1
|
Shady NH, Mokhtar FA, Abdullah HS, Abdel-Aziz SA, Mohamad SA, Imam MS, El Afify SR, Abdelmohsen UR. In Vitro and Randomized Controlled Clinical Study of Natural Constituents' Anti-HPV Potential for Treatment of Plantar Warts Supported with In Silico Studies and Network Analysis. Pharmaceuticals (Basel) 2024; 17:759. [PMID: 38931426 PMCID: PMC11206833 DOI: 10.3390/ph17060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study is to evaluate the anti-HPV potential of a Moringa olifera Lam seed, Nigella sativa L. seed, and Musa Acuminata peel herbal mixture in the form of polymer film-forming systems. A clinical trial conducted in outpatient clinics showed that the most significant outcome was wart size and quantity. Compared to the placebo group, the intervention group's size and number of warts were considerably better according to the results. Chemical profiling assisted by LC-HRMS led to the dereplication of 49 metabolites. Furthermore, network pharmacology was established for the mixture of three plants; each plant was studied separately to find out the annotated target genes, and then, we combined all annotated genes of all plants and filtered the genes to specify the genes related to human papilloma virus. In a backward step, the 24 configured genes related to HPV were used to specify only 30 compounds involved in HPV infection based on target genes. CA2 and EGFR were the top identified genes with 16 and 12 edges followed by PTGS2, CA9, and MMP9 genes with 11 edges each. A molecular docking study for the top active identified compounds of each species was conducted in the top target HPV genes, CA2 and EGFR, to investigate the mode of interaction between these compounds and the targets' active sites.
Collapse
Affiliation(s)
- Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia 61111, Egypt;
- Center for Research and Sustainability, Deraya University, Universities Zone, New Minia 61111, Egypt
| | - Fatma Alzahraa Mokhtar
- Fujairah Research Centre, Sakamkam Road, Sakamkam, Fujairah 0000, United Arab Emirates;
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sharkia 44813, Egypt
| | - Hend Samy Abdullah
- Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt;
| | - Salah A. Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia 61111, Egypt;
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Soad A. Mohamad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia 61111, Egypt;
| | - Mohamed S. Imam
- Department of Clinical Pharmacy, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department of Clinical Pharmacy, National Cancer Institute, Cairo University, Fom El Khalig Square, Kasr Al-Aini Street, Cairo 11796, Egypt
| | - Sherin Refat El Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alsalam University, Kafr alzayat, Algharbia 31611, Egypt;
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia 61111, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
2
|
Hidayati T, Indrayanti I, Darmawan E, Akrom A. Herbal Honey Preparations of Curcuma Xanthorriza and Black Cumin Protect against Carcinogenesis through Antioxidant and Immunomodulatory Activities in Sprague Dawley (SD) Rats Induced with Dimethylbenz(a)anthracene. Nutrients 2023; 15:nu15020371. [PMID: 36678242 PMCID: PMC9867330 DOI: 10.3390/nu15020371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Traditionally, Curcuma xanthorriza (CX), black cumin seed (BC), and honey have been used by the Indonesian people as medicinal ingredients to treat various health symptoms. CX extracts and BC have been proven in the laboratory as chemopreventive agents, antioxidants, and immunomodulators. In this study, we developed CX extract, BC oil, and honey into herbal honey preparations (CXBCH) and hypothesized that the preparations show chemopreventive activity. The purpose of the study was to determine the CXBCH potential as chemopreventive, antioxidant, and immunomodulatory. METHOD In this experimental laboratory research, antioxidant, immunomodulatory, and cytotoxic activities were tested on human mammary cancer cell lines (T47D cells) while the chemopreventive activity of the CXBCH preparations on Sprague Dawley (SD) rats induced with dimethylbenzene(a)anthracene (DMBA). RESULTS CXBCH preparations demonstrated immunomodulatory, antioxidant, and cytotoxic activities in T47D, Hela, and HTB-183 cells and in DMBA-induced SD rats, as the preparations inhibited tumor nodule formation, increased the number of CD4, CD8 and CD4CD25 cells, and glutathione-S-transferase (GST) activity, and decreased serum NO levels. CONCLUSIONS CXBCH preparations display chemopreventive, antioxidant, and immunomodulatory properties.
