1
|
Zhao J, Ma Y, Zheng X, Sun Z, Lin H, Du C, Cao J. Bladder cancer: non-coding RNAs and exosomal non-coding RNAs. Funct Integr Genomics 2024; 24:147. [PMID: 39217254 DOI: 10.1007/s10142-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bladder cancer (BCa) is a highly prevalent type of cancer worldwide, and it is responsible for numerous deaths and cases of disease. Due to the diverse nature of this disease, it is necessary to conduct significant research that delves deeper into the molecular aspects, to potentially discover novel diagnostic and therapeutic approaches. Lately, there has been a significant increase in the focus on non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), due to their growing recognition for their involvement in the progression and manifestation of BCa. The interest in exosomes has greatly grown due to their potential for transporting a diverse array of active substances, including proteins, nucleic acids, carbohydrates, and lipids. The combination of these components differs based on the specific cell and its condition. Research indicates that using exosomes could have considerable advantages in identifying and forecasting BCa, offering a less invasive alternative. The distinctive arrangement of the lipid bilayer membrane found in exosomes is what makes them particularly effective for administering treatments aimed at managing cancer. In this review, we have tried to summarize different ncRNAs that are involved in BCa pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in BCa.
Collapse
Affiliation(s)
- Jingang Zhao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Yangyang Ma
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Xiaodong Zheng
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Zhen Sun
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Hongxiang Lin
- Department of Urology, Ganzhou Donghe Hospital, Ganzhou, 341000, Jiang'xi, China
| | - Chuanjun Du
- Department of Urology, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, Zhe'jiang, China
| | - Jing Cao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China.
| |
Collapse
|
2
|
Karabay AZ, Ozkan T, Karadag Gurel A, Koc A, Hekmatshoar Y, Sunguroglu A, Aktan F, Buyukbingöl Z. Identification of exosomal microRNAs and related hub genes associated with imatinib resistance in chronic myeloid leukemia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03198-1. [PMID: 38916832 DOI: 10.1007/s00210-024-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
Chemotherapy resistance is a major obstacle in cancer therapy, and identifying novel druggable targets to reverse this phenomenon is essential. The exosome-mediated transmittance of drug resistance has been shown in various cancer models including ovarian and prostate cancer models. In this study, we aimed to investigate the role of exosomal miRNA transfer in chronic myeloid leukemia drug resistance. For this purpose, firstly exosomes were isolated from imatinib sensitive (K562S) and resistant (K562R) chronic myeloid leukemia (CML) cells and named as Sexo and Rexo, respectively. Then, miRNA microarray was used to compare miRNA profiles of K562S, K562R, Sexo, Rexo, and Rexo-treated K562S cells. According to our results, miR-125b-5p and miR-99a-5p exhibited increased expression in resistant cells, their exosomes, and Rexo-treated sensitive cells compared to their sensitive counterparts. On the other hand, miR-210-3p and miR-193b-3p were determined to be the two miRNAs which exhibited decreased expression profile in resistant cells and their exosomes compared to their sensitive counterparts. Gene targets, signaling pathways, and enrichment analysis were performed for these miRNAs by TargetScan, KEGG, and DAVID. Potential interactions between gene candidates at the protein level were analyzed via STRING and Cytoscape software. Our findings revealed CCR5, GRK2, EDN1, ARRB1, P2RY2, LAMC2, PAK3, PAK4, and GIT2 as novel gene targets that may play roles in exosomal imatinib resistance transfer as well as mTOR, STAT3, MCL1, LAMC1, and KRAS which are already linked to imatinib resistance. MDR1 mRNA exhibited higher expression in Rexo compared to Sexo as well as in K562S cells treated with Rexo compared to K562S cells which may suggest exosomal transfer of MDR1 mRNA.
Collapse
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Tulin Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey.
| | - Aynur Karadag Gurel
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey.
| | - Asli Koc
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Fugen Aktan
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeliha Buyukbingöl
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Shemesh R, Laufer-Geva S, Gorzalczany Y, Anoze A, Sagi-Eisenberg R, Peled N, Roisman LC. The interaction of mast cells with membranes from lung cancer cells induces the release of extracellular vesicles with a unique miRNA signature. Sci Rep 2023; 13:21544. [PMID: 38057448 PMCID: PMC10700580 DOI: 10.1038/s41598-023-48435-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Mast cells (MCs) are immune cells that play roles in both normal and abnormal processes. They have been linked to tumor progression in several types of cancer, including non-small cell lung cancer (NSCLC). However, the exact role of MCs in NSCLC is still unclear. Some studies have shown that the presence of a large number of MCs is associated with poor prognosis, while others have suggested that MCs have protective effects. To better understand the role of MCs in NSCLC, we aimed to identify the initial mechanisms underlying the communication between MCs and lung cancer cells. Here, we recapitulated cell-to-cell contact by exposing MCs to membranes derived from lung cancer cells and confirming their activation, as evidenced by increased phosphorylation of the ERK and AKT kinases. Profiling of the microRNAs that were selectively enriched in the extracellular vesicles (EVs) released by the lung cancer-activated MCs revealed that they contained significantly increased amounts of miR-100-5p and miR-125b, two protumorigenic miRNAs. We explored the pathways regulated by these miRNAs via enrichment analysis using the KEGG database, demonstrating that these two miRNAs regulate p53 signaling, cancer pathways, and pathways associated with apoptosis and the cell cycle.
Collapse
Affiliation(s)
- Rachel Shemesh
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Smadar Laufer-Geva
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yaara Gorzalczany
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alaa Anoze
- The Helmsley Cancer Center, Shaare Zedek Medical Center, Shmu'el Bait St 12, Jerusalem, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Peled
- The Helmsley Cancer Center, Shaare Zedek Medical Center, Shmu'el Bait St 12, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Laila C Roisman
- The Helmsley Cancer Center, Shaare Zedek Medical Center, Shmu'el Bait St 12, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Peng M, Chu X, Peng Y, Li D, Zhang Z, Wang W, Zhou X, Xiao D, Yang X. Targeted therapies in bladder cancer: signaling pathways, applications, and challenges. MedComm (Beijing) 2023; 4:e455. [PMID: 38107059 PMCID: PMC10724512 DOI: 10.1002/mco2.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Bladder cancer (BC) is one of the most prevalent malignancies in men. Understanding molecular characteristics via studying signaling pathways has made tremendous breakthroughs in BC therapies. Thus, targeted therapies including immune checkpoint inhibitors (ICIs), antibody-drug conjugates (ADCs), and tyrosine kinase inhibitor (TKI) have markedly improved advanced BC outcomes over the last few years. However, the considerable patients still progress after a period of treatment with current therapeutic regimens. Therefore, it is crucial to guide future drug development to improve BC survival, based on the molecular characteristics of BC and clinical outcomes of existing drugs. In this perspective, we summarize the applications and benefits of these targeted drugs and highlight our understanding of mechanisms of low response rates and immune escape of ICIs, ADCs toxicity, and TKI resistance. We also discuss potential solutions to these problems. In addition, we underscore the future drug development of targeting metabolic reprogramming and cancer stem cells (CSCs) with a deep understanding of their signaling pathways features. We expect that finding biomarkers, developing novo drugs and designing clinical trials with precisely selected patients and rationalized drugs will dramatically improve the quality of life and survival of patients with advanced BC.
Collapse
Affiliation(s)
- Mei Peng
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xuetong Chu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Yan Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Duo Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Zhirong Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Weifan Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xiaochen Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| |
Collapse
|
5
|
Zeng F, Xu Z, Zhuang P. Integrated analysis of SKA1-related ceRNA network and SKA1 immunoassays in HCC: A study based on bioinformatic. Medicine (Baltimore) 2023; 102:e34826. [PMID: 37746945 PMCID: PMC10519508 DOI: 10.1097/md.0000000000034826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a global health challenge. Effective biomarkers are required for early diagnosis to improve survival rates of patients with HCC. Spindle and kinetochore-associated complex subunits 1 (SKA1) is essential for proper chromosome segregation in the mitotic cell cycle. Previous studies have shown that overexpression of SKA1 is associated with a poor prognosis in various cancers. The expression, prognostic value, and clinical functions of SKA1 in HCC were evaluated with several bioinformatics web portals. Additionally, we identified target long non-coding RNAs (lncRNAs) and microRNAs by analyzing messenger RNA (mRNA)-miRNA and miRNA-lncRNA interaction data and elucidated the potential competing endogenous RNA (ceRNA) mechanism associated with SKA1. High SKA1 expression was associated with poor prognosis in patients with HCC. Furthermore, multivariate Cox regression analysis revealed that SKA1 expression was an independent prognostic factor for HCC. GO and KEGG analyses showed that SKA1 is related to the cell cycle checkpoints, DNA replication and repair, Rho GTPases signaling, mitotic prometaphase, and kinesins. Gene set enrichment analysis revealed that high levels of SKA1 are associated with cancer-promoting pathways. DNA methylation of SKA1 in HCC tissues was lower than that in normal tissues. Ultimately, the following 9 potential ceRNA-based pathways targeting SKA1 were identified: lncRNA: AC026401.3, Small Nucleolar RNA Host Gene 3 (SNHG3), and AC124798.1-miR-139-5p-SKA1; lncRNA: AC26356.1, Small Nucleolar RNA Host Gene 16 (SNHG16), and FGD5 Antisense RNA 1-miR-22-3p-SKA1; lncRNA: Cytoskeleton Regulator RNA (CYTOR), MIR4435-2 Host Gene, and differentiation antagonizing non-protein coding RNA-miR-125b-5p-SKA1. SKA1 expression levels significantly correlated with immune cell infiltration and immune checkpoint genes in the HCC tissues. SKA1 is a potential prognostic biomarker for HCC. This study provides a meaningful direction for research on SKA1-related mechanisms, which will be beneficial for future research on HCC-related molecular biological therapies and targeted immunotherapy.
Collapse
Affiliation(s)
- Fanjing Zeng
- Department of Infectious Disease, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen City, China
| | - Zhiqi Xu
- Department of Infectious Disease, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen City, China
| | - Peng Zhuang
- Department of Infectious Disease, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen City, China
| |
Collapse
|
6
|
Rezaei S, Nikpanjeh N, Rezaee A, Gholami S, Hashemipour R, Biavarz N, Yousefi F, Tashakori A, Salmani F, Rajabi R, Khorrami R, Nabavi N, Ren J, Salimimoghadam S, Rashidi M, Zandieh MA, Hushmandi K, Wang Y. PI3K/Akt signaling in urological cancers: Tumorigenesis function, therapeutic potential, and therapy response regulation. Eur J Pharmacol 2023; 955:175909. [PMID: 37490949 DOI: 10.1016/j.ejphar.2023.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In addition to environmental conditions, lifestyle factors, and chemical exposure, aberrant gene expression and mutations involve in the beginning and development of urological tumors. Even in Western nations, urological malignancies are among the top causes of patient death, and their prevalence appears to be gender dependent. The prognosis for individuals with urological malignancies remains dismal and unfavorable due to the ineffectiveness of conventional treatment methods. PI3K/Akt is a popular biochemical mechanism that is activated in tumor cells as a result of PTEN loss. PI3K/Akt escalates growth and metastasis. Moreover, due to the increase in tumor cell viability caused by PI3K/Akt activation, cancer cells may acquire resistance to treatment. This review article examines the function of PI3K/Akt in major urological tumors including bladder, prostate, and renal tumors. In prostate, bladder, and kidney tumors, the level of PI3K and Akt are notably elevated. In addition, the activation of PI3K/Akt enhances the levels of Bcl-2 and XIAP, hence increasing the tumor cell survival rate. PI3K/Akt ] upregulates EMT pathways and matrix metalloproteinase expression to increase urological cancer metastasis. Furthermore, stimulation of PI3K/Akt results in drug- and radio-resistant cancers, but its suppression by anti-tumor drugs impedes the tumorigenesis.
