of miRNAs. J Pers Med 2022; 12:jpm12091438. [PMID: 36143223 PMCID: PMC9500979 DOI: 10.3390/jpm12091438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
According to the World Health Organization, in 2018, cancers, along with over 18 million new cases and over 9.5 million deaths remained one of the main causes of mortality globally. Cancer-cachexia, also called wasting syndrome is a complex, multifactorial disorder characterized by progressive skeletal muscle mass loss, with or without adipose tissue atrophy. It is considered as a state of cancer-related malnutrition (CRM) accompanied by inflammation, that is irreversible despite the introduction of nutritional support. Indication of markers of pre-cachectic state seems to be urgently needed. Moreover, such markers have also potential to be used in the assessment of the effects of anti-cachexia treatment, and prognosis. miRNAs are non-coding RNA molecules that are about 20–30 nucleotides long. Single miRNA has the potential to control from few dozen to several hundred different genes. Despite the fact, that the number of miRNAs keep growing. we are making steady progress in establishing regulatory targets and their physiological levels. In this review we described the current knowledge on the impact of miRNAs on processes involved in cancer cachexia development: inflammation, adipose tissue remodelling, and loss of muscle mass both in animal models and the human cohorts. The available studies suggest that miRNAs, due to their properties, e.g., the possibility of regulating even hundreds of different genes, signalling pathways, and biological processes by one molecule, but also due their stability in biological material, the fact, that the change in their level reflects the disease status or the response to the applied treatment, they have great potential to be used as valuable biomarkers in the diagnosis, treatment, and prognosis of cancer cachexia.
Collapse
|
3
|
Pietrangelo T, Demontis R, Santangelo C, Pini N, Bonelli M, Rosato E, Roberti P, Locatelli M, Tartaglia A, Marramiero L, Verratti V, Bondi D, Fulle S, D’Aloja E, D’Ovidio C. New Perspectives for Postmortem Human Satellite Cells of Different Embryological Origin. Front Physiol 2022; 13:886149. [PMID: 35694403 PMCID: PMC9174741 DOI: 10.3389/fphys.2022.886149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
Human postmortem skeletal muscles are a unique source of satellite cells for skeletal muscle regenerative studies. Presomite and somite satellite cells obtained by postmortem muscles have been established as populations of human skeletal muscle precursor cells able to proliferate and differentiate in vitro. It is extremely interesting to have access to a large amount of postmortem human skeletal muscle precursor cells, especially from craniofacial as well as limb skeletal muscles in order to evaluate their potential application not only for the fundamental understanding of muscle physiology and diseases but also for drug testing in a challenging 3D-shaping muscles like skeletal muscle microphysiological systems.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Laboratory of Functional Evaluation and Cellular Physiology, Department Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology (IIM), Chieti, Italy
- *Correspondence: Tiziana Pietrangelo,
| | - Roberto Demontis
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Carmen Santangelo
- Laboratory of Functional Evaluation and Cellular Physiology, Department Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology (IIM), Chieti, Italy
| | - Niccolò Pini
- Laboratory of Functional Evaluation and Cellular Physiology, Department Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Martina Bonelli
- Department of Medicine and Aging Sciences, Section of Legal Medicine, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Enrica Rosato
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Paola Roberti
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Angela Tartaglia
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Marramiero
- Laboratory of Functional Evaluation and Cellular Physiology, Department Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology (IIM), Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Laboratory of Functional Evaluation and Cellular Physiology, Department Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology (IIM), Chieti, Italy
| | - Stefania Fulle
- Laboratory of Functional Evaluation and Cellular Physiology, Department Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology (IIM), Chieti, Italy
| | - Ernesto D’Aloja
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Cristian D’Ovidio
- Department of Medicine and Aging Sciences, Section of Legal Medicine, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Corvelyn M, De Beukelaer N, Duelen R, Deschrevel J, Van Campenhout A, Prinsen S, Gayan-Ramirez G, Maes K, Weide G, Desloovere K, Sampaolesi M, Costamagna D. Muscle Microbiopsy to Delineate Stem Cell Involvement in Young Patients: A Novel Approach for Children With Cerebral Palsy. Front Physiol 2020; 11:945. [PMID: 32848872 PMCID: PMC7424076 DOI: 10.3389/fphys.2020.00945] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral palsy (CP), the single largest cause of childhood physical disability, is characterized firstly by a lesion in the immature brain, and secondly by musculoskeletal problems that progress with age. Previous research reported altered muscle properties, such as reduced volume and satellite cell (SC) numbers and hypertrophic extracellular matrix compared to typically developing (TD) children (>10 years). Unfortunately, data on younger CP patients are scarce and studies on SCs and other muscle stem cells in CP are insufficient or lacking. Therefore, it remains difficult to