Collapse
Affiliation(s)
- Titiek Hidayati
- Department of Public Health and Family Medicine, Faculty of Medicine and Health Science, Universitas Muhammadiyah Yogyakarta, Yogyakarta 55252, Indonesia
- Correspondence: (T.H.); (A.A.)
| | - Indrayanti Indrayanti
- Department of Anatomical Pathology, Faculty of Medicine and Health Science, Universitas Muhammadiyah Yogyakarta, Yogyakarta 55252, Indonesia
| | - Endang Darmawan
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta 55252, Indonesia
| | - Akrom Akrom
- Department of Pharmacology and Clinical Pharmacy, Master Pharmacy Degree Program, Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta 55252, Indonesia
- Ahmad Dahlan Drug Information and Research Center, Universitas Ahmad Dahlan, Yogyakarta 55252, Indonesia
- Correspondence: (T.H.); (A.A.)
| |
Collapse
|
3
|
Mohamad Hanafiah R, Salehuddin NFZ, Abd Ghafar SA, Kassim MA. Antibacterial, antimicrobial, and antimalarial effect of black seed oil. BIOCHEMISTRY, NUTRITION, AND THERAPEUTICS OF BLACK CUMIN SEED 2023:189-200. [DOI: 10.1016/b978-0-323-90788-0.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Magnetite-Based Nanostructured Coatings Functionalized with Nigella sativa and Dicloxacillin for Improved Wound Dressings. Antibiotics (Basel) 2022; 12:antibiotics12010059. [PMID: 36671260 PMCID: PMC9854499 DOI: 10.3390/antibiotics12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
In this study, we report the performance improvement of wound dressings by covering them with magnetite-based nanostructured coatings. The magnetite nanoparticles (Fe3O4 NPs) were functionalized with Nigella sativa (N. sativa) powder/essential oil and dicloxacillin and were synthesized as coatings by matrix assisted pulsed laser evaporation (MAPLE). The expected effects of this combination of materials are: (i) to reduce microbial contamination, and (ii) to promote rapid wound healing. The crystalline nature of core/shell Fe3O4 NPs and coatings was determined by X-ray diffraction (XRD). Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) have been coupled to investigate the stability and thermal degradation of core/shell nanoparticle components. The coatings' morphology was examined by scanning electron microscopy (SEM). The distribution of chemical elements and functional groups in the resulting coatings was evidenced by Fourier transform infrared (FTIR) spectrometry. In order to simulate the interaction between wound dressings and epithelial tissues and to evaluate the drug release in time, the samples were immersed in simulated body fluid (SBF) and investigated after different durations of time. The antimicrobial effect was evaluated in planktonic (free-floating) and attached (biofilms) bacteria models. The biocompatibility and regenerative properties of the nanostructured coatings were evaluated in vitro, at cellular, biochemical, and the molecular level. The obtained results show that magnetite-based nanostructured coatings functionalized with N. sativa and dicloxacillin are biocompatible and show an enhanced antimicrobial effect against Gram positive and Gram negative opportunistic bacteria.