Collapse
Affiliation(s)
- Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Negin Nikpanjeh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Reza Hashemipour
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Negin Biavarz
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Tashakori
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Yuan L, Xiao Z, Lu R. Hypoxanthine guanine phosphoribosyltransferase 1, a target of miR-125b-5p, promotes cell proliferation and invasion in head and neck squamous cell carcinoma. Heliyon 2023; 9:e20174. [PMID: 37810145 PMCID: PMC10559962 DOI: 10.1016/j.heliyon.2023.e20174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The mechanism of hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) upregulation and its function in head and neck squamous cell carcinoma (HNSCC) remains obscure. Herein, the expression and function of HPRT1 and the mechanism underlying its upregulation in HNSCC were explored. Firstly, the expression of HPRT1 and its prognostic values were simultaneously validated using bioinformatic analysis and quantitative real-time PCR (qRT-PCR), and immunohistochemistry staining with local HNSCC samples. The effects of HPRT1 knockdown on proliferation and invasion of HNSCC cells were detected using cell counting kit-8 (CCK-8), plate clone formation, Transwell invasion, nude mouse xenograft model assays. Moreover, the miRNA targeting HPRT1 was validated using dual-luciferase report assay, qRT-PCR and Western blot analysis. The functions of miRNA targeting HPRT1 and its dependence on HPRT1 were further investigated in HNSCC. The results indicated that HPRT1 was highly expressed in HNSCC tissues and cells, which positively correlated with advanced tumor progression and predicted poor prognosis in patients with HNSCC. HPRT1 knockdown markedly inhibited proliferation and invasion of HNSCC cells both in vitro and in vivo. MiR-125b-5p, which was downregulated and positively correlated with a favorable outcome for patients, directly targeted and downregulated HPRT1 expression, and subsequently suppressed cell proliferation and invasion in HNSCC. Collectively, the present study demonstrates that HPRT1 upregulation, at least partially caused by miR-125b-5p downregulation, could promote the malignant progression of HNSCC, highlighting the potential application of the miR-125b-5p/HPRT1 axis as a novel indicator and target in the diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiqiang Xiao
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruohuang Lu
- Department of Stomatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Li X, Xie L, Zhou L, Gan Y, Han S, Zhou Y, Qing X, Li W. Bergenin Inhibits Tumor Growth and Overcomes Radioresistance by Targeting Aerobic Glycolysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1905-1925. [PMID: 37646142 DOI: 10.1142/s0192415x23500842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Hexokinase 2 (HK2), the first glycolytic rate-limiting enzyme, is closely correlated with the occurrence and progression of tumors. Effective therapeutic agents targeting HK2 are urgently needed. Bergenin has exhibited various pharmacological activities, such as antitumor properties. However, the effects of bergenin on the abnormal glucose metabolism of cancer cells are yet unclear. In this study, HK2 was overexpressed in OSCC tissues, and the depletion of HK2 inhibited the growth of OSCC cells in vitro and in vivo. Moreover, these results showed that the natural compound, bergenin, exerted a robust antitumor effect on OSCC cells. Bergenin inhibited cancer cell proliferation, suppressed glycolysis, and induced intrinsic apoptosis in OSCC cells by downregulating HK2. Notably, bergenin restored the antitumor efficacy of irradiation in the radioresistant OSCC cells. A mechanistic study revealed that bergenin upregulated the protein level of phosphatase and the tensin homolog deleted on chromosome 10 (PTEN) by enhancing the interaction between PTEN and ubiquitin-specific protease 13 (USP13) and stabilizing PTEN; this eventually inhibited AKT phosphorylation and HK2 expression. Bergenin was identified as a novel therapeutic agent against glycolysis to inhibit OSCC and overcome radioresistance. Targeting PTEN/AKT/HK2 signaling could be a promising option for clinical OSCC treatment.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Li Xie
- Department of Head and Neck Surgery, Hunan Cancer, Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P. R. China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P. R. China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Yuanfeng Zhou
- Department of Infectious Diseases, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Linhai, Taizhou 317000, P. R. China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| |
Collapse
|
9
|
Guardado-Estrada M, Cárdenas-Monroy CA, Martínez-Rivera V, Cortez F, Pedraza-Lara C, Millan-Catalan O, Pérez-Plasencia C. A miRNome analysis at the early postmortem interval. PeerJ 2023; 11:e15409. [PMID: 37304870 PMCID: PMC10257396 DOI: 10.7717/peerj.15409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/23/2023] [Indexed: 06/13/2023] Open
Abstract
The postmortem interval (PMI) is the time elapsing since the death of an individual until the body is examined. Different molecules have been analyzed to better estimate the PMI with variable results. The miRNAs draw attention in the forensic field to estimate the PMI as they can better support degradation. In the present work, we analyzed the miRNome at early PMI in rats' skeletal muscle using the Affymetrix GeneChip™ miRNA 4.0 microarrays. We found 156 dysregulated miRNAs in rats' skeletal muscle at 24 h of PMI, out of which 84 were downregulated, and 72 upregulated. The miRNA most significantly downregulated was miR-139-5p (FC = -160, p = 9.97 × 10-11), while the most upregulated was rno-miR-92b-5p (FC = 241.18, p = 2.39 × 10-6). Regarding the targets of these dysregulated miRNAs, the rno-miR-125b-5p and rno-miR-138-5p were the miRNAs with more mRNA targets. The mRNA targets that we found in the present study participate in several biological processes such as interleukin secretion regulation, translation regulation, cell growth, or low oxygen response. In addition, we found a downregulation of SIRT1 mRNA and an upregulation of TGFBR2 mRNA at 24 h of PMI. These results suggest there is an active participation of miRNAs at early PMI which could be further explored to identify potential biomarkers for PMI estimation.
Collapse
Affiliation(s)
- Mariano Guardado-Estrada
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Christian A. Cárdenas-Monroy
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vanessa Martínez-Rivera
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernanda Cortez
- Computational Genomics Division, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Carlos Pedraza-Lara
- Laboratorio de Entomología, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oliver Millan-Catalan
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Zheng Z, Cao F, Ding YX, Lu JD, Fu YQ, Liu L, Guo YL, Liu S, Sun HC, Cui YQ, Li F. Acinous cell AR42J-derived exosome miR125b-5p promotes acute pancreatitis exacerbation by inhibiting M2 macrophage polarization via PI3K/AKT signaling pathway. World J Gastrointest Surg 2023; 15:600-620. [PMID: 37206078 PMCID: PMC10190724 DOI: 10.4240/wjgs.v15.i4.600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/05/2023] [Accepted: 03/08/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The incidence rate of acute pancreatitis (AP), which is a pathophysiological process with complex etiology, is increasing globally. miR-125b-5p, a bidirectional regulatory miRNA, is speculated to exhibit anti-tumor activity. However, exosome-derived miR-125b-5p in AP has not been reported.
AIM To elucidate the molecular mechanism of exosome-derived miR-125b-5p promoting AP exacerbation from the perspective of the interaction between immune cells and acinar cells.
METHODS Exosomes derived from AR42J cells were isolated and extracted in active and inactive states by an exosome extraction kit, and were verified via transmission electron microscopy, nanoparticle tracking analysis, and western blotting. RNA sequencing assay technology was used to screen differentially expressed miRNAs in active and inactive AR42J cell lines, and bioinformatics analysis was used to predict downstream target genes of miR-125b-5p. The expression level of miR-125b-5p and insulin-like growth factor 2 (IGF2) in the activated AR42J cell line and AP pancreatic tissue were detected by quantitative real-time polymerase chain reaction and western blots. The changes in the pancreatic inflammatory response in a rat AP model were detected by histopathological methods. Western Blot was used to detect the expression of IGF2, PI3K/AKT signaling pathway proteins, and apoptosis and necrosis related proteins.
RESULTS miR-125b-5p expression was upregulated in the activated AR42J cell line and AP pancreatic tissue, while that of IGF2 was downregulated. In vitro experiments confirmed that miR-125b-5p could promote the death of activated AR42J cells by inducing cell cycle arrest and apoptosis. In addition, miR-125b-5p was found to act on macrophages to promote M1 type polarization and inhibit M2 type polarization, resulting in a massive release of inflammatory factors and reactive oxygen species accumulation. Further research found that miR-125b-5p could inhibit the expression of IGF2 in the PI3K/AKT signaling pathway. Additionally, in vivo experiments revealed that miR-125b-5p can promote the progression of AP in a rat model.
CONCLUSION miR-125b-5p acts on IGF2 in the PI3K/AKT signaling pathway and promotes M1 type polarization and inhibits M2 type polarization of macrophage by inhibiting IGF2 expression, resulting in a large release of pro-inflammatory factors and an inflammatory cascade amplification effect, thus aggravating AP.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yi-Xuan Ding
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiong-Di Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuan-Qiao Fu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Baotou Medical College, Baotou 014040, Inner Mongolia Autonomous Region, China
| | - Yu-Lin Guo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuang Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hai-Chen Sun
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ye-Qing Cui
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
11
|
Zhang XH, Song YC, Qiu F, Wang ZC, Li N, Zhao FB. Hypoxic glioma cell-secreted exosomal circ101491 promotes the progression of glioma by regulating miR-125b-5p/EDN1. Brain Res Bull 2023; 195:55-65. [PMID: 36796652 DOI: 10.1016/j.brainresbull.2023.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Hypoxia and exosomes play important roles in the occurrence and development of glioma. While circRNAs are involved in biological processes of various tumors, the mechanism underlying exosome-dependent regulatory effects of circRNAs on the progression of glioma under hypoxia is unclear. Results suggested that circ101491 was overexpressed in tumor tissues and plasma exosomes of glioma patients, while the overexpression of circ101491 was closely related to the differentiation degree and TNM staging of the patients. Moreover, circ101491 overexpression promoted viability, invasion and migration of glioma cells both in vivo and in vitro; the above regulatory effects can be reversed by inhibition of circ101491 expression. Mechanistic studies revealed that circ101491 upregulated EDN1 expression through sponging miR-125b-5p, thus facilitating glioma progression. In summary, hypoxia could promote circ101491 overexpression in glioma cell-derived exosomes, and circ101491/miR-125b-5p/EDN1 regulatory axis might be implicated in the malignant progression of glioma.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Yi-Cun Song
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Feng Qiu
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Zheng-Cai Wang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Nan Li
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Fang-Bo Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| |
Collapse
|
12
|
El-Mahdy HA, Elsakka EGE, El-Husseiny AA, Ismail A, Yehia AM, Abdelmaksoud NM, Elshimy RAA, Noshy M, Doghish AS. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay - A review. Pathol Res Pract 2023; 242:154316. [PMID: 36682282 DOI: 10.1016/j.prp.2023.154316] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BC) is the 11th most popular cancer in females and 4th in males. A lot of efforts have been exerted to improve BC patients' care. Besides, new approaches have been developed to enhance the efficiency of BC diagnosis, prognosis, therapeutics, and monitoring. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. The miRNAs are either downregulated or upregulated in BC due to epigenetic alterations or biogenesis machinery abnormalities. In BC, dysregulation of miRNAs is associated with cell cycle arrest, apoptosis, proliferation, metastasis, treatment resistance, and other activities. A variety of miRNAs have been related to tumor kind, stage, or patient survival. Besides, although new approaches for using miRNAs in the diagnosis, prognosis, and treatment of BC have been developed, it still needs further investigations. In the next words, we illustrate the recent advances in the role of miRNAs in BC aspects. They include the role of miRNAs in BC pathogenesis and therapy. Besides, the clinical applications of miRNAs in BC diagnosis, prognosis, and treatment are also discussed.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reham A A Elshimy
- Clinical & Chemical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
13
|
Integrated Microarray-Based Data Analysis of miRNA Expression Profiles: Identification of Novel Biomarkers of Cisplatin-Resistance in Testicular Germ Cell Tumours. Int J Mol Sci 2023; 24:ijms24032495. [PMID: 36768818 PMCID: PMC9916636 DOI: 10.3390/ijms24032495] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Testicular germ cell tumours (TGCTs) are the most common solid malignancy among young men, and their incidence is still increasing. Despite good curability with cisplatin (CDDP)-based chemotherapy, about 10% of TGCTs are non-responsive and show a chemoresistant phenotype. To further increase TGCT curability, better prediction of risk of relapse and early detection of refractory cases is needed. Therefore, to diagnose this malignancy more precisely, stratify patients more accurately and improve decision-making on treatment modality, new biomarkers are still required. Numerous studies showed association of differential expressions of microRNAs (miRNAs) with cancer. Using microarray analysis followed by RT-qPCR validation, we identified specific miRNA expression patterns that discriminate chemoresistant phenotypes in TGCTs. Comparing CDDP-resistant vs. -sensitive TGCT cell lines, we identified miR-218-5p, miR-31-5p, miR-125b-5p, miR-27b-3p, miR-199a-5p, miR-214-3p, let-7a and miR-517a-3p as significantly up-regulated and miR-374b-5p, miR-378a-3p, miR-20b-5p and miR-30e-3p as significantly down-regulated. In patient tumour samples, we observed the highest median values of relative expression of miR-218-5p, miR-31-5p, miR-375-5p and miR-517a-3p, but also miR-20b-5p and miR-378a-3p, in metastatic tumour samples when compared with primary tumour or control samples. In TGCT patient plasma samples, we detected increased expression of miR-218-5p, miR-31-5p, miR-517a-3p and miR-375-5p when compared to healthy individuals. We propose that miR-218-5p, miR-31-5p, miR-375-5p, miR-517-3p, miR-20b-5p and miR-378a-3p represent a new panel of biomarkers for better prediction of chemoresistance and more aggressive phenotypes potentially underlying metastatic spread in non-seminomatous TGCTs. In addition, we provide predictions of the targets and functional and regulatory networks of selected miRNAs.