understand the early onset and trajectory of altered muscle properties in growing CP children. Because muscle stem cells are responsible for postnatal growth, repair and remodeling, multiple adult stem cell populations from young CP children could play a role in altered muscle development. To this end, new methods for studying muscle samples of young children, valid to delineate the features and to elucidate the regenerative potential of muscle tissue, are necessary. Using minimal invasive muscle microbiopsy, which was applied in young subjects under general anaesthesia for the first time, we aimed to isolate and characterize muscle stem cell-derived progenitors of TD children and patients with CP. Data of 15 CP patients, 3–9 years old, and 5 aged-matched TD children were reported. The muscle microbiopsy technique was tolerated well in all participants. Through the explant technique, we provided muscle stem cell-derived progenitors from the Medial Gastrocnemius. Via fluorescent activated cell sorting, using surface markers CD56, ALP, and PDGFRa, we obtained SC-derived progenitors, mesoangioblasts and fibro-adipogenic progenitors, respectively. Adipogenic, skeletal, and smooth muscle differentiation assays confirmed the cell identity and ability to give rise to different cell types after appropriate stimuli. Myogenic differentiation in CP SC-derived progenitors showed enhanced fusion index and altered myotube formation based on MYOSIN HEAVY CHAIN expression, as well as disorganization of nuclear spreading, which were not observed in TD myotubes. In conclusion, the microbiopsy technique allows more focused muscle research in young CP patients. Current results show altered differentiation abilities of muscle stem cell-derived progenitors and support the hypothesis of their involvement in CP-altered muscle growth.
Collapse
Affiliation(s)
- Marlies Corvelyn
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Nathalie De Beukelaer
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jorieke Deschrevel
- Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Pediatric Orthopedics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Sandra Prinsen
- Pediatric Orthopedics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Guido Weide
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Laboratory of Respiratory Disease and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neurorehabilitation Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Isolation and Characterization of Muscle-Derived Stem Cells from Dystrophic Mouse Models. Methods Mol Biol 2019. [PMID: 31667770 DOI: 10.1007/978-1-0716-0138-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The study of the population of muscle satellite cells (SC) is important to understand muscle regeneration and its involvement in the different dystrophic processes. We studied two dystrophic mouse models, Largemyd and Lama2dy2j/J, that show an intense and very similar pattern of muscle degeneration, but with differences in the expression of genes involved in the regeneration cascade. They are, therefore, interesting models to study possible differences in the mechanism of activation and action of satellite cells in the dystrophic muscle. The main objectives of this chapter are to describe the isolation and characterization of SC populations, evaluating the presence of myogenic and pluripotent stem cells markers in normal and dystrophic muscles.
Collapse
|
6
|
Nederveen JP, Fortino SA, Baker JM, Snijders T, Joanisse S, McGlory C, McKay BR, Kumbhare D, Parise G. Consistent expression pattern of myogenic regulatory factors in whole muscle and isolated human muscle satellite cells after eccentric contractions in humans. J Appl Physiol (1985) 2019; 127:1419-1426. [PMID: 31513447 DOI: 10.1152/japplphysiol.01123.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Skeletal muscle satellite cells (SC) play an important role in muscle repair following injury. The regulation of SC activity is governed by myogenic regulatory factors (MRF), including MyoD, Myf5, myogenin, and MRF4. The mRNA expression of these MRF in humans following muscle damage has been predominately measured in whole muscle homogenates. Whether the temporal expression of MRF in a whole muscle homogenate reflects SC-specific expression of MRF remains largely unknown. Sixteen young men (23.1 ± 1.0 yr) performed 300 unilateral eccentric contractions (180°/s) of the knee extensors. Percutaneous muscle biopsies from the vastus lateralis were taken before (Pre) and 48 h postexercise. Fluorescence-activated cell sorting analysis was utilized to purify NCAM+ muscle SC from the whole muscle homogenate. Forty-eight hours post-eccentric exercise, MyoD, Myf5, and myogenin mRNA expression were increased in the whole muscle homogenate (~1.4-, ~4.0-, ~1.7-fold, respectively, P < 0.05) and in isolated SC (~19.3-, ~17.5-, ~58.9-fold, respectively, P < 0.05). MRF4 mRNA expression was not increased 48 h postexercise in the whole muscle homogenate (P > 0.05) or in isolated SC (P > 0.05). In conclusion, our results suggest that the directional changes in mRNA expression of the MRF in a whole muscle homogenate in response to acute eccentric exercise reflects that observed in isolated muscle SC.NEW & NOTEWORTHY The myogenic program is controlled via transcription factors referred to as myogenic regulatory factors (MRF). Previous studies have derived MRF expression from whole muscle homogenates, but little work has examined whether the mRNA expression of these transcripts reflects the pattern of expression in the actual population of satellite cells (SC). We report that MRF expression from an enriched SC population reflects the directional pattern of expression from skeletal muscle biopsy samples following eccentric contractions.