Collapse
|
5
|
Sen D, Debnath P, Debnath B, Bhaumik S, Debnath S. Identification of potential inhibitors of SARS-CoV-2 main protease and spike receptor from 10 important spices through structure-based virtual screening and molecular dynamic study. J Biomol Struct Dyn 2022; 40:941-962. [PMID: 32948116 PMCID: PMC7544938 DOI: 10.1080/07391102.2020.1819883] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
The outbreak of novel coronavirus disease (COVID-19) caused by SARS-CoV-2 poses a serious threat to human health and world economic activity. There is no specific drug for the treatment of COVID-19 patients at this moment. Traditionally, people have been using spices like ginger, fenugreek and onion, etc. for the remedy of a common cold. This work identifies the potential inhibitors of the main protease (Mpro) and spike (S) receptor of SARS-CoV-2 from 10 readily available spices. These two proteins, S and Mpro, play an important role during the virus entry into the host cell, and replication and transcription processes of the virus, respectively. To identify potential molecules an in-house databank containing 1040 compounds was built-up from the selected spices. Structure-based virtual screening of this databank was performed with two important SARS-CoV-2 proteins using Glide. Top hits resulted from virtual screening (VS) were subjected to molecular docking using AutoDock 4.2 and AutoDock Vina to eliminate false positives. The top six hits against Mpro and top five hits against spike receptor subjected to 130 ns molecular dynamic simulation using GROMACS. Finally, the compound 1-, 2-, 3- and 5-Mpro complexes, and compound 17-, 18-, 19-, 20- and 21- spike receptor complexes showed stability throughout the simulation time. The ADME values also supported the drug-like nature of the selected hits. These nine compounds are available in onion, garlic, ginger, peppermint, chili and fenugreek. All the spices are edible and might be used as home remedies against COVID-19 after proper biological evaluation.
Collapse
Affiliation(s)
- Debanjan Sen
- BCDA College of Pharmacy & Technology, Kolkata, West Bengal, India
| | - Pradip Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, Tripura, India
| | - Bimal Debnath
- Department of Forestry and Biodiversity, Tripura University, Suryamaninagar, Tripura, India
| | - Samhita Bhaumik
- Department of Chemistry, Women’s College, Agartala, Tripura, India
| | - Sudhan Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, Tripura, India
| |
Collapse
|
6
|
Tiji S, Lakrat M, Rokni Y, Mejdoubi EM, Hano C, Addi M, Asehraou A, Mimouni M. Characterization and Antimicrobial Activity of Nigella sativa Extracts Encapsulated in Hydroxyapatite Sodium Silicate Glass Composite. Antibiotics (Basel) 2022; 11:170. [PMID: 35203773 PMCID: PMC8868394 DOI: 10.3390/antibiotics11020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
N. sativa is an interesting source of bioactive compounds commonly used for various therapeutic purposes. Associate its seeds extracts with biomaterials to improve their antimicrobial properties are highly demanded. This study aims to investigate the encapsulation of NS extracts in hydroxyapatite nanoparticle sodium silicate glass (nHap/SSG) scaffold. NS essential oil (HS) was extracted by hydrodistillation, while hexane (FH) and acetone extracts (FA) were obtained using Soxhlet extraction. (FH) was the most abundant (34%) followed by (FA) (2.02%) and (HS) (1.2%). GC-MS chromatography showed that the (HS) contained beta cymene, alpha thujene, β-pinene and thymoquinone, while (FH) had mostly fatty acids and (FA) decane, 2.9-dimethyl, benzene 1,3,3-trimethylnonyl and beta cymene. Loaded nHap/SGG scaffolds with various amount of (FH), (HS) and (FA) at 1.5, 3, and 6 wt%; were elaborated then characterized by ATR-FTIR, X-ray and SEM techniques and their antimicrobial activity was studied. Samples loaded with 1.5 wt% HE was highly active against C. albicans (19 mm), and at 3 wt% on M. luteus (20 mm) and S. aureus (20 mm). Additionally, loaded scaffolds with 1.5 wt% AE had an important activity against M. luteus (18.9 mm) and S. aureus (19 mm), while the EO had low activities on all bacterial strains. The outcome of this finding indicated that loaded scaffolds demonstrated an important antimicrobial effect that make them promising materials for a wide range of medical applications.
Collapse
Affiliation(s)
- Salima Tiji
- Applied Chemistry and Environment Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Mohammed Lakrat
- Solid Mineral Chemistry Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.L.); (E.M.M.)
- High Institute of Biological and Paramedical Sciences, ISSB-P, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
| | - Yahya Rokni
- Bio-Resources, Biotechnology, Ethno-Pharmacology and Health Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (Y.R.); (A.A.)