Collapse
|
14
|
Ma C, Tang X, Tang Q, Wang S, Zhang J, Lu Y, Wu J, Han L. Curcumol repressed cell proliferation and angiogenesis via SP1/mir-125b-5p/VEGFA axis in non-small cell lung cancer. Front Pharmacol 2022; 13:1044115. [PMID: 36467048 PMCID: PMC9716069 DOI: 10.3389/fphar.2022.1044115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2023] Open
Abstract
NSCLC (non-small cell lung cancer) is one of the most common and lethal malignant tumors, with low 5-year overall survival rate. Curcumol showed antitumor activity in several cancers, but evidence about its effect on NSCLC remains unclear. In the present study, we found that Curcumol markedly inhibited NSCLC cells proliferation, migration and invasion. Endothelial cells are an important part of tumor microenvironment. Tube formation assay and wound healing assay indicated that A549 derived conditioned medium affected HUVECs (human umbilical vein endothelial cells). Mechanistically, Curcumol downregulated the expression of SP1 (specificity protein 1) while upregulated miR-125b-5p, followed by decreasing VEGFA expression in NSCLC cells. Furthermore, overexpression of SP1 partially reversed the inhibitory effect of Curcumol on A549 and H1975 cell viability and VEGFA expression. Inhibition of miR-125b-5p presented similar effect. Interestingly, there was mutual modulation between SP1 and miR-125b-5p. Collectively, our study revealed that Curcumol inhibited cell growth and angiogenesis of NSCLC in vitro and in vivo, possibly through SP1/miR-125b-5p/VEGFA regulatory mechanism. These findings may provide effective therapy strategies for NSCLC treatment.
Collapse
Affiliation(s)
- Changju Ma
- The Postdoctoral Research Station, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaojuan Tang
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Central Laboratory, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Qing Tang
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiyan Wang
- Department of Emergency, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junhong Zhang
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yue Lu
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Wu
- The Postdoctoral Research Station, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Ling Han
- The Postdoctoral Research Station, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- GuangDong Academy of Traditional Chinese Medicine, Research Team of Bio-molecular and System Biology of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Identification of Key Genes and miRNAs Affecting Osteosarcoma Based on Bioinformatics. DISEASE MARKERS 2022; 2022:1015593. [DOI: 10.1155/2022/1015593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Object. Osteosarcoma is an intractable malignant disease, and few therapeutic methods can thoroughly eradicate its focuses. This study attempted to investigate the related mechanism of osteosarcoma by bioinformatics methods. Methods. GSE70367 and GSE69470 were obtained from the GEO database. The differentially expressed genes (DEGs) and miRNAs were analyzed using the GEO2R tool and then visualized with R software. Moreover, the targets of the miRNAs in the DEGs were screened and then used for enrichment analysis. Besides, the STRING database and Cytoscape were applied to illustrate the protein-protein interaction network. RT-qPCR was performed to measure the expression of key genes and miRNAs. Western blot was applied to detect the signaling pathway. Results. 9 upregulated genes and 39 downregulated genes in GSE69470 were identified as the DEGs, and 31 upregulated genes and 56 downregulated genes in GSE70367 were identified as the DEGs. Moreover, 21 common genes were found in the DEGs of GSE70367 and GSE69470. The enrichment analysis showed that the common DEGs of GSE70367 and GSE69470 were related with cell development, covalent chromatin modification, and histone modification and involve in the regulation of MAPK, mTOR, and AMPK pathways. Besides, the miRNAs including miR-543, miR-495-3p, miR-433-3p, miR-381-3p, miR-301a-3p, miR-199b-5p, and miR-125b-5p were identified as the biomarkers of osteosarcoma. In addition, the target genes including HSPA5, PPARG, MAPK14, RAB11A, RAB5A, MAPK8, LEF1, HIF1A, CAV1, GS3KB, FOXO3, IGF1, and NFKBIA were identified as hub nodes. It was found that miR-301a-3p expression was decreased and mRNA expression of RAB5A and NFKBIA was increased in the pathological tissues. The AKT-PI3K-mTOR signaling pathway was activated in pathological tissues. Conclusion. In this study, 7 miRNAs and 13 hub genes were identified, which might be candidate markers. miR-301a-3p, RAB5A, and NFKBIA were abnormally expressed in osteosarcoma tissues.
Collapse
|
16
|
MiR-125b-5p Targets MTFP1 to Inhibit Cell Proliferation, Migration, and Invasion and Facilitate Cell Apoptosis in Endometrial Carcinoma. Mol Biotechnol 2022; 65:961-969. [DOI: 10.1007/s12033-022-00601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
|
17
|
Effect of Nanoparticles of DOX and miR-125b on DNA Damage Repair in Glioma U251 Cells and Underlying Mechanisms. Molecules 2022; 27:molecules27196201. [PMID: 36234731 PMCID: PMC9573026 DOI: 10.3390/molecules27196201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Glioma is the most common primary craniocerebral malignant tumor, arising from the canceration of glial cells in the brain and spinal cord. The quality of life and prognosis of patients with this disease are still poor. Doxorubicin (DOX) is one of the most traditional and economical chemotherapeutic drugs for the treatment of glioma, but its toxic effect on normal cells and the resistance of tumor cells to DOX make the application of DOX in the treatment of glioma gradually less effective. To solve this problem, we co-encapsulated DOX and endogenous tumor suppressor miR-125b into nanoparticles (NPs) by nanoprecipitation methods, and passively targeted them into glioma cells. In vitro experiments show that miR-125b and DOX can be effectively encapsulated into nanoparticles with different ratios, and by targeting YES proto-oncogene 1 (YES1), they can affect the adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK)/p53 pathway and induce brain glioma cell apoptosis. They can also affect the DNA damage repair process and inhibit cell proliferation. The obtained data suggest that co-delivery of DOX and miR-125b could achieve synergistic effects on tumor suppression. Nanosystem-based co-delivery of tumor suppressive miRNAs and chemotherapeutic agents may be a promising combined therapeutic strategy for enhanced anti-tumor therapy.
Collapse
|
18
|
LncRNA KCNQ1OT1 accelerates ovarian cancer progression via miR-125b-5p/CD147 axis. Pathol Res Pract 2022; 239:154135. [PMID: 36191448 DOI: 10.1016/j.prp.2022.154135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common gynecological malignancies with a high incidence. Researches showed that lncRNA KCNQ1OT1 (KCNQ1OT1) was involved various tumors progression, including OC. However, the precise mechanism of KCNQ1OT1 in OC needs to be further clarified. OBJECTIVE For investigate the underlying mechanism of KCNQ1OT1 regulating OC progression. METHODS CCK-8 assay, colony formation assay, Transwell assay, Western blot and quantitative real-time PCR (qRT-PCR) were performed to examine viability, proliferation, migration and invasion, genes and proteins' level. To identify KCNQ1OT1 as a regulator of miR-125b-5p and miR-125b-5p as a regulator of CD147, we used miRNA target prediction algorithms, Pearson's correlation analysis and dual-luciferase reporter gene assay. RESULTS KCNQ1OT1 was high expression and miR-125b-5p was low expression in OC, and KCNQ1OT1 was negatively correlated with that of miR-125b-5p in OC specimens. KCNQ1OT1 promoted OC cell proliferation and metastasis by binding to miR-125b-5p. miR-125b-5p targeted CD147, and which was negatively correlated with that of miR-125b-5p in OC specimens. KCNQ1OT1 was positively correlated with that of CD147 in OC specimens, and KCNQ1OT1 accelerated OC progression via miR-125b-5p/CD147 axis. CONCLUSION KCNQ1OT1 accelerated OC progression via miR-125b-5p/CD147 axis indicating KCNQ1OT1 serve as a novel biomarker for OC treatment. Our research provides a new direction for OC treatment.