Collapse
Affiliation(s)
- Joshua P Nederveen
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Stephen A Fortino
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Jeff M Baker
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands.,Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Sophie Joanisse
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Chris McGlory
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Bryon R McKay
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Dinesh Kumbhare
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Wijarnpreecha K, Panjawatanan P, Aby E, Ahmed A, Kim D. Nonalcoholic fatty liver disease in the over-60s: Impact of sarcopenia and obesity. Maturitas 2019; 124:48-54. [PMID: 31097179 DOI: 10.1016/j.maturitas.2019.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 12/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children and adults of all ethnicities. NAFLD is commonly seen in individuals with metabolic abnormalities, such as obesity and insulin resistance, which are closely associated with sarcopenia. Sarcopenia, defined as low muscle mass and impaired muscle function, is associated with NAFLD and worse outcomes in patients with NAFLD. As the world's elderly population and the prevalence of obesity continues to grow at an unprecedented rate, NAFLD and sarcopenia are projected to increase. Given that there are no approved pharmacologic treatments for NAFLD, it is imperative to gain a better understanding of the disease pathophysiology, to guide treatment options. Recent studies have given new insight into sarcopenic obesity, but there is no consensus on its definition. In this review, we attempt to address the impact of sarcopenia and obesity on NAFLD, especially in the elderly population.
Collapse
Affiliation(s)
- Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | | | - Elizabeth Aby
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Isolation and characterization of myogenic precursor cells from human cremaster muscle. Sci Rep 2019; 9:3454. [PMID: 30837559 PMCID: PMC6401155 DOI: 10.1038/s41598-019-40042-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Human myogenic precursor cells have been isolated and expanded from a number of skeletal muscles, but alternative donor biopsy sites must be sought after in diseases where muscle damage is widespread. Biopsy sites must be relatively accessible, and the biopsied muscle dispensable. Here, we aimed to histologically characterize the cremaster muscle with regard number of satellite cells and regenerative fibres, and to isolate and characterize human cremaster muscle-derived stem/precursor cells in adult male donors with the objective of characterizing this muscle as a novel source of myogenic precursor cells. Cremaster muscle biopsies (or adjacent non-muscle tissue for negative controls; N = 19) were taken from male patients undergoing routine surgery for urogenital pathology. Myosphere cultures were derived and tested for their in vitro and in vivo myogenic differentiation and muscle regeneration capacities. Cremaster-derived myogenic precursor cells were maintained by myosphere culture and efficiently differentiated to myotubes in adhesion culture. Upon transplantation to an immunocompromised mouse model of cardiotoxin-induced acute muscle damage, human cremaster-derived myogenic precursor cells survived to the transplants and contributed to muscle regeneration. These precursors are a good candidate for cell therapy approaches of skeletal muscle. Due to their location and developmental origin, we propose that they might be best suited for regeneration of the rhabdosphincter in patients undergoing stress urinary incontinence after radical prostatectomy.