- Research Unit Bioprocess and Biointerfaces, Laboratory of Industrial Engineering and Surface Engineering, National School of Applied Sciences, Sultan Moulay Slimane University, 17 Mghila, Beni Mellal 23000, Morocco
| | - El Miloud Mejdoubi
- Solid Mineral Chemistry Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.L.); (E.M.M.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco;
| | - Abdeslam Asehraou
- Bio-Resources, Biotechnology, Ethno-Pharmacology and Health Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (Y.R.); (A.A.)
| | - Mostafa Mimouni
- Applied Chemistry and Environment Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| |
Collapse
|
7
|
Abstract
Due to the lack of prophylactic vaccines and effective treatment strategies against numerous public health conditions, viral infections remain a serious threat to global public health and socioeconomic development. The current ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, against which there is no prophylactic vaccine or licensed antiviral agents, underscores the need to continuously identify novel/effective treatment strategies against these infectious agents. Plants and plant-derived compounds have immensely contributed to the fight against numerous health conditions by providing bioactives that possess potent antimicrobial attributes, including antiviral activities. One such plant that has gathered much interest, due to its multiple medicinal properties, is the Nigella sativa plant, a flowering plant belonging to the family Ranunculacea, which is native to various regions of the world. In this chapter, we discuss the antiviral activities of N. sativa against critical viral pathogens, focusing more on the SARS-CoV-2 virus, the etiologic agent of the current unparalleled coronavirus disease (COVID-19) pandemic.
Collapse
|
8
|
Tagde P, Tagde S, Tagde P, Bhattacharya T, Monzur SM, Rahman MH, Otrisal P, Behl T, ul Hassan SS, Abdel-Daim MM, Aleya L, Bungau S. Nutraceuticals and Herbs in Reducing the Risk and Improving the Treatment of COVID-19 by Targeting SARS-CoV-2. Biomedicines 2021; 9:biomedicines9091266. [PMID: 34572452 PMCID: PMC8468567 DOI: 10.3390/biomedicines9091266] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
The worldwide transmission of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a deadly or devastating disease is known to affect thousands of people every day, many of them dying all over the planet. The main reason for the massive effect of COVID-19 on society is its unpredictable spread, which does not allow for proper planning or management of this disease. Antibiotics, antivirals, and other prescription drugs, necessary and used in therapy, obviously have side effects (minor or significant) on the affected person, there are still not clear enough studies to elucidate their combined effect in this specific treatment, and existing protocols are sometimes unclear and uncertain. In contrast, it has been found that nutraceuticals, supplements, and various herbs can be effective in reducing the chances of SARS-CoV-2 infection, but also in alleviating COVID-19 symptoms. However, not enough specific details are yet available, and precise scientific studies to validate the approved benefits of natural food additives, probiotics, herbs, and nutraceuticals will need to be standardized according to current regulations. These alternative treatments may not have a direct effect on the virus or reduce the risk of infection with it, but these products certainly stimulate the human immune system so that the body is better prepared to fight the disease. This paper aims at a specialized literary foray precisely in the field of these “cures” that can provide real revelations in the therapy of coronavirus infection
Collapse
Affiliation(s)
- Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal 462026, India
- PRISAL Foundation, Pharmaceutical Royal International Society, Bhopal 462042, India;
- Correspondence: (P.T.); (M.H.R.); (S.B.)
| | - Sandeep Tagde
- PRISAL Foundation, Pharmaceutical Royal International Society, Bhopal 462042, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathic Medical College, Bhopal 462003, India;
| | - Tanima Bhattacharya
- School of Chemistry and Chemical Engineering, Hubei University, Hubei 430062, China;
- Techno India NJR Institute of Technology, Udaipur 313003, India
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Correspondence: (P.T.); (M.H.R.); (S.B.)
| | - Pavel Otrisal
- Faculty of Physical Culture, Palacký University Olomouc, 77111 Olomouc, Czech Republic;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Batterjee Medical College, P.O. Box 6231, Jedah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environment CNRS 6249, Université de Franche-Comté, 25000 Besançon, France;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (P.T.); (M.H.R.); (S.B.)