Collapse
|
19
|
Bao C, Zhu S, Song K, He C. HK2: a potential regulator of osteoarthritis via glycolytic and non-glycolytic pathways. Cell Commun Signal 2022; 20:132. [PMID: 36042519 PMCID: PMC9426234 DOI: 10.1186/s12964-022-00943-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is an age-related chronic degenerative joint disease where the main characteristics include progressive degeneration of cartilage, varying degrees of synovitis, and periarticular osteogenesis. However, the underlying factors involved in OA pathogenesis remain elusive which has resulted in poor clinical treatment effect. Recently, glucose metabolism changes provide a new perspective on the pathogenesis of OA. Under the stimulation of external environment, the metabolic pathway of chondrocytes tends to change from oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Previous studies have demonstrated that glycolysis of synovial tissue is increased in OA. The hexokinase (HK) is the first rate limiting enzyme in aerobic glycolysis, participating and catalyzing the main pathway of glucose utilization. An isoform of HKs, HK2 is considered to be a key regulator of glucose metabolism, promotes the transformation of glycolysis from OXPHOS to aerobic glycolysis. Moreover, the expression level of HK2 in OA synovial tissue (FLS) was higher than that in control group, which indicated the potential therapeutic effect of HK2 in OA. However, there is no summary to help us understand the potential therapeutic role of glucose metabolism in OA. Therefore, this review focuses on the properties of HK2 and existing research concerning HK2 and OA. We also highlight the potential role and mechanism of HK2 in OA. Video abstract
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Siyi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Kangping Song
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
20
|
Ren Z, Ding T, He H, Wei Z, Shi R, Deng J. Mechanism of selenomethionine inhibiting of PDCoV replication in LLC-PK1 cells based on STAT3/miR-125b-5p-1/HK2 signaling. Front Immunol 2022; 13:952852. [PMID: 36059492 PMCID: PMC9436478 DOI: 10.3389/fimmu.2022.952852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
There are no licensed therapeutics or vaccines available against porcine delta coronavirus (PDCoV) to eliminate its potential for congenital disease. In the absence of effective treatments, it has led to significant economic losses in the swine industry worldwide. Similar to the current coronavirus disease 2019 (COVID-19) pandemic, PDCoV is trans-species transmissible and there is still a large desert for scientific exploration. We have reported that selenomethionine (SeMet) has potent antiviral activity against PDCoV. Here, we systematically investigated the endogenous immune mechanism of SeMet and found that STAT3/miR-125b-5p-1/HK2 signalling is essential for the exertion of SeMet anti-PDCoV replication function. Meanwhile, HK2, a key rate-limiting enzyme of the glycolytic pathway, was able to control PDCoV replication in LLC-PK1 cells, suggesting a strategy for viruses to evade innate immunity using glucose metabolism pathways. Overall, based on the ability of selenomethionine to control PDCoV infection and transmission, we provide a molecular basis for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongyi He
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Zhanyong Wei,
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Mo X, Hu D, Li Y, Nai A, Ma F, Bashir S, Jia G, Xu M. A novel pyroptosis-related prognostic lncRNAs signature, tumor immune microenvironment and the associated regulation axes in bladder cancer. Front Genet 2022; 13:936305. [PMID: 36003338 PMCID: PMC9393225 DOI: 10.3389/fgene.2022.936305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary system. Pyroptosis is a host programmed cell death. However, the effects of pyroptosis-related lncRNAs (PRLs) on BC have not yet been completely elucidated. In this study, a prognostic PRLs model and two ceRNA networks were established using sufficient bioinformatics analysis and preliminary RT-qPCR validation in vitro. 6 PRLs were identified to construct a prognostic model. Then, the prognostic model risk score was verified to be an effective independent factor (Training cohort: Univariate analysis: HR = 1.786, 95% Cl = 1.416-2.252, p < 0.001; multivariate analysis: HR = 1.664, 95% Cl = 1.308-2.116, p < 0.001; testing cohort: Univariate analysis: HR = 1.268, 95% Cl = 1.144-1.405, p < 0.001; multivariate analysis: HR = 1.141, 95% Cl = 1.018-1.280, p = 0.024). Moreover, ROC and nomogram were performed to assess the accuracy of this signature (1-year-AUC = 0.764, 3-years-AUC = 0.769, 5-years-AUC = 0.738). Consequently, we evaluated the survival curves of these 6 lncRNAs using Kaplan–Meier survival analysis, demonstrating that MAFG-DT was risk lncRNA, while OCIAD1-AS1, SLC25A25-AS1, SNHG18, PSMB8-AS1 and TRM31-AS1 were protective lncRNAs. We found a strong correlation between PRLs and tumor immune microenvironment by Pearson’s correlation analysis. As for sensitivity of anti-tumor drugs, the high-risk group was more sensitive to Sorafenib, Bicalutamide and Cisplatin, while the low-risk group was more sensitive to AKT.inhibitor.VIII, Salubrinal and Lenalidomide, etc. Meanwhile, we identified lncRNA OCIAD1-AS1/miR-141-3p/GPM6B and lncRNA OCIAD1-AS1/miR-200a-3p/AKAP11 regulatory axes, which may play a potential role in the progression of BC.
Collapse
Affiliation(s)
- Xiaocong Mo
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Di Hu
- Department of Neurology and Stroke Centre, The Fist Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yin Li
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Aitao Nai
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Feng Ma
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shoaib Bashir
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Guoxia Jia
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- *Correspondence: Meng Xu,
| |
Collapse
|
22
|
Wen Z, Huang G, Lai Y, Xiao L, Peng X, Liu K, Zhang C, Chen X, Li R, Li X, Lai Y, Ni L. Diagnostic panel of serum miR-125b-5p, miR-182-5p, and miR-200c-3p as non-invasive biomarkers for urothelial bladder cancer. Clin Transl Oncol 2022; 24:909-918. [PMID: 35028929 DOI: 10.1007/s12094-021-02741-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE This study aimed to identify a diagnostic panel of serum microRNAs (miRNAs) for the early detection of bladder cancer (BC). METHODS Serum samples were collected from 112 BC patients and 112 normal controls (NCs). A three-stage selection was conducted to identify differentially expressed miRNAs as candidates to construct the diagnostic panel. Further, to explore their potential roles in urothelial BC, bioinformatics analyses, including target genes prediction and functional annotation, were used. RESULTS Six downregulated miRNAs (miR-1-3p, miR-30a-5p, miR-100-5p, miR-125b-5p, miR-143-3p, and miR-200c-3p) and one upregulated, miR-182-5p, in BC patients' serum were detected compared to NCs and were selected to establish the diagnostic panel. Based on a backward stepwise logistic regression analysis, miR-125b-5p, miR-182-5p, and miR-200c-3p comprehended the diagnostic panel [area under the curve (AUC) = 0.959, sensitivity = 91.67%, specificity = 92.5%]. CONCLUSION The panel of three miRNAs had an excellent diagnostic capability, representing a potential non-invasive method for early BC detection.
Collapse
Affiliation(s)
- Z Wen
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - G Huang
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Y Lai
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, People's Republic of China
| | - L Xiao
- Department of Urology, Shenzhen University General Hospital, Shenzhen, Guangdong, 518109, People's Republic of China
| | - X Peng
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - K Liu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
- Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - C Zhang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - X Chen
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - R Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
- Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - X Li
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Y Lai
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - L Ni
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| |
Collapse
|
23
|
Azari ZD, Aljubran F, Nothnick WB. Inflammatory MicroRNAs and the Pathophysiology of Endometriosis and Atherosclerosis: Common Pathways and Future Directions Towards Elucidating the Relationship. Reprod Sci 2022; 29:2089-2104. [PMID: 35476352 DOI: 10.1007/s43032-022-00955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Emerging data indicates an association between endometriosis and subclinical atherosclerosis, with women with endometriosis at a higher risk for cardiovascular disease later in life. Inflammation is proposed to play a central role in the pathophysiology of both diseases and elevated levels of systemic pro-inflammatory cytokines including macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) are well documented. However, a thorough understanding on the mediators and mechanisms which contribute to altered cytokine expression in both diseases remain poorly understood. MicroRNAs (miRNAs) are important post-transcriptional regulators of inflammatory pathways and numerous studies have reported altered circulating levels of miRNAs in both endometriosis and atherosclerosis. Potential contribution of miRNA-mediated inflammatory cascades common to the pathophysiology of both diseases has not been evaluated but could offer insight into common pathways and early manifestation relevant to both diseases which may help understand cause and effect. In this review, we discuss and summarize differentially expressed inflammatory circulating miRNAs in endometriosis subjects, compare this profile to that of circulating levels associated with atherosclerosis when possible, and then discuss mechanistic studies focusing on these miRNAs in relevant cell, tissue, and animal models. We conclude by discussing the potential utility of targeting the relevant miRNAs in the MIF-IL-6-TNF-α pathway as therapeutic options and offer insight into future studies which will help us better understand not only the role of these miRNAs in the pathophysiology of both endometriosis and atherosclerosis but also commonality between both diseases.
Collapse
Affiliation(s)
- Zubeen D Azari
- Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Fatimah Aljubran
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Warren B Nothnick
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Obstetrics and Gynecology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Center for Reproductive Sciences, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
MicroRNAs and Progesterone Receptor Signaling in Endometriosis Pathophysiology. Cells 2022; 11:cells11071096. [PMID: 35406659 PMCID: PMC8997421 DOI: 10.3390/cells11071096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 12/21/2022] Open
Abstract
Endometriosis is a significant disease characterized by infertility and pelvic pain in which endometrial stromal and glandular tissue grow in ectopic locations. Altered responsiveness to progesterone is a contributing factor to endometriosis pathophysiology, but the precise mechanisms are poorly understood. Progesterone resistance influences both the eutopic and ectopic (endometriotic lesion) endometrium. An inability of the eutopic endometrium to properly respond to progesterone is believed to contribute to the infertility associated with the disease, while an altered responsiveness of endometriotic lesion tissue may contribute to the survival of the ectopic tissue and associated symptoms. Women with endometriosis express altered levels of several endometrial progesterone target genes which may be due to the abnormal expression and/or function of progesterone receptors and/or chaperone proteins, as well as inflammation, genetics, and epigenetics. MiRNAs are a class of epigenetic modulators proposed to play a role in endometriosis pathophysiology, including the modulation of progesterone signaling. In this paper, we summarize the role of progesterone receptors and progesterone signaling in endometriosis pathophysiology, review miRNAs, which are over-expressed in endometriosis tissues and fluids, and follow this with a discussion on the potential regulation of key progesterone signaling components by these miRNAs, concluding with suggestions for future research endeavors in this area.
Collapse
|
25
|
Kussainova A, Bulgakova O, Aripova A, Khalid Z, Bersimbaev R, Izzotti A. The Role of Mitochondrial miRNAs in the Development of Radon-Induced Lung Cancer. Biomedicines 2022; 10:428. [PMID: 35203638 PMCID: PMC8962319 DOI: 10.3390/biomedicines10020428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs are short, non-coding RNA molecules regulating gene expression by inhibiting the translation of messenger RNA (mRNA) or leading to degradation. The miRNAs are encoded in the nuclear genome and exported to the cytosol. However, miRNAs have been found in mitochondria and are probably derived from mitochondrial DNA. These miRNAs are able to directly regulate mitochondrial genes and mitochondrial activity. Mitochondrial dysfunction is the cause of many diseases, including cancer. In this review, we consider the role of mitochondrial miRNAs in the pathogenesis of lung cancer with particular reference to radon exposure.
Collapse
Affiliation(s)
- Assiya Kussainova
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
26
|
Zhou Y, Guo Y, Tam KY. Targeting glucose metabolism to develop anticancer treatments and therapeutic patents. Expert Opin Ther Pat 2022; 32:441-453. [PMID: 35001793 DOI: 10.1080/13543776.2022.2027912] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION One of the most distinctive hallmarks of cancer cells is increased glucose consumption for aerobic glycolysis which is named the Warburg effect. In recent decades, extensive research has been carried out to exploit this famous phenomenon, trying to detect promising targetable vulnerabilities in altered metabolism to fight cancer. Targeting aberrant glucose metabolism can perturb cancer malignant proliferation and even induce programmed cell death. AREAS COVERED This review covered the recent patents which focused on targeting key glycolytic enzymes including hexokinase, pyruvate dehydrogenase kinases and lactate dehydrogenase for cancer treatment. EXPERT OPINION Compared with the conventional cancer treatment, specifically targeting the well-known Achilles heel Warburg effect has attracted considerable attention. Although there is still no single glycolytic agent for clinical cancer treatment, the combination of glycolytic inhibitor with conventional anticancer drug or the combined use of multiple glycolytic inhibitors are being investigated extensively in recent years, which could emerge as attractive anticancer strategies.
Collapse
Affiliation(s)
- Yan Zhou
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China
| | - Yizhen Guo
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China
| |
Collapse
|
27
|
Liu YP, Qiu ZZ, Li XH, Li EY. Propofol induces ferroptosis and inhibits malignant phenotypes of gastric cancer cells by regulating miR-125b-5p/STAT3 axis. World J Gastrointest Oncol 2021; 13:2114-2128. [PMID: 35070046 PMCID: PMC8713308 DOI: 10.4251/wjgo.v13.i12.2114] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer is a common malignancy with poor prognosis, in which ferroptosis plays a crucial function in its development. Propofol is a widely used anesthetic and has antitumor potential in gastric cancer. However, the effect of propofol on ferroptosis during gastric cancer progression remains unreported.
AIM To explore the function of propofol in the regulation of ferroptosis and malignant phenotypes of gastric cancer cells.