Collapse
|
9
|
Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Therapeutic strategies against cancer cachexia. Eur J Transl Myol 2019; 29:7960. [PMID: 31019661 PMCID: PMC6460215 DOI: 10.4081/ejtm.2019.7960] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia has two main components: anorexia and metabolic alterations. The main changes associated with the development of this multi-organic syndrome are glucose intolerance, fat depletion and muscle protein hypercatabolism. The aim of this paper is to review the more recent therapeutic approaches designed to counteract the wasting suffered by the cancer patient with cachexia. Among the most promising approaches we can include the use of ghrelin agonists, beta-blockers, beta-adrenergic agonists, androgen receptor agonists and anti-myostatin peptides. The multi-targeted approach seems essential in these treatments, which should include the combination of both nutritional support, drugs and a suitable program of physical exercise, in order to ameliorate both anorexia and the metabolic changes associated with cachexia. In addition, another very important and crucial aspect to be taken into consideration in the design of clinical trials for the treatment of cancer cachexia is to staging cancer patients in relation with the degree of cachexia, in order to start as early as possible this triple approach in the course of the disease, even before the weight loss can be detected.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| | - Francisco Javier López-Soriano
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| | | | - Sílvia Busquets
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| |
Collapse
|
10
|
Balci-Hayta B, Bekircan-Kurt CE, Aksu E, Dayangac-Erden D, Tan E, Erdem-Ozdamar S. Establishment of primary myoblast cell cultures from cryopreserved skeletal muscle biopsies to serve as a tool in related research & development studies. J Neurol Sci 2018; 393:100-104. [PMID: 30153568 DOI: 10.1016/j.jns.2018.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Primary myoblast cell cultures display the phenotypic characteristics and genetic defects of the donor tissue and represent an in vitro model system reflecting the disease pathology. They have been generated only from freshly harvested tissue biopsies. Here, we describe a novel technique to establish myoblast cell cultures from cryopreserved skeletal muscle biopsy tissues that are useful for diagnostic and research purposes. METHODS AND RESULTS This protocol was performed on seven gradually frozen muscle biopsy specimens from various neuromuscular disorders that were stored in dimethylsulfoxide (DMSO)-supplemented freezing media at -80 °C for up to one year. After storage for varying periods of time, primary myoblast cultures were successfully established from all cryopreserved biopsy tissues without any chromosomal abnormality. Desmin immunoreactivity confirmed that the cell cultures contained >90% pure myoblasts. The myoblasts differentiated into multinucleated myotubes successfully. Furthermore, there were no statistically significant differences in cell viability, metabolic activity, population doubling time, and myocyte enhancer factor 2 (MEF2C) expression between cell cultures established from freshly harvested and one year-stored frozen tissue specimens. CONCLUSIONS This protocol opens up new horizons for basic research and the pre-clinical studies of novel therapies by using cryopreserved skeletal muscle biopsies stored under suitable conditions in tissue banks.
Collapse
Affiliation(s)
- Burcu Balci-Hayta
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Can Ebru Bekircan-Kurt
- Department of Neurology and Neuromuscular Diseases Research Laboratory, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Evrim Aksu
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Didem Dayangac-Erden
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Ersin Tan
- Department of Neurology and Neuromuscular Diseases Research Laboratory, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey.
| | - Sevim Erdem-Ozdamar
- Department of Neurology and Neuromuscular Diseases Research Laboratory, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| |
Collapse
|
11
|
Novel targeted therapies for cancer cachexia. Biochem J 2017; 474:2663-2678. [PMID: 28751550 DOI: 10.1042/bcj20170032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 02/06/2023]
Abstract
Anorexia and metabolic alterations are the main components of the cachectic syndrome. Glucose intolerance, fat depletion, muscle protein catabolism and other alterations are involved in the development of cancer cachexia, a multi-organ syndrome. Nutritional approach strategies are not satisfactory in reversing the cachectic syndrome. The aim of the present review is to deal with the recent therapeutic targeted approaches that have been designed to fight and counteract wasting in cancer patients. Indeed, some promising targeted therapeutic approaches include ghrelin agonists, selective androgen receptor agonists, β-blockers and antimyostatin peptides. However, a multi-targeted approach seems absolutely essential to treat patients affected by cancer cachexia. This approach should not only involve combinations of drugs but also nutrition and an adequate program of physical exercise, factors that may lead to a synergy, essential to overcome the syndrome. This may efficiently reverse the metabolic changes described above and, at the same time, ameliorate the anorexia. Defining this therapeutic combination of drugs/nutrients/exercise is an exciting project that will stimulate many scientific efforts. Other aspects that will, no doubt, be very important for successful treatment of cancer wasting will be an optimized design of future clinical trials, together with a protocol for staging cancer patients in relation to their degree of cachexia. This will permit that nutritional/metabolic/pharmacological support can be started early in the course of the disease, before severe weight loss occurs. Indeed, timing is crucial and has to be taken very seriously when applying the therapeutic approach.