| |
Collapse
|
9
|
Mulu A, Gajaa M, Woldekidan HB, W/Mariam JF. The impact of curcumin derived polyphenols on the structure and flexibility COVID-19 main protease binding pocket: a molecular dynamics simulation study. PeerJ 2021; 9:e11590. [PMID: 34322316 PMCID: PMC8297469 DOI: 10.7717/peerj.11590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
The newly occurred SARS-CoV-2 caused a leading pandemic of coronavirus disease (COVID-19). Up to now it has infected more than one hundred sixty million and killed more than three million people according to 14 May 2021 World Health Organization report. So far, different types of studies have been conducted to develop an anti-viral drug for COVID-19 with no success yet. As part of this, silico were studied to discover and introduce COVID-19 antiviral drugs and results showed that protease inhibitors could be very effective in controlling. This study aims to investigate the binding affinity of three curcumin derived polyphenols against COVID-19 the main protease (Mpro), binding pocket, and identification of important residues for interaction. In this study, molecular modeling, auto-dock coupled with molecular dynamics simulations were performed to analyze the conformational, and stability of COVID-19 binding pocket with diferuloylmethane, demethoxycurcumin, and bisdemethoxycurcumin. All three compounds have shown binding affinity −39, −89 and −169.7, respectively. Demethoxycurcumin and bisdemethoxycurcumin showed an optimum binding affinity with target molecule and these could be one of potential ligands for COVID-19 therapy. And also, COVID-19 main protease binding pocket binds with the interface region by one hydrogen bond. Moreover, the MD simulation parameters indicated that demethoxycurcumin and bisdemethoxycurcumin were stable during the simulation run. These findings can be used as a baseline to develop therapeutics with curcumin derived polyphenols against COVID-19.
Collapse
Affiliation(s)
- Aweke Mulu
- College of Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mulugeta Gajaa
- College of Natural and Social science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | | | | |
Collapse
|
10
|
Hussain MK, Aziz A, Ditta HMA, Azhar MF, El-Shehawi AM, Hussain S, Mehboob N, Hussain M, Farooq S. Foliar application of seed water extract of Nigella sativa improved maize growth in cadmium-contaminated soil. PLoS One 2021; 16:e0254602. [PMID: 34252121 PMCID: PMC8274843 DOI: 10.1371/journal.pone.0254602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Cadmium (Cd) is a widespread heavy metal, which commonly exert negative impacts on agricultural soils and living organisms. Foliar application of seed water extract of black cumin (Nigella sativa L.) can mitigate the adverse impacts of Cd-toxicity in plants through its rich antioxidants. This study examined the role of seed water extracts of N. sativa (NSE) in mitigating the adverse impacts of Cd-toxicity on maize growth. Two maize genotypes (synthetic ‘Neelum’ and hybrid ‘P1543’) were grown under 0, 4, 8 and 12 mg Cd kg-1 soil. The NSE was applied at three different concentrations (i.e., 0, 10 and 20%) as foliar spray at 25 and 45 days after sowing. All Cd concentrations had no effect on germination percentage of both genotypes. Increasing Cd concentration linearly decreased root and allometric attributes, gas exchange traits and relative water contents of hybrid genotype. However, gas exchange traits of synthetic genotype remained unaffected by Cd-toxicity. Overall, hybrid genotype showed better tolerance to Cd-toxicity than synthetic genotype with better germination and allometric attributes and less Cd accumulation. Foliar application of NSE lowered negative effects of Cd-toxicity on all studied traits, except relative water contents. In conclusion, foliar application of NSE seemed a viable option to improve maize growth in Cd-contaminated soil.