METHODS MTT assays, colony formation assays, Transwell assays, wound healing assay, analysis of apoptosis, ferroptosis measurement, luciferase reporter gene assay, and quantitative reverse transcription polymerase chain reaction were used in this study.
RESULTS Our data showed that propofol was able to inhibit proliferation and induce apoptosis of gastric cancer cells. Meanwhile, propofol markedly repressed the invasion and migration of gastric cancer cells. Importantly, propofol enhanced the erastin-induced inhibition of growth of gastric cancer cells. Consistently, propofol increased the levels of reactive oxygen species, iron, and Fe2+ in gastric cancer cells. Moreover, propofol suppressed signal transducer and activator of transcription (STAT)3 expression by upregulating miR-125b-5p and propofol induced ferroptosis by targeting STAT3 in gastric cancer cells. The miR-125b-5p inhibitor or STAT3 overexpression reversed propofol-attenuated malignant phenotypes of gastric cancer cells.
CONCLUSION Propofol induced ferroptosis and inhibited malignant phenotypes of gastric cancer cells by regulating the miR-125b-5p/STAT3 axis. Propofol may serve as a potential therapeutic candidate for gastric cancer.
Collapse
Affiliation(s)
- Yi-Ping Liu
- Department ofAnesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Zhong-Zhi Qiu
- Department ofAnesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xu-Hui Li
- Department of Gastroenterology, Heilongjiang Forest Industry Federation (Red Cross) Hospital, Harbin 150008, Heilongjiang Province, China
| | - En-You Li
- Department ofAnesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
28
|
Zhang R, Tang L, Li Q, Tian Y, Zhao B, Zhou B, Yang L. Cholesterol modified DP7 and pantothenic acid induce dendritic cell homing to enhance the efficacy of dendritic cell vaccines. MOLECULAR BIOMEDICINE 2021; 2:37. [PMID: 35006477 PMCID: PMC8643384 DOI: 10.1186/s43556-021-00058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic cell (DC)-based cancer vaccines have so far achieved good therapeutic effects in animal experiments and early clinical trials for certain malignant tumors. However, the overall objective response rate in clinical trials rarely exceeds 15%. The poor efficiency of DC migration to lymph nodes (LNs) (< 5%) is one of the main factors limiting the effectiveness of DC vaccines. Therefore, increasing the efficiency of DC migration is expected to further enhance the efficacy of DC vaccines. Here, we used DP7-C (cholesterol modified VQWRIRVAVIRK), which can promote DC migration, as a medium. Through multiomics sequencing and biological experiments, we found that it is the metabolite pantothenic acid (PA) that improves the migration and effectiveness of DC vaccines. We clarified that both DP7-C and PA regulate DC migration by regulating the chemokine receptor CXCR2 and inhibiting miR-142a-3p to affect the NF-κB signaling pathway. This study will lay the foundation for the subsequent use of DP7-C as a universal substance to promote DC migration, further enhance the antitumor effect of DC vaccines, and solve the bottleneck problem of the low migration efficiency and unsatisfactory clinical response rate of DC vaccines.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Lin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Qing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Binyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
29
|
Chan T, Chen Y, Tan KT, Wu C, Wu W, Li W, Wang J, Shiue Y, Li C. Biological significance of MYC and CEBPD coamplification in urothelial carcinoma: Multilayered genomic, transcriptional and posttranscriptional positive feedback loops enhance oncogenic glycolysis. Clin Transl Med 2021; 11:e674. [PMID: 34954904 PMCID: PMC8710299 DOI: 10.1002/ctm2.674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study is to decipher the underlying mechanisms of CCAAT/enhancer-binding protein delta (CEBPD)-enhanced glycolysis as well as the biological significance of CEBPD and MYC coamplification in urothelial carcinoma (UC). METHODS In vitro analyses were conducted to examine the effects of altered CEBPD or MYC expression on UC cells. The in vivo effects of CEBPD overexpression in a high-glucose environment on tumour growth were investigated in xenografted induced diabetic severe combined immunodeficiency/beige mice. Data mining was used to cross-validate the associations between CEBPD and MYC copy number and transcriptional expression, quantitative reverse transcription-polymerase chain reaction, immunohistochemistry, chromogenic in situ hybridization, and in situ hybridization targeting microRNA were performed on 635 UC patient samples and xenograft samples. UC patient survival in relation to diabetes was validated by using the National Health Insurance Research Database. RESULTS CEBPD and MYC coamplification (29.6%) occurred at a high frequency, MYC expression promoted chromosomal instability, facilitating CEBPD copy number gain and expression. CEBPD promoted glucose uptake and lactate production by upregulating SLC2A1 and HK2, leading to mitochondrial fission, increased extracellular acidification rate and decreased oxygen consumption rate to fuel cell growth. CEBPD upregulated HK2 expression through multiple regulation pathways including MYC stabilization, suppression of FBXW7 transactivation and MYC-independent transcriptional suppression of hsa-miR-429. Clinical and xenografted experiments confirmed the growth advantage of CEBPD in relation to glucose metabolic dysregulation and the significant correlations between the expression of these genes. CONCLUSIONS We confirmed that CEBPD has an oncogenic role in UC by activating AKT signalling and initiating metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis to satisfy glucose addiction. These novel CEBPD- and MYC-centric multilayered positive feedback loops enhance cancer growth that could complement theranostic approaches.
Collapse
Affiliation(s)
- Ti‐Chun Chan
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Yi‐Ting Chen
- Department of Biotechnology and Bioindustry SciencesCollege of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | | | | | - Wen‐Jeng Wu
- Graduate Institute of Clinical MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of UrologyKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of UrologySchool of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of UrologyMinistry of Health and Welfare Pingtung HospitalPingtungTaiwan
| | - Wei‐Ming Li
- Graduate Institute of Clinical MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of UrologyKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of UrologySchool of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of UrologyMinistry of Health and Welfare Pingtung HospitalPingtungTaiwan
| | - Ju‐Ming Wang
- Department of Biotechnology and Bioindustry SciencesCollege of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | - Yow‐Ling Shiue
- Institute of Precision MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Department of PathologySchool of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Chien‐Feng Li
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
- Institute of Precision MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Department of PathologySchool of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
30
|
Yu T, Li G, Wang C, Gong G, Wang L, Li C, Chen Y, Wang X. MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis. RNA Biol 2021; 18:2513-2530. [PMID: 34110962 PMCID: PMC8632125 DOI: 10.1080/15476286.2021.1930755] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic cancer has the worst prognosis of all common cancers. Pancreatic cancer cells have a metabolic advantage due to their swiftly adaptive responses to hypoxic and low-nutrient medium. This advantage contributes to the aggressivity of pancreatic cancer. In this study, lncRNA MIR210HG was abnormally upregulated within pancreatic cancer. It acted as a key oncogenic regulator of pancreatic cancer aggressiveness and glycolysis. Knockdown of MIR210HG significantly inhibited the aggressive phenotype of pancreatic cancer cells and inhibited the growth of xenograft tumours. More importantly, MIR210HG knockdown inhibited pancreatic cancer cell glycolysis via regulating the glycolysis-related hexokinase 2 (HK2) and Pyruvate kinase muscle isozyme M2 (PKM2) expression. Compared with the MIR210HG knockdown group, miR-125b-5p inhibition promoted the aggressive phenotypes and glycolysis of pancreatic cancer cells. Furthermore, the effects of MIR210HG knockdown on HK2 and PKM2 expression, pancreatic cancer cell aggressive phenotypes, and glycolysis were significantly reversed by miR-125b-5p inhibition. In tissue samples, MIR210HG expression was negatively correlated with miR-125b-5p levels and positively correlated with HK2 and PKM2 expression. miR-125b-5p expression was negatively correlated with HK2 and PKM2 expression. In conclusion, MIR210HG affected the phenotypes of pancreatic cancer cells, including proliferation, invasion, migration, and glycolysis, via modulating the miR-125b-5p/HK2/PKM2 axis.
Collapse
Affiliation(s)
- Tianzhu Yu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institution of Medical Imaging, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoping Li
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institution of Medical Imaging, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenggang Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institution of Medical Imaging, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gaoquan Gong
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institution of Medical Imaging, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liangwen Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institution of Medical Imaging, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changyu Li
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institution of Medical Imaging, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institution of Medical Imaging, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolin Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institution of Medical Imaging, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Chen X, She P, Wang C, Shi L, Zhang T, Wang Y, Li H, Qian L, Li M. Hsa_circ_0001806 promotes glycolysis and cell progression in hepatocellular carcinoma through miR-125b/HK2. J Clin Lab Anal 2021; 35:e23991. [PMID: 34664737 PMCID: PMC8649327 DOI: 10.1002/jcla.23991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is one of the most common malignant tumours and a leading cause of cancer death. Circular RNA (circRNA) has been demonstrated to play an important role in regulating tumour development. The current study aims to explore the specific role of hsa_circ_0001806 during HCC progression. METHODS The expression of hsa_circ_0001806 in HCC tissues and cells was measured through qRT-PCR. Cell proliferation, apoptosis and migration were measured using CCK-8 and Annexin V/PI staining kits, and Transwell assay. Bioinformatics prediction and dual-luciferase reporter assay were adopted to explore the mechanism underlying the cell function of hsa_circ_0001806 in HCC cells. In addition, glycolysis was assessed by measuring the glucose uptake, lactate production and ATP level using a glucose assay kit, fluorometric lactate assay kit and ATP detection assay kit. RESULTS Hsa_circ_0001806 was up-regulated in HCC tissues and cells and positively associated with the advanced TNM stage, metastasis and poor overall survival. The overexpression of hsa_circ_0001806 promoted HCC cell proliferation, migration and glycolysis and inhibited cell apoptosis, while the silence of hsa_circ_0001806 showed an opposite effect. Furthermore, hsa_circ_0001806 acted as a sponge of miR-125b to up-regulate hexokinase II (HK2) expression. In addition, the inhibition of miR-125b and HK2 overexpression partly reversed the inhibitory effect of hsa_circ_0001806 silencing on HCC cell proliferation, migration and glycolysis. CONCLUSION The inhibition of hsa_circ_0001806 suppressed HCC cell proliferation, migration and glycolysis through mediating miR-125b/HK2 axis.
Collapse
Affiliation(s)
- Xueyi Chen
- College of Life SciencesNorthwest UniversityXi’anChina
| | - Pengyun She
- The First Affliliated Hospital of Xi’an Jiao Tong UniversityXi’anChina
- Department of EndocrinologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Caihua Wang
- College of Life SciencesNorthwest UniversityXi’anChina
| | - Lina Shi
- Department of EndocrinologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Tieying Zhang
- Department of NeurologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Yanfei Wang
- Department of NeurologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Haixia Li
- Department of GeriatricsXianyang first people’s HospitalXianyangChina
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular DiseasesThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Man Li
- Department of Internal MedicineThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| |
Collapse
|
32
|
MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of urologic cancers, including kidney, upper tract urothelial, and bladder malignancies, is increasing globally, with a high percentage of cases showing metastasis upon diagnosis and low five-year survival rates. MicroRNA (miRNA), a small non-coding RNA, was found to regulate the expression of oncogenes and tumor suppressor genes in several tumors, including cancers of the urinary system. In the current review, we comprehensively discuss the recently reported up-or down-regulated miRNAs as well as their possible targets and regulated pathways involved in the development, progression, and metastasis of urinary tract cancers. These miRNAs represent potential therapeutic targets and diagnostic/prognostic biomarkers that may help in efficient and early diagnosis in addition to better treatment outcomes.