Collapse
|
12
|
Drobysheva ES, Tokmachev RE, Budnevsky AV, Kravchenko AY. PREDICTIVE VALUE OF CARDIAC CACHEXIA IN CHRONIC HEART FAILURE. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2016. [DOI: 10.15829/1728-8800-2016-4-80-83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
Loncar G, Springer J, Anker M, Doehner W, Lainscak M. Cardiac cachexia: hic et nunc. J Cachexia Sarcopenia Muscle 2016; 7:246-60. [PMID: 27386168 PMCID: PMC4929818 DOI: 10.1002/jcsm.12118] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Cardiac cachexia (CC) is the clinical entity at the end of the chronic natural course of heart failure (HF). Despite the efforts, even the most recent definition of cardiac cachexia has been challenged, more precisely, the addition of new criteria on top of obligatory weight loss. The pathophysiology of CC is complex and multifactorial. A better understanding of pathophysiological pathways in body wasting will contribute to establish potentially novel treatment strategies. The complex biochemical network related with CC and HF pathophysiology underlines that a single biomarker cannot reflect all of the features of the disease. Biomarkers that could pick up the changes in body composition before they convey into clinical manifestations of CC would be of great importance. The development of preventive and therapeutic strategies against cachexia, sarcopenia, and wasting disorders is perceived as an urgent need by healthcare professionals. The treatment of body wasting remains an unresolved challenge to this day. As CC is a multifactorial disorder, it is unlikely that any single agent will be completely effective in treating this condition. Among all investigated therapeutic strategies, aerobic exercise training in HF patients is the most proved to counteract skeletal muscle wasting and is recommended by treatment guidelines for HF.
Collapse
Affiliation(s)
- Goran Loncar
- Department of Cardiology Clinical Hospital Zvezdara Belgrade Serbia; School of Medicine University of Belgrade Belgrade Serbia
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology University Medical Center Göttingen (UMG) Göttingen Germany
| | - Markus Anker
- Department of Cardiology Charité - Universitätsmedizin Berlin Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin Charité Universitätsmedizin Berlin Germany
| | - Mitja Lainscak
- Department of Cardiology and Department of Research and Education General Hospital Celje Celje Slovenia; Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| |
Collapse
|
14
|
Ebner N, von Haehling S. Iron and Exercise in Heart Failure: How to Assess Relevant Changes? REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2016; 69:237-238. [PMID: 26839057 DOI: 10.1016/j.rec.2015.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Nicole Ebner
- Department of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medicine, Göttingen, Germany
| | - Stephan von Haehling
- Department of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medicine, Göttingen, Germany.
| |
Collapse
|
15
|
Ebner N, von Haehling S. Hierro y ejercicio en la insuficiencia cardiaca: ¿cómo evaluar los cambios relevantes? Rev Esp Cardiol 2016. [DOI: 10.1016/j.recesp.2015.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Winnard PT, Bharti SK, Penet MF, Marik R, Mironchik Y, Wildes F, Maitra A, Bhujwalla ZM. Detection of Pancreatic Cancer-Induced Cachexia Using a Fluorescent Myoblast Reporter System and Analysis of Metabolite Abundance. Cancer Res 2015; 76:1441-50. [PMID: 26719527 DOI: 10.1158/0008-5472.can-15-1740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/21/2015] [Indexed: 01/06/2023]
Abstract
The dire effects of cancer-induced cachexia undermine treatment and contribute to decreased survival rates. Therapeutic options for this syndrome are limited, and therefore efforts to identify signs of precachexia in cancer patients are necessary for early intervention. The applications of molecular and functional imaging that would enable a whole-body "holistic" approach to this problem may lead to new insights and advances for diagnosis and treatment of this syndrome. Here we have developed a myoblast optical reporter system with the purpose of identifying early cachectic events. We generated a myoblast cell line expressing a dual tdTomato:GFP construct that was grafted onto the muscle of mice-bearing human pancreatic cancer xenografts to provide noninvasive live imaging of events associated with cancer-induced cachexia (i.e., weight loss). Real-time optical imaging detected a strong tdTomato fluorescent signal from skeletal muscle grafts in mice with weight losses of only 1.2% to 2.7% and tumor burdens of only approximately 79 to 170 mm(3). Weight loss in cachectic animals was also associated with a depletion of lipid, cholesterol, valine, and alanine levels, which may provide informative biomarkers of cachexia. Taken together, our findings demonstrate the utility of a reporter system that is capable of tracking tumor-induced weight loss, an early marker of cachexia. Future studies incorporating resected tissue from human pancreatic ductal adenocarcinoma into a reporter-carrying mouse may be able to provide a risk assessment of cachexia, with possible implications for therapeutic development.