Collapse
Affiliation(s)
| | - Abida Aziz
- Department of Botany, The Women University, Multan, Pakistan
| | | | | | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Sajjad Hussain
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Noman Mehboob
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
- * E-mail:
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa, Turkey
| |
Collapse
|
11
|
Adeleye OA, Femi-Oyewo MN, Bamiro OA, Bakre LG, Alabi A, Ashidi JS, Balogun-Agbaje OA, Hassan OM, Fakoya G. Ethnomedicinal herbs in African traditional medicine with potential activity for the prevention, treatment, and management of coronavirus disease 2019. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:72. [PMID: 33778086 PMCID: PMC7980728 DOI: 10.1186/s43094-021-00223-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ethnomedicine, a study of traditional medicine, is significant in drug discovery and development. African traditional medicine has been in existence for several thousands of years, and several drugs have been discovered and developed from it. MAIN TEXT The deadly coronavirus disease 2019 (COVID-19) caused by a novel coronavirus known as SARS-CoV-2 has widely spread globally with high mortality and morbidity. Its prevention, treatment and management still pose a serious challenge. A drug for the cure of this disease is yet to be developed. The clinical management at present is based on symptomatic treatment as presented by individuals infected and this is by combination of more than two drugs such as antioxidants, anti-inflammatory, anti-pyretic, and anti-microbials. Literature search was performed through electronic searches of PubMed, Google Scholar, and several research reports including WHO technical documents and monographs. CONCLUSION Drug discovery from herbs is essential and should be exploited for the discovery of drugs for the management of COVID-19. This review is aimed at identifying ethnomedicinal herbs available in Africa that could be used for the discovery and development of a drug for the prevention, treatment, and management of the novel coronavirus disease 2019.
Collapse
Affiliation(s)
- Olutayo Ademola Adeleye
- Department of Pharmaceutics and Pharmaceutical Technology, Federal University Oye Ekiti, Oye-Ekiti, Ekiti State Nigeria
| | - Mbang Nyong Femi-Oyewo
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Oluyemisi Adebowale Bamiro
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Lateef Gbenga Bakre
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Akinyinka Alabi
- Department of Pharmacology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Joseph Senu Ashidi
- Department of Plant Science, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | | | - Oluwakemi Mary Hassan
- Department of Pharmaceutical Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Gbemisola Fakoya
- Department of Pharmacology, University of Lagos, Lagos, Lagos State Nigeria
| |
Collapse
|
12
|
Allah Ditta HM, Aziz A, Hussain MK, Mehboob N, Hussain M, Farooq S, Azhar MF. Exogenous application of black cumin ( Nigella sativa) seed extract improves maize growth under chromium (Cr) stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1231-1243. [PMID: 33631090 DOI: 10.1080/15226514.2021.1889965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accumulation of non-essential heavy metals like chromium (Cr) is among major abiotic stresses, which adversely affect crop growth. Hexavalent chromium [Cr(VI)] is the most dangerous form negatively affecting the growth and productivity of crops. This study evaluated the role of black cumin extracts (BCE) in improving growth and productivity of maize genotypes under different concentrations of Cr(VI). Two maize genotypes ("Neelum" and "P1543") were grown under 0, 4, 8 and 12 mg Cr(VI) kg-1 concentrations. The BCE was applied as foliar spray at three concentrations (0, 10 and 20%) at 25 and 45 days after sowing. Increasing Cr(VI) concentration significantly (p < 0.05) reduced seed germination, root and allometric traits, gas exchange attributes and relative water contents of tested genotypes. Hybrid maize genotype better tolerated tested Cr(VI) concentrations than synthetic genotype with lower Cr accumulation and better allometric and gas exchange traits. Exogenous application of 20% BCE proved effective in lowering the adverse effects of Cr(VI) toxicity on maize genotypes. It is concluded that 20% BCE could be used to improve maize performance through better allometric and gas exchange traits under different Cr(VI) concentrations. Nonetheless, actual mechanisms involved in improved Cr(VI)-tolerance of maize with BCE application must be explored. Novelty statement Black cumin has been widely used to reduce Cr toxicity in animals. However, the role of black cumin in reducing Cr toxicity in plants has never been studied. The present study was conducted to infer the role of different concentrations of black cumin extract in improving the growth of synthetic and hybrid maize genotypes under different levels of Cr stress. It is concluded that black cumin extract could be used to lower Cr toxicity in maize grown under Cr-contaminated soils.