Collapse
|
33
|
Kase-Kato I, Asai S, Minemura C, Tsuneizumi K, Oshima S, Koma A, Kasamatsu A, Hanazawa T, Uzawa K, Seki N. Molecular Pathogenesis of the Coronin Family: CORO2A Facilitates Migration and Invasion Abilities in Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:12684. [PMID: 34884487 PMCID: PMC8657730 DOI: 10.3390/ijms222312684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
In humans, the coronin family is composed of seven proteins containing WD-repeat domains that regulate actin-based cellular processes. Some members of the coronin family are closely associated with cancer cell migration and invasion. The Cancer Genome Atlas (TCGA) analysis revealed that CORO1C, CORO2A, and CORO7 were significantly upregulated in oral squamous cell carcinoma (OSCC) tissues (p < 0.05). Moreover, the high expression of CORO2A was significantly predictive of the 5-year survival rate of patients with OSCC (p = 0.0203). Overexpression of CORO2A was detected in OSCC clinical specimens by immunostaining. siRNA-mediated knockdown of CORO2A suppressed cancer cell migration and invasion abilities. Furthermore, we investigated the involvement of microRNAs (miRNAs) in the molecular mechanism underlying CORO2A overexpression in OSCC cells. TCGA analysis confirmed that tumor-suppressive miR-125b-5p and miR-140-5p were significantly downregulated in OSCC tissues. Notably, these miRNAs bound directly to the 3'-UTR of CORO2A and controlled CORO2A expression in OSCC cells. In summary, we found that aberrant expression of CORO2A facilitates the malignant transformation of OSCC cells, and that downregulation of tumor-suppressive miRNAs is involved in CORO2A overexpression. Elucidation of the interaction between genes and miRNAs will help reveal the molecular pathogenesis of OSCC.
Collapse
Affiliation(s)
- Ikuko Kase-Kato
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Kenta Tsuneizumi
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Sachi Oshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Ayaka Koma
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| |
Collapse
|
34
|
Yang YF, Chuang HW, Kuo WT, Lin BS, Chang YC. Current Development and Application of Anaerobic Glycolytic Enzymes in Urothelial Cancer. Int J Mol Sci 2021; 22:ijms221910612. [PMID: 34638949 PMCID: PMC8508954 DOI: 10.3390/ijms221910612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Urothelial cancer is a malignant tumor with metastatic ability and high mortality. Malignant tumors of the urinary system include upper tract urothelial cancer and bladder cancer. In addition to typical genetic alterations and epigenetic modifications, metabolism-related events also occur in urothelial cancer. This metabolic reprogramming includes aberrant expression levels of genes, metabolites, and associated networks and pathways. In this review, we summarize the dysfunctions of glycolytic enzymes in urothelial cancer and discuss the relevant phenotype and signal transduction. Moreover, we describe potential prognostic factors and risks to the survival of clinical cancer patients. More importantly, based on several available databases, we explore relationships between glycolytic enzymes and genetic changes or drug responses in urothelial cancer cells. Current advances in glycolysis-based inhibitors and their combinations are also discussed. Combining all of the evidence, we indicate their potential value for further research in basic science and clinical applications.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| | - Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wei-Ting Kuo
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Bo-Syuan Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Correspondence: ; Tel.: +886-2-2826-7064
| |
Collapse
|
35
|
Chen F, Lao Z, Zhang H, Wang J, Wang S. Knockdown of circ_0001883 may inhibit epithelial-mesenchymal transition in laryngeal squamous cell carcinoma via the miR-125-5p/PI3K/AKT axis. Exp Ther Med 2021; 22:1007. [PMID: 34345289 PMCID: PMC8311254 DOI: 10.3892/etm.2021.10440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/09/2021] [Indexed: 12/27/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a malignant tumor with increasing incidence and poor prognosis. Circular RNAs (circRNAs) are known to modulate tumorigenesis and cancer development that may function through microRNAs (miRs). The aim of the present study was to investigate the functional roles of circ_0001883 in LSCC and the underlying molecular mechanism. The expression of circ_0001883 was upregulated and measured using reverse transcription-quantitative PCR (RT-qPCR) and RNase R. miR-125b-5p expression was downregulated in LSCC tissues and cells as determined using RT-qPCR. Subsequently, knockdown of circ_0001883 inhibited LSCC cell migration, invasion and epithelial-mesenchymal transition (EMT), which were tested by wound healing assays, Transwell assays and western blotting, respectively. Bioinformatics analysis predicted that circ_0001883 was a sponge of miR-125b-5p, which was verified using a dual-luciferase reporter assay. Knockdown of circ_0001883 played a functional role by sponging miR-125b-5p. Additionally, circ_0001883 and miR-125b-5p influenced phosphorylation of PI3K and AKT, detected via western blotting. In an in vivo study, knockdown of circ_0001883 reduced tumor volume and weight in mice, along with enhanced miR-125b-5p and E-cadherin expression levels, and decreased N-cadherin, phosphorylated (p)-PI3K/PI3K and p-AKT/AKT ratios. In conclusion, knockdown of circ_0001883 inhibited cell migration, invasion and EMT of LSCC by sponging miR-125b-5p. This is hypothesized to be via the PI3K/AKT signaling pathway, which suggested that circ_0001883 has potential for LSCC therapy.
Collapse
Affiliation(s)
- Fu Chen
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Zheng Lao
- Radiotherapy Division, Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Haiyan Zhang
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Jie Wang
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Shengzi Wang
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
36
|
Jin FE, Xie B, Xian HZ, Wang JH. Knockdown of miR-125b-5p inhibits the proliferation and invasion of gastric carcinoma cells by targeting RYBP. Kaohsiung J Med Sci 2021; 37:863-871. [PMID: 34337862 DOI: 10.1002/kjm2.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Gastric carcinoma, one of the most aggressive and lethal human malignancies, is associated with poor prognosis despite progress in therapeutic strategies. This study examined the potential function and mechanism of action of microRNA-125b-5p (miR-125b-5p) in the pathogenesis of gastric carcinoma. We recognized that miR-125b-5p was elevated in gastric carcinoma, and its decreased expression was associated with a better prognosis. Loss-of-function assays showed that miR-125b-5p suppression inhibited the proliferative and invasive abilities of gastric cancer cells. Furthermore, RING1 and YY1-binding protein (RYBP) was found to be target gene for miR-125b-5p action; miR-125b-5p negatively regulates RYBP expression. According to the results of rescue experiments, RYBP downregulation partially counteracted the miR-125b-5p silence-mediated inhibitory function in gastric cancer progression. Collectively, these data elucidated the molecular mechanisms of the miR-125b-5p/RYBP axis in gastric cancer invasion and growth.
Collapse
Affiliation(s)
- Fu-E Jin
- Department of Health Management, Qingdao Huangdao District Center Hospital, Qingdao, China
| | - Bo Xie
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, China
| | - Hong-Zhen Xian
- Department of Gastroenterology, Jimo People's Hospital of Qingdao City, Qingdao, China
| | - Ji-Hai Wang
- Surgery Staff Room, Shandong Medical College, Linyi, China
| |
Collapse
|
37
|
Liang C, Raza SHA, Naqvi MAR, Feng Y, Khan R, Mohammedsaleh ZM, Shater AF, Al-Ahmadi BM, Saleh FM, Bilal MA, Zan L. Construction of Adipogenic ceRNA Network Based on lncRNA Expression Profile of Adipogenic Differentiation of Human MSC Cells. Biochem Genet 2021; 60:543-557. [PMID: 34302581 DOI: 10.1007/s10528-021-10115-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
The Long non-coding RNA (lncRNA) expression profile data of ten samples including human Mesenchymal Stem Cell (MSC) adipogenic differentiation 0, 3, and 6 days from the GEO database, and then perform gene ID conversion, BLAST comparison, and annotation marking. Finally, group A (treatment group on day 3 of differentiation and control group on day 0 of differentiation) obtained a total of 1180 mRNA and 185 lncRNA; group B (treatment group on day 6 of differentiation and control group on day 0 of differentiation). A total of 1376 mRNA and 206 lncRNA were obtained. Finally, we processed the differential lncRNAs and mRNAs obtained in the two groups, and obtained 113 shared differential lncRNAs to further predict the targeted miRNA, a total of 815 lncRNA-miRNA pairs. The targeted mRNA was further predicted, and the grouped differential mRNAs were combined to obtain 64 differential mRNAs. In the end, we obtained 216 ceRNAs containing 26 lncRNAs, 27 miRNAs and 64 mRNAs. We found that the mRNAs in the ceRNA network were mainly enriched with 45 Gene Ontology (GO) terms, mainly including glucose homeostasis mechanism and insulin stimulation response. 69 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were mainly enriched. It mainly includes many pathways related to lipid metabolism such as Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), Rap1, cAMP, mitogen-activated protein kinase (MAPK), Ras, hypoxia inducible factor-1 (HIF-1), PI3K-Akt, insulin signaling and so on. In the end, we identified 216 ceRNA regulatory relationships related to obesity research. Our research provides a clearer direction for understanding the molecular mechanism of obesity, the screening and determination of drug targets biomarkers in the future.
Collapse
Affiliation(s)
- Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | - Yanrong Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Bassam M Al-Ahmadi
- Biology department, Faculty of Science, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Muhammad Ahsan Bilal
- Department of Dermatology, Hospital, Xian Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
38
|
Zhang H, Zhang R, Zhang G, Liu W, Ma Z, Yue C, Yang M. Clinical significance of miR-1298 in cervical cancer and its biological function in vitro. Oncol Lett 2021; 21:401. [PMID: 33777224 PMCID: PMC7988695 DOI: 10.3892/ol.2021.12662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer is one of the most malignant tumors in women. miR-1298 was reported to be abnormally expressed and serve crucial role in tumorigenesis of several types of cancer; however, the role of miR-1298 in cervical cancer remains unknown. The present study aimed to evaluate the clinical and biological significance of miR-1298 in cervical cancer. To do so, the expression level of miR-1298 in cervical cancer tissues and cells was evaluated by reverse transcription quantitative PCR. Kaplan-Meier survival analysis and Cox regression analysis were used to explore the prognostic significance of miR-1298 in patients with cervical cancer. Cell Counting Kit-8 and Transwell migration and invasion assays were used to evaluate the effect of miR-1298 on the proliferative, migratory and invasive abilities of cervical cancer cells, respectively. The expression of miR-1298 was lower in cancer tissues and cells compared with normal tissues and cells. Furthermore, miR-1298 expression was associated with lymph node metastasis, tumor diameter and staging from the International Federation of Gynecology and Obstetrics. In addition, patients with low miR-1298 expression had poorer overall survival. These findings suggested that miR-1298 may be considered as an independent prognostic factor for patients with cervical cancer. Furthermore, the results demonstrated that miR-1298 knockdown could promote tumor cell proliferation and migratory and invasive abilities. In addition, nucleus accumbens-associated 1 (NACC1) was demonstrated to be a direct target of miR-1298. Taken together, these findings indicated that miR-1298 overexpression may be considered as a prognostic biomarker for cervical cancer and that miR-1298 may play an inhibitor role in cervical cancer by targeting NACC1.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Pathology, Chengwu People's Hospital, Heze, Shandong 274200, P.R. China
| | - Ruihong Zhang
- Department of Obstetrics, Chengwu People's Hospital, Heze, Shandong 274200, P.R. China
| | - Guiling Zhang
- Department of Pathology, Chengwu People's Hospital, Heze, Shandong 274200, P.R. China
| | - Wenjuan Liu
- Department of Pathology, Chengwu People's Hospital, Heze, Shandong 274200, P.R. China
| | - Zhaoyuan Ma
- Department of Pathology, Linyi Hot Spring Sanatorium of Shandong Coal Industry Bureau, Linyi, Shandong 276032, P.R. China
| | - Caiyun Yue
- Department of Pathology, Chengwu People's Hospital, Heze, Shandong 274200, P.R. China
| | - Min Yang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
39
|
Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in Cancer: A Prima Donna Playing Multiple Characters. Int J Mol Sci 2021; 22:ijms22094716. [PMID: 33946854 PMCID: PMC8125560 DOI: 10.3390/ijms22094716] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hexokinases are a family of ubiquitous exose-phosphorylating enzymes that prime glucose for intracellular utilization. Hexokinase 2 (HK2) is the most active isozyme of the family, mainly expressed in insulin-sensitive tissues. HK2 induction in most neoplastic cells contributes to their metabolic rewiring towards aerobic glycolysis, and its genetic ablation inhibits malignant growth in mouse models. HK2 can dock to mitochondria, where it performs additional functions in autophagy regulation and cell death inhibition that are independent of its enzymatic activity. The recent definition of HK2 localization to contact points between mitochondria and endoplasmic reticulum called Mitochondria Associated Membranes (MAMs) has unveiled a novel HK2 role in regulating intracellular Ca2+ fluxes. Here, we propose that HK2 localization in MAMs of tumor cells is key in sustaining neoplastic progression, as it acts as an intersection node between metabolic and survival pathways. Disrupting these functions by targeting HK2 subcellular localization can constitute a promising anti-tumor strategy.