Collapse
Affiliation(s)
- Paul T Winnard
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Santosh K Bharti
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Radharani Marik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anirban Maitra
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland. The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
17
|
Anker SD, Coats AJS, Morley JE. Evidence for partial pharmaceutical reversal of the cancer anorexia-cachexia syndrome: the case of anamorelin. J Cachexia Sarcopenia Muscle 2015; 6:275-7. [PMID: 26675382 PMCID: PMC4670734 DOI: 10.1002/jcsm.12063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 01/04/2023] Open
Abstract
A major component of the cancer anorexia-cachexia syndrome is a decline in food intake. Up until now none of the drugs that improve appetite also improve skeletal muscle. Recent studies have suggested that the oral ghrelin-analog, anamorelin, increased food intake and muscle mass. Unfortunately, it does not increase muscle power. Its regulatory future is uncertain, although it has important clinical effects.
Collapse
Affiliation(s)
- Stefan D Anker
- Division of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Andrew J S Coats
- Monash University Melbourne, Australia ; University of Warwick Coventry, UK
| | - John E Morley
- Divisions of Geriatric Medicine and Endocrinology, Saint Louis University School of Medicine St Louis, MO, USA
| |
Collapse
|
18
|
Cardiac cachexia: hic et nunc: "hic et nunc" - here and now. Int J Cardiol 2015; 201:e1-12. [PMID: 26545926 DOI: 10.1016/j.ijcard.2015.10.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
Cardiac cachexia (CC) is the clinical entity at the end of chronic natural course of heart failure (HF). Despite the efforts, even the most recent definition of cardiac cachexia has been challenged, more precisely the addition of new criteria on top of obligatory weight loss. The pathophysiology of CC is complex and multifactorial. Better understanding of pathophysiological pathways in body wasting will contribute to establish potentially novel treatment strategies. The complex biochemical network related with CC and HF pathophysiology underlines that a single biomarker cannot reflect all of the features of the disease. Biomarkers that could pick-up the changes in body composition before they convey into clinical manifestations of CC would be of great importance. The development of preventive and therapeutic strategies against cachexia, sarcopenia and wasting disorders is perceived as an urgent need by healthcare professionals. The treatment of body wasting remains an unresolved challenge to this day. As CC is a multifactorial disorder, it is unlikely that any single agent will be completely effective in treating this condition. Among all investigated therapeutic strategies, aerobic exercise training in HF patients is the most proved to counteract skeletal muscle wasting and is recommended by treatment guidelines for HF.
Collapse
|
19
|
Doehner W, Jankowska EA, Springer J, Lainscak M, Anker SD. Uric acid and xanthine oxidase in heart failure - Emerging data and therapeutic implications. Int J Cardiol 2015; 213:15-9. [PMID: 26318388 DOI: 10.1016/j.ijcard.2015.08.089] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/07/2015] [Indexed: 01/10/2023]
Abstract
The role of hyperuricaemia as cardiovascular risk factor has exhaustingly been debated for decades. While the association of elevated uric acid (UA) levels with increased mortality risk as convincingly been shown, the question whether UA is independently predictive of just a related effect within a more complex risk factor profile (including metabolic, inflammatory and haemodynamic risk factors) is still a matter of dispute. In heart failure the independent prognostic and functional impact of elevated UA has not only been shown but also the pathophysiologic mechanism(s) and the potential of targeted therapeutic interventions have been investigated in some detail. The emerging picture suggests the increased activity of the enzyme xanthine oxidase (XO) with corresponding increased production of free oxygen radical (ROS) as a main underlying principle with the resulting increase in UA levels being mostly a marker of this up-regulated pathway. While this concept will not diminish the value of UA as a prognostic marker, it provides the basis for a novel metabolic treatment option and the means to identify those patients most eligible for this tailored therapy. This review will summarize the recent evidence on XO as a novel and promising therapeutic target in heart failure.