Collapse
Affiliation(s)
| | - Abida Aziz
- Department of Botany, The Women University, Multan, Pakistan
| | | | - Noman Mehboob
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa, Turkey
| | | |
Collapse
|
13
|
Response of lymphatic tissues to natural feed additives, curcumin (Curcuma longa) and black cumin seeds (Nigella sativa), in broilers against Pasteurella multocida. Poult Sci 2021; 100:101005. [PMID: 33765487 PMCID: PMC7994784 DOI: 10.1016/j.psj.2021.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/26/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
The antibiotic residues and pathogenic resistance against the drug are very common in poultry because of antibiotics used in their feed. It is necessary to use natural feed additives as effective alternatives instead of a synthetic antibiotic. This study aimed to investigate the immune response of Nigella sativa and Curcuma longa in broilers under biological stress against Pasteurella multocida. The total 100, one-day-old chicks were divided into 5 groups. Groups 1 and 2 served as control negative and control positive. Both control groups were receiving simple diet without any natural feed additives, but the infection was given in group 2 at day 28 with the dose of 5.14 × 107 CFU by IV. Groups 3A and 3B were offered 2% seed powder of Nigella sativa, groups 4A and 4B were offered C. longa 1% in powdered form, and group 5A and 5B were offered both C. longa 1% and N. sativa 2% in the feed from day 1 and groups 3B, 4B, and 5B were challenged with P. multocida. The haemagglutination inhibition titter against Newcastle Disease virus (NDV), feed conversion ratio, mortality, gross, and histopathology were studied. The results of this study revealed that hemagglutination inhibition titers against NDV were highly significant (P < 0.05) in treated groups, highest titers (3A, 6.8; 3B, 6.4; and 5A, 7.2) were obtained from treated Groups. The feed conversion ratio of N. sativa + C. longa treated groups (5A, 1.57, and 3A, 1.76) were higher than that of other nontreated groups. The gross and histopathological changes were much severe in control positive, but fewer changes were seen in treated groups. Therefore, we recommend that natural feed additives, black cumin (N. sativa) and turmeric (C. longa), act as an immune enhancer in broilers against P. multocida.
Collapse
|
14
|
Ates MB, Ortatatli M. Phase-1 bioactivation mechanisms of aflatoxin through AhR, CAR and PXR nuclear receptors and the interactions with Nigella sativa seeds and thymoquinone in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111774. [PMID: 33396089 DOI: 10.1016/j.ecoenv.2020.111774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Aflatoxins (AFs) are metabolised in two main phases in the liver. Cytochrome p450 enzyme (CYP) 1A1 and CYP2A6 are expressed through AhR, CAR and PXR nuclear receptors in phase-1 biotransformation of AFs. This study is the first to examine phase-1 biotransformation mechanisms of AF and the activity of Nigella sativa seed (NS) and its active ingredient thymoquinone (TQ) on these enzymes and receptors at the molecular level in broilers. Six groups of one day old broiler chicken (20 animals per group) were fed either control feed or a diet containing Aspergillus parasiticus NRRL 2999 culture material (total AFs 2 mg/kg), TQ (300 mg/kg), and NS (5%), either alone or as AF + TQ and AF + NS. Randomly selected from each group, 10 chicks were necropsied, and the livers were removed. Histopathological examination and serum biochemistry results revealed that AF caused hydropic and fatty degenerations, periportal inflammatory infiltrations, acinar arrangement, and biliary duct proliferation in livers and a significant increase at AST, ALT, ALP and GGT levels while significant decreases at serum cholesterol and total protein levels. These aflatoxicosis lesions and deteriorations in biochemistry levels were significantly ameliorated by NS or TQ (p < 0.05). AF was immunohistochemically found to increase strongly the nuclear receptors of AhR, PXR, CAR, and the enzyme activity of CYP1A1 and CYP2A6 responsible for its metabolism, leading to the emergence of toxic effects. Addition of TQ or NS to AF-containing diets improved the negative effects of AF on these receptors and enzymes significantly (p < 0.05). It was concluded that TQ and NS successfully alleviated liver injury by inhibiting or reducing the bioactivation of AF through phase-1 nuclear receptors and CYP-450 enzymes modulation.