Collapse
Affiliation(s)
- Francesco Ciscato
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| | - Lavinia Ferrone
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Ionica Masgras
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Institute of Neuroscience, National Research Council, 56124 Pias, Italy
| | - Claudio Laquatra
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| |
Collapse
|
40
|
Zhang L, Zhou S, Zhou T, Li X, Tang J. Potential of the tumor‑derived extracellular vesicles carrying the miR‑125b‑5p target TNFAIP3 in reducing the sensitivity of diffuse large B cell lymphoma to rituximab. Int J Oncol 2021; 58:31. [PMID: 33887878 PMCID: PMC8078569 DOI: 10.3892/ijo.2021.5211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common and aggressive form of non-Hodgkin's lymphoma. Extracellular vesicles (EVs) derived from cancer cells are known to modify the tumor microenvironment. The aim of the present study was to investigate the role of miR-125b-3p carried by EVs in DLBCL in vitro and in vivo. TNFAIP3 expression in patient lesions was measured and the upstream miR that regulates TNFAIP3 was predicted using the starBase database. EVs were isolated from DLBCL cells and identified. DLBCL cells were transfected with pcDNA to overexpress TNFAIP3 or inhibit miR-125b-5p expression, incubated with EVs, and treated with rituximab to compare cell growth and TNFAIP3/CD20 expression. DLBCL model mice were administered EVs, conditioned medium, and rituximab to observe changes in tumor size, volume, and weight. TNFAIP3 was downregulated in patients with DLBCL and its levels further decreased in patients with drug-resistant DLBCL. Overexpression of TNFAIP3 in DLBCL cells enhanced the inhibitory effect of rituximab and increased CD20 expression. miR-125b-5p targeted TNFAIP3. Inhibition of miR-125b-5p enhanced the inhibitory effect of rituximab in DLBCL cells. The EV-carried miR-125b-5p reduced the sensitivity of DLBCL cells to rituximab, which was averted by overexpression of TNFAIP3. EVs reduced the sensitivity of DLBCL model mice to rituximab via the miR-125b-5p/TNFAIP3 axis. The study findings indicate that the tumor-derived EVs carrying miR-125b-5p can enter DLBCL cells and target TNFAIP3, thus reducing the sensitivity of DLBCL to rituximab, which may provide a novel therapeutic approach for DLBCL.
Collapse
Affiliation(s)
- Li Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shixia Zhou
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoming Li
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Junling Tang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
41
|
Deng P, Sun M, Zhao WY, Hou B, Li K, Zhang T, Gu F. Circular RNA circVAPA promotes chemotherapy drug resistance in gastric cancer progression by regulating miR-125b-5p/STAT3 axis. World J Gastroenterol 2021; 27:487-500. [PMID: 33642823 PMCID: PMC7896438 DOI: 10.3748/wjg.v27.i6.487] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent malignancy, leading to a high incidence of cancer-associated death. Cisplatin (DDP)-based chemotherapy is the principal therapy for clinical GC treatment, but DDP resistance is a severe clinical challenge and the mechanism remains poorly understood. Circular RNAs (circRNAs) have been identified to play crucial roles in modulating the chemoresistance of gastric cancer cells.
AIM To explore the effect of circVAPA on chemotherapy resistance during GC progression.
METHODS The effect of circVAPA on GC progression and chemotherapy resistance was analyzed by MTT assay, colony formation assay, Transwell assay, wound healing assay, and flow cytometry analysis in GC cells and DDP resistant GC cell lines, and tumorigenicity analysis in nude mice in vivo. The mechanism was investigated by luciferase reporter assay, quantitative real-time PCR, and Western blot analysis.
RESULTS CircVAPA expression was up-regulated in clinical GC tissues compared with normal samples. CircVAPA depletion inhibited proliferation, migration, and invasion and increased apoptosis of GC cells. The expression of circVAPA, STAT3, and STAT3 downstream genes was elevated in DDP resistant SGC7901/DDP cell lines. CircVAPA knockdown attenuated the DDP resistance of GC cells. Mechanically, circVAPA was able to sponge miR-125b-5p, and miR-125b-5p could target STAT3 in the GC cells. MiR-125b-5p inhibitor reversed circVAPA depletion-enhanced inhibitory effect of DDP on GC cells, and STAT3 knockdown blocked circVAPA overexpression-induced proliferation of DDP-treated SGC7901/DDP cells. The depletion of STAT3 and miR-125b-5p inhibitor reversed circVAPA depletion-induced GC cell apoptosis. Functionally, circVAPA contributed to the tumor growth of SGC7901/DDP cells in vivo.
CONCLUSION CircVAPA promotes chemotherapy resistance and malignant progression in GC by miR-125b-5p/STAT3 signaling. Our findings present novel insights into the mechanism by which circVAPA regulates chemotherapy resistance of GC cells. CircVAPA and miR-125b-5p may be considered as the potential targets for GC therapy.
Collapse
Affiliation(s)
- Peng Deng
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Wen-Yan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Bin Hou
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Feng Gu
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
42
|
The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed Pharmacother 2021; 137:111279. [PMID: 33493969 DOI: 10.1016/j.biopha.2021.111279] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT pathway is an intracellular signaling pathway with an indispensable impact on cell cycle control. This pathway is functionally related with cell proliferation, cell survival, metabolism, and quiescence. The crucial role of this pathway in the development of cancer has offered this pathway as a target of novel anti-cancer treatments. Recent researches have demonstrated the role of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in controlling the PI3K/AKT pathway. Some miRNAs such as miR-155-5p, miR-328-3p, miR-125b-5p, miR-126, miR-331-3p and miR-16 inactivate this pathway, while miR-182, miR-106a, miR-193, miR-214, miR-106b, miR-93, miR-21 and miR-103/107 enhance activity of this pathway. Expression levels of PI3K/AKT-associated miRNAs could be used to envisage the survival of cancer patients. Numerous lncRNAs such as GAS5, FER1L4, LINC00628, PICART1, LOC101928316, ADAMTS9-AS2, SLC25A5-AS1, MEG3, AB073614 and SNHG6 interplay with this pathway. Identification of the impact of miRNAs and lncRNAs in the control of the activity of PI3K/AKT pathway would enhance the efficacy of targeted therapies against this pathway. Moreover, each of the mentioned miRNAs and lncRNAs could be used as a putative therapeutic candidate for the interfering with the carcinogenesis. In the current study, we review the role of miRNAs and lncRNAs in controlling the PI3K/AKT pathway and their contribution to carcinogenesis.
Collapse
|
43
|
Feng R, Li Z, Wang X, Ge G, Jia Y, Wu D, Ji Y, Wang C. Silenced lncRNA SNHG14 restrains the biological behaviors of bladder cancer cells via regulating microRNA-211-3p/ESM1 axis. Cancer Cell Int 2021; 21:67. [PMID: 33482820 PMCID: PMC7821404 DOI: 10.1186/s12935-020-01717-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bladder cancer (BCa) is a malignant tumor that occurs on the mucosa of the bladder, in which dysregulated long non-coding RNAs (lncRNAs) are involved. This study investigated the effect of lncRNA small nucleolar RNA host gene 1 (SNHG14) on the biological characteristics of BCa cells from microRNA (miR)-211-3p/ESM1 signaling axis. METHODS BCa tissues and the matched normal tissues were collected to test SNHG14, miR-211-3p and ESM1 levels. SNHG14, miR-211-3p and ESM1 levels in BCa cell lines (T24, 5637, UMUC-3 and EJ) and normal bladder epithelial cells SV-HVC-1 were detected for screening the cell lines for follow-up experiments. T24 and UMUC-3 cells were transfected with different plasmids of SNHG14, miR-211-3p or ESM1 to observe the biological characteristics of BCa cells by MTT, colony formation, Transwell assays and flow cytometry. Tumor xenograft was implemented to inspect tumor growth in vivo. The targeting relationships of SNHG14, miR-211-3p and ESM1 were verified by bioinformatics software, RNA pull down assay and luciferase reporter assay. RESULTS Enhanced SNHG14, ESM1 and suppressed miR-211-3p were found in BCa tissues and cells. SNHG14 up-regulated ESM1 via competitive binding with miR-211-3p. Decreased SNHG14 or up-regulated miR-211-3p depressed cell cycle entry, colony formation, invasion, migration and proliferation abilities, and facilitated apoptosis of BCa cells. Decreased SNHG14 or up-regulated miR-211-3p reduced the tumor volume and weight of nude mice with BCa, as well as promoted apoptosis and restrained proliferation of tumor cells. miR-211-3p inhibition or ESM1 overexpression reversed the effects of down-regulation of SNHG14 on BCa, and miR-211-3p up-regulation or ESM1 downregulation reversed the effect of SNHG14 overexpression on BCa. SNHG14 targeted miR-211-3p to regulate ESM1 expression. CONCLUSION Our study highlights that silenced SNHG14 or elevated miR-211-3p represses the tumorigenic ability of BCa cells, which may be linked to ESM1 knockdown.
Collapse
Affiliation(s)
- Rui Feng
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China.
| | - Zhongxing Li
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Xing Wang
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Guangcheng Ge
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Yuejun Jia
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Dan Wu
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Yali Ji
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| | - Chenghao Wang
- Department of Urology, Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Zhenjiang, Jiangsu, 212002, China
| |
Collapse
|
44
|
Peng B, Theng PY, Le MTN. Essential functions of miR-125b in cancer. Cell Prolif 2020; 54:e12913. [PMID: 33332677 PMCID: PMC7848968 DOI: 10.1111/cpr.12913] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved non-coding RNAs that silence target mRNAs, and compelling evidence suggests that they play an essential role in the pathogenesis of human diseases, especially cancer. miR-125b, which is the mammalian orthologue of the first discovered miRNA lin-4 in Caenorhabditis elegans, is one of the most important miRNAs that regulate various physiological and pathological processes. The role of miR-125b in many types of cancer has been well established, and so here we review the current knowledge of how miR-125b is deregulated in different types of cancer; its oncogenic and/or tumour-suppressive roles in tumourigenesis and cancer progression; and its regulation with regard to treatment response, all of which are underlined in multiple studies. The emerging information that elucidates the essential functions of miR-125b might help support its potentiality as a diagnostic and prognostic biomarker as well as an effective therapeutic tool against cancer.