Collapse
Affiliation(s)
- Wolfram Doehner
- Centre for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany; Department of Cardiology, Campus Virchow, Charité-Universitätsmedizin Berlin, Germany; German Center for Cardiovascular Diseases (DZHK), Partner Site Berlin, Germany.
| | - Ewa A Jankowska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Mitja Lainscak
- Division of Cardiology, University Clinic or Respiratory Diseases, Golnik, Slovenia
| | - Stefan D Anker
- Innovative Clinical Trials, Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
20
|
Hart ML, Izeta A, Herrera-Imbroda B, Amend B, Brinchmann JE. Cell Therapy for Stress Urinary Incontinence. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:365-76. [PMID: 25789845 DOI: 10.1089/ten.teb.2014.0627] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Urinary incontinence (UI) is the involuntary loss of urine and is a common condition in middle-aged and elderly women and men. Stress urinary incontinence (SUI) is caused by leakage of urine when coughing, sneezing, laughing, lifting, and exercise, even standing leads to increased intra-abdominal pressure. Other types of UI also exist such as urge incontinence (also called overactive bladder), which is a strong and unexpected sudden urge to urinate, mixed forms of UI that result in symptoms of both urge and stress incontinence, and functional incontinence caused by reduced mobility, cognitive impairment, or neuromuscular limitations that impair mobility or dexterity. However, for many SUI patients, there is significant loss of urethral sphincter muscle due to degeneration of tissue, the strain and trauma of pregnancy and childbirth, or injury acquired during surgery. Hence, for individuals with SUI, a cell-based therapeutic approach to regenerate the sphincter muscle offers the advantage of treating the cause rather than the symptoms. We discuss current clinically relevant cell therapy approaches for regeneration of the external urethral sphincter (striated muscle), internal urethral sphincter (smooth muscle), the neuromuscular synapse, and blood supply. The use of mesenchymal stromal/stem cells is a major step in the right direction, but they may not be enough for regeneration of all components of the urethral sphincter. Inclusion of other cell types or biomaterials may also be necessary to enhance integration and survival of the transplanted cells.
Collapse
Affiliation(s)
- Melanie L Hart
- 1 Clinical Research Group KFO 273, Department of Urology, University of Tübingen , Tübingen, Germany
| | - Ander Izeta
- 2 Tissue Engineering Laboratory, Instituto Biodonostia, Hospital Universitario Donostia , San Sebastian, Spain
| | | | - Bastian Amend
- 4 Department of Urology, University of Tübingen , Tuebingen, Germany
| | - Jan E Brinchmann
- 5 Department of Immunology, Oslo University Hospital, Oslo, Norway
- 6 Norwegian Center for Stem Cell Research, Institute of Basic Medical Sciences, University of Oslo , Oslo, Norway
| |
Collapse
|
21
|
Loncar G, Omersa D, Cvetinovic N, Arandjelovic A, Lainscak M. Emerging biomarkers in heart failure and cardiac cachexia. Int J Mol Sci 2014; 15:23878-96. [PMID: 25535078 PMCID: PMC4284795 DOI: 10.3390/ijms151223878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 01/07/2023] Open
Abstract
Biomarkers are objective tools with an important role for diagnosis, prognosis and therapy optimization in patients with heart failure (HF). To date, natriuretic peptides are closest to optimal biomarker standards for clinical implications in HF. Therefore, the efforts to identify and test new biomarkers in HF are reasonable and justified. Along the natural history of HF, cardiac cachexia may develop, and once at this stage, patient performance and prognosis is particularly poor. For these reasons, numerous biomarkers reflecting hormonal, inflammatory and oxidative stress pathways have been investigated, but only a few convey relevant information. The complex pathophysiology of HF appears far too complex to be embraced by a single biomarker; thus, a combined approach appears reasonable. With these considerations, we have reviewed the recent developments in the field to highlight key candidates with diagnostic, prognostic and therapy optimization properties, either alone or in combination.
Collapse
Affiliation(s)
- Goran Loncar
- Clinical Hospital Zvezdara, Cardiology Department, Dimitrija Tucovica 161, Belgrade 11000, Serbia.
| | - Daniel Omersa
- National Institute of Public Health, Ljubljana 1000, Slovenia.
| | - Natasa Cvetinovic
- Clinical Hospital Zvezdara, Cardiology Department, Dimitrija Tucovica 161, Belgrade 11000, Serbia.
| | - Aleksandra Arandjelovic
- Clinical Hospital Zvezdara, Cardiology Department, Dimitrija Tucovica 161, Belgrade 11000, Serbia.
| | - Mitja Lainscak
- Department of Cardiology, General Hospital Celje, Oblakova 5, Celje 3000, Slovenia.