Collapse
Affiliation(s)
- Mehmet Burak Ates
- Selcuk University, Faculty of Veterinary Medicine, Department of Pathology, 42130 Konya, Turkey.
| | - Mustafa Ortatatli
- Selcuk University, Faculty of Veterinary Medicine, Department of Pathology, 42130 Konya, Turkey
| |
Collapse
|
15
|
Houdkova M, Albarico G, Doskocil I, Tauchen J, Urbanova K, Tulin EE, Kokoska L. Vapors of Volatile Plant-Derived Products Significantly Affect the Results of Antimicrobial, Antioxidative and Cytotoxicity Microplate-Based Assays. Molecules 2020; 25:E6004. [PMID: 33353127 PMCID: PMC7766725 DOI: 10.3390/molecules25246004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 02/02/2023] Open
Abstract
Volatile plant-derived products were observed to exhibit broad spectrum of biological effects. However, due to their volatility, results of conventional microplate-based bioassays can be significantly affected by the vapors. With aim to demonstrate this phenomenon, antimicrobial, antioxidant, and cytotoxic activities of three essential oils (Alpinia elegans, Cinnamomum iners, and Xanthostemon verdugonianus), one supercritical CO2 extract (Nigella sativa), and four plant-derived compounds (capsaicin, caryophyllene oxide, 8-hydroxyquinoline, and thymoquinone) were evaluated in series of experiments including both ethylene vinyl acetate (EVA) Capmat sealed and nonsealed microplates. The results clearly illustrate that vapor transition to adjoining wells causes false-positive results of bioassays performed in nonsealed microtiter plates. The microplate layout and a duration of the assay were demonstrated as the key aspects defining level of the results affection by the vapors of volatile agents. Additionally, we reported biological activities and chemical composition of essential oils from A. elegans seeds and X. verdugonianus leaves, which were, according to our best knowledge, analyzed for the first time. Considering our findings, certain modifications of conventional microplate-based assays are necessary (e.g., using EVA Capmat as vapor barrier) to obtain reliable results when biological properties of volatile agents are evaluated.
Collapse
Affiliation(s)
- Marketa Houdkova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (M.H.); (G.A.)
| | - Genesis Albarico
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (M.H.); (G.A.)
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic;
| | - Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic;
| | - Klara Urbanova
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic;
| | - Edgardo E. Tulin
- Philrootcrops, Visayas State University, Baybay City 6521, Philippines;
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (M.H.); (G.A.)
| |
Collapse
|
16
|
Haq IU, Hafeez A, Khan RU. Protective effect of Nigella sativa and Saccharomyces cerevisiae on zootechnical characteristics, fecal Escherichia coli and hematopoietic potential in broiler infected with experimental Colibacillosis. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW. Molecular docking, simulation and MM-PBSA studies of nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment. J Biomol Struct Dyn 2020; 39:4225-4233. [PMID: 32462996 PMCID: PMC7298883 DOI: 10.1080/07391102.2020.1775129] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nigella sativa or black seed is used as a medicinal plant around the globe. Oil and seeds have a long tradition of folklore use in various medicinal and food systems. The conventional therapeutic use of Nigella sativa, in different ways, has been reported in several studies to treat different diseases including influenza, headache, hypertension, diabetes, inflammation, eczema, fever, cough, asthma, bronchitis, and fever. Based on previously reported potential therapeutic uses of N. sativa compounds, and keeping in mind the dire need of time for the development of potent antiviral, a combined docking, ADMET properties calculation, molecular dynamics, and MM-PBSA approaches were applied in the current study to check the therapeutic potentials of N. sativa chief constituents against COVID-19. Among the studied compounds, we found that dithymoquinone (DTQ), with binding affinity of −8.6 kcal/mol compared to a positive control (chloroquine, −7.2 kcal/mol) , has the high potential of binding at SARS-CoV-2:ACE2 interface and thus could be predicted as a plausible inhibitor to disrupt viral-host interactions. Molecular dynamics simulation of 100 ns well complemented binding affinity of the compound and revealed strong stability of DTQ at the docked site. Additionally, MM-PBSA also affirms the docking results. Compound DTQ of the present study, if validated in wet lab experiments, could be used to treat COVID-19 and could serve as a lead in the future for development of more effective natural antivirals against COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Sajjad Ahmad
- National Center of Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hyder Wajid Abbasi
- Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sara Shahid
- Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sana Gul
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|