Collapse
Affiliation(s)
- Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Poh Ying Theng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
45
|
Hu B, Yang XB, Yang X, Sang XT. LncRNA CYTOR affects the proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells by regulating the miR-125b-5p/KIAA1522 axis. Aging (Albany NY) 2020; 13:2626-2639. [PMID: 33318318 PMCID: PMC7880333 DOI: 10.18632/aging.202306] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/22/2020] [Indexed: 04/27/2023]
Abstract
We aimed to investigate whether lncRNA CYTOR could sponge miR-125b-5p to affect hepatocellular carcinoma (HCC) cells through targeting KIAA1522. The expression of CYTOR, miR-125b-5p and KIAA1522 in HCC cells was detected by Real-time quantitative polymerase chain reaction (RT-qPCR) analysis. KIAA1522 expression in HCC tissues was detected by immunohistochemistry. The proliferation, cell cycle and apoptosis of HCC cells after transfection were respectively detected by Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis, and related protein expression was determined by Western blot analysis. As a result, The Cancer Genome Atlas (TCGA) database indicated that expression of CYTOR and KIAA1522 was increased in HCC tissues and high expression of CYTOR and KIAA1522 was related to worse overall survival. MiR-125b-5p expression was decreased in HCC tissues, which was negatively correlated with the expression of CYTOR and KIAA1522. The proliferation and cell cycle of HCC cells were suppressed by CYTOR interference while promoted by miR-125b-5p interference and KIAA1522 overexpression. The apoptosis of HCC cells was promoted by CYTOR interference while inhibited by miR-125b-5p interference and KIAA1522 overexpression. In conclusion, CYTOR interference suppressed the proliferation and cell cycle, and promoted the apoptosis of HCC cells by regulating the miR-125b-5p/KIAA1522 axis.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
46
|
Yang L, Jiang MN, Liu Y, Wu CQ, Liu H. Crosstalk between lncRNA DANCR and miR-125b-5p in HCC cell progression. TUMORI JOURNAL 2020; 107:504-513. [PMID: 33272103 DOI: 10.1177/0300891620977010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective: To investigate the mechanism of long noncoding RNA (lncRNA) DANCR on the progression of hepatocellular carcinoma (HCC) cells. Methods: The expression levels of DANCR and miR-125b-5p were measured in normal hepatocytes (LO2) and HCC cell lines by quantitative reverse transcription polymerase chain reaction. HepG2 and Huh-7 cells were transfected with sh-DANCR, the negative control (sh-NC), miR-125b-5p mimic, or mimic NC or cotransfected with sh-DANCR and miR-125b-5p inhibitor. HCC cell proliferation was assessed through CCK8 and plate colony formation assay. Western blot quantified the expression levels of Bcl-2, Bax, caspase-3, and cleaved-caspase-3. Apoptotic rate was detected as well as migratory and invasive capacities. The implication of the MAPK signal pathway was assessed by detecting the expression levels of p38, ERK1/2, JNK, p-p38, p-ERK1/2, and p-JNK. Interactions between DANCR and miR-125b-5p were detected by dual luciferase reporter assay. Results: In HCC cells, DANCR was highly expressed and miR-125b-5p was decreased. sh-DANCR or miR-125b-5p mimic stimulation reduced HepG2 or Huh-7 cell progression while promoted cell apoptosis evidenced by increased apoptotic rate, elevated levels of Bax and cleaved-caspase-3, and decreased Bcl-2. Moreover, the migration rate and invasiveness of HCC cells were also inhibited by sh-DANCR and miR-125b-5p mimic. Levels of p-p38/p38, p-ERK1/2/ERK1/2, and p-JNK/JNK were suppressed by sh-DANCR and miR-125b-5p mimic. LncRNA DANCR negatively targeted and directly bound to miR-125b-5p. Knockdown of miR-125b-5p could reverse the inhibitory effects of sh-DANCR on HCC cells. Conclusion: In HCC cells, lncRNA DANCR sponges miR-125b-5p and activates MAPK pathway, thus facilitating HCC cell progression.
Collapse
Affiliation(s)
- Ling Yang
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi-Na Jiang
- Internal Medicine, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yang Liu
- Immunization Programme Division, Hengyang Municipal Center for Disease Control and Prevention, Hengyang, Hunan, China
| | - Chao-Qun Wu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Liu
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
47
|
Khan K, Quispe C, Javed Z, Iqbal MJ, Sadia H, Raza S, Irshad A, Salehi B, Reiner Ž, Sharifi-Rad J. Resveratrol, curcumin, paclitaxel and miRNAs mediated regulation of PI3K/Akt/mTOR pathway: go four better to treat bladder cancer. Cancer Cell Int 2020; 20:560. [PMID: 33292283 PMCID: PMC7685642 DOI: 10.1186/s12935-020-01660-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is a leading cause of death among urothelial malignancies that more commonly affect male population. Poor prognosis and resistance to chemotherapy are the two most important characteristics of this disease. PI3K/Akt/mTOR signaling pathway has been considered pivotal in the regulation of proliferation, migration, invasiveness, and metastasis. Deregulation of PI3K/Akt/mTOR signaling has been found in 40% of bladder cancers. Several microRNAs (miRNAs) have been reported to interact with the PI3K/Akt/mTOR signaling pathway with a different possible role in proliferation and apoptosis in bladder cancer. Thus, miRNAs can be used as potential biomarkers for BC. Natural compounds have been in the spotlight for the past decade due to their effective anti-proliferative capabilities. However, little is known of its possible effects in bladder cancer. The aim of this review is to discuss the interplay between PI3K/Akt/mTOR, miRNAs, and natural compounds and emphasize the importance of miRNAs as biomarkers and resveratrol, curcumin and paclitaxel as a possible therapeutic approach against bladder cancer.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile
| | - Zeeshan Javed
- Lahore Garrison University, Main Campus, Sector C, Phase VI, DHA Lahore Pakistan, Lahore, Pakistan
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Punjab, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, BUITMS, Quetta, Pakistan
| | - Shahid Raza
- Lahore Garrison University, Main Campus, Sector C, Phase VI, DHA Lahore Pakistan, Lahore, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Jebelli A, Baradaran B, Mosafer J, Baghbanzadeh A, Mokhtarzadeh A, Tayebi L. Recent developments in targeting genes and pathways by RNAi-based approaches in colorectal cancer. Med Res Rev 2020; 41:395-434. [PMID: 32990372 DOI: 10.1002/med.21735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
A wide spectrum of genetic and epigenetic variations together with environmental factors has made colorectal cancer (CRC), which involves the colon and rectum, a challenging and heterogeneous cancer. CRC cannot be effectively overcomed by common conventional therapies including surgery, chemotherapy, targeted therapy, and hormone replacement which highlights the need for a rational design of novel anticancer therapy. Accumulating evidence indicates that RNA interference (RNAi) could be an important avenue to generate great therapeutic efficacy for CRC by targeting genes that are responsible for the viability, cell cycle, proliferation, apoptosis, differentiation, metastasis, and invasion of CRC cells. In this review, we underline the documented benefits of small interfering RNAs and short hairpin RNAs to target genes and signaling pathways related to CRC tumorigenesis. We address the synergistic effects of RNAi-mediated gene knockdown and inhibitors/chemotherapy agents to increase the sensitivity of CRC cells to common therapies. Finally, this review points new delivery systems/materials for improving the cellular uptake efficiency and reducing off-target effects of RNAi.
Collapse
Affiliation(s)
- Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| |
Collapse
|
49
|
Bi YN, Guan JP, Wang L, Li P, Yang FX. Clinical significance of microRNA-125b and its contribution to ovarian carcinogenesis. Bioengineered 2020; 11:939-948. [PMID: 32842846 PMCID: PMC8291798 DOI: 10.1080/21655979.2020.1814660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The underlying mechanisms of recurrence and metastasis of epithelial ovarian cancer (EOC) are largely unknown. In the present study, we investigated the clinical significance of microRNA-125b (miR-125b) and its role in ovarian tumorigenesis and progression. Seventy patients of EOC and paired tissues were enrolled from 2015 to 2017. qRT-PCR was used to evaluate miR-125b expression in tumor tissues and EOC cell line. Gain-and-loss function of miR-125b was achieved to explore the changes in cell biological function. We found that miR-125b expression in EOC tissues, especially in the high-grade tissues (P < 0.001), was significantly lower compared to the matched adjacent noncancerous tissues and associated with pathological type, stage, and overall survival (P < 0.05). Upregulation of miR-125b promoted apoptosis and decreased cell survival rate and migration, and vice versa in vitro. Mechanistically, miR-125b negatively regulated S100A4, a metastasis-associated protein. MiR-125b overexpression significantly decreased tumor growth and inhibited lung metastasis in vivo. Our results supported that miR-125b contributes to the progression of EOC by targeting S100A4. It potentially acts as a potential biomarker and therapeutic target of EOC.
Collapse
Affiliation(s)
- Ya-Nan Bi
- Department of Operating Room, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Jin-Ping Guan
- Department of Surgery, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Liming Wang
- Department of Gynecology, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Ping Li
- Department of Ultrasound, The Affiliated Hospital of Qingdao University , Huangdao, Shandong, China
| | - Feng-Xia Yang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University , Huangdao, Shandong, China
| |
Collapse
|
50
|
Shi H, Li K, Feng J, Liu G, Feng Y, Zhang X. LncRNA-DANCR Interferes With miR-125b-5p/HK2 Axis to Desensitize Colon Cancer Cells to Cisplatin vis Activating Anaerobic Glycolysis. Front Oncol 2020; 10:1034. [PMID: 32766131 PMCID: PMC7379395 DOI: 10.3389/fonc.2020.01034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is one of the most prevalent malignancies that lead to high occurrence of cancer-related deaths. Currently, chemotherapies and radiotherapies remain the primary treatments for advanced colon cancer. Despite the initial effectiveness, a fraction of colon cancer patients developed cisplatin resistance, resulting in therapeutic failure. The long non-coding RNA differentiation antagonizing non-coding RNA (DANCR) has been shown to be upregulated in multiple cancers, indicating an oncogenic role of DANCR. This study aims to elucidate the roles of DANCR in regulating cisplatin (CDDP) resistance of colon cancer. We found DANCR was significantly upregulated in colon cancer tissues and cells compared with normal colon tissues and cells. DANCR was upregulated in cisplatin-resistant colon cancer cells. Moreover, overexpression of DANCR significantly desensitized colon cancer cells to cisplatin. On the other way, silencing DANCR dramatically overrode CDDP resistance of colon cancer cells. Bioinformatics prediction revealed DANCR could bind to seeding region of miR-125b-5p as a competitive endogenous RNA. This interference was further validated by luciferase assay. Moreover, we detected a negative correlation between DANCR and miR-125b-5p in colon cancer patient tissues: miR-125b-5p was clearly downregulated in colon cancer tissues and cells. Overexpression of miR-125b-5p significantly sensitized cisplatin-resistant cells. Interestingly, we observed the cisplatin-resistant cells were associated with a significantly increased glycolysis rate. We further identified glycolysis enzyme, hexokinase 2 (HK2), as a direct target of miR-125b-5p in colon cancer cells. Rescue experiments showed overexpression of miR-125b-5p suppressed cellular glycolysis rate and increased cisplatin sensitivity through direct targeting the 3' UTR of HK2. Importantly, silencing endogenous DANCR significantly induced the miR-125b-5p/HK2 axis, resulting in suppression of the glycolysis rate and increase in cisplatin sensitivity of colon cancer cell. Expectedly, these processes could be further rescued by inhibiting miR-125b-5p in the DANCR-silenced cells. Finally, we validated the DANCR-promoted cisplatin resistance via the miR-125b-5p/HK2 axis from an in vivo xenograft mice model. In summary, our study reveals a new mechanism of the DANCR-promoted cisplatin resistance, presenting the lncRNA-DANCR-miR-125b-5p/HK2 axis as a potential target for treating chemoresistant colon cancer.
Collapse
Affiliation(s)
- Huijuan Shi
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kejun Li
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinxin Feng
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Gaojie Liu
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yanlin Feng
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiangliang Zhang
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|