| |
Collapse
|
22
|
Kopesky P, Tiedemann K, Alkekhia D, Zechner C, Millard B, Schoeberl B, Komarova SV. Autocrine signaling is a key regulatory element during osteoclastogenesis. Biol Open 2014; 3:767-76. [PMID: 25063197 PMCID: PMC4133729 DOI: 10.1242/bio.20148128] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoclasts are responsible for bone destruction in degenerative, inflammatory and metastatic bone disorders. Although osteoclastogenesis has been well-characterized in mouse models, many questions remain regarding the regulation of osteoclast formation in human diseases. We examined the regulation of human precursors induced to differentiate and fuse into multinucleated osteoclasts by receptor activator of nuclear factor kappa-B ligand (RANKL). High-content single cell microscopy enabled the time-resolved quantification of both the population of monocytic precursors and the emerging osteoclasts. We observed that prior to induction of osteoclast fusion, RANKL stimulated precursor proliferation, acting in part through an autocrine mediator. Cytokines secreted during osteoclastogenesis were resolved using multiplexed quantification combined with a Partial Least Squares Regression model to identify the relative importance of specific cytokines for the osteoclastogenesis outcome. Interleukin 8 (IL-8) was identified as one of RANKL-induced cytokines and validated for its role in osteoclast formation using inhibitors of the IL-8 cognate receptors CXCR1 and CXCR2 or an IL-8 blocking antibody. These insights demonstrate that autocrine signaling induced by RANKL represents a key regulatory component of human osteoclastogenesis.
Collapse
Affiliation(s)
- Paul Kopesky
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Kerstin Tiedemann
- Shriners Hospital for Children - Canada, 1529 Cedar Avenue, Montreal, QC H3G IA6, Canada Faculty of Dentistry, McGill University, 3640 rue University, Montreal, QC H3A 0C7, Canada
| | - Dahlia Alkekhia
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Christoph Zechner
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Bjorn Millard
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Birgit Schoeberl
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Svetlana V Komarova
- Shriners Hospital for Children - Canada, 1529 Cedar Avenue, Montreal, QC H3G IA6, Canada Faculty of Dentistry, McGill University, 3640 rue University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
23
|
Froehlich JM, Seiliez I, Gabillard JC, Biga PR. Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages. J Vis Exp 2014. [PMID: 24835774 DOI: 10.3791/51354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystoma mexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream(1-4).
Collapse
Affiliation(s)
| | | | | | - Peggy R Biga
- Department of Biology, University of Alabama at Birmingham;
| |
Collapse
|
24
|
Uezumi A, Fukada S, Yamamoto N, Ikemoto-Uezumi M, Nakatani M, Morita M, Yamaguchi A, Yamada H, Nishino I, Hamada Y, Tsuchida K. Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle. Cell Death Dis 2014; 5:e1186. [PMID: 24743741 PMCID: PMC4001314 DOI: 10.1038/cddis.2014.161] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
Fatty and fibrous connective tissue formation is a hallmark of diseased skeletal muscle and deteriorates muscle function. We previously identified non-myogenic mesenchymal progenitors that contribute to adipogenesis and fibrogenesis in mouse skeletal muscle. In this study, we report the identification and characterization of a human counterpart to these progenitors. By using PDGFRα as a specific marker, mesenchymal progenitors can be identified in the interstitium and isolated from human skeletal muscle. PDGFRα+ cells represent a cell population distinct from CD56+ myogenic cells, and adipogenic and fibrogenic potentials were highly enriched in the PDGFRα+ population. Activation of PDGFRα stimulates proliferation of PDGFRα+ cells through PI3K-Akt and MEK2-MAPK signaling pathways, and aberrant accumulation of PDGFRα+ cells was conspicuous in muscles of patients with both genetic and non-genetic muscle diseases. Our results revealed the pathological relevance of PDGFRα+ mesenchymal progenitors to human muscle diseases and provide a basis for developing therapeutic strategy to treat muscle diseases.
Collapse
Affiliation(s)
- A Uezumi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - S Fukada
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - N Yamamoto
- Laboratory of Molecular Biology and Histochemistry, Fujita Health University, Aichi, Japan
| | - M Ikemoto-Uezumi
- Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Obu, Aichi 474-8511, Japan
| | - M Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - M Morita
- Department of Orthopaedic Surgery, Fujita Health University, Aichi, Japan
| | - A Yamaguchi
- Department of Orthopaedic Surgery, Fujita Health University, Aichi, Japan
| | - H Yamada
- Department of Orthopaedic Surgery, Fujita Health University, Aichi, Japan
| | - I Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Y Hamada
- Department of Orthopedics, Tokushima Prefectural Central Hospital, 1-10-3 Kuramoto, Tokushima 770-8539, Japan
| | - K Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|