1
|
Subaramaniyam U, Ramalingam D, Balan R, Paital B, Sar P, Ramalingam N. Annonaceous acetogenins as promising DNA methylation inhibitors to prevent and treat leukemogenesis - an in silico approach. J Biomol Struct Dyn 2023:1-14. [PMID: 38149859 DOI: 10.1080/07391102.2023.2297010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Leukemia is a haematological malignancy affecting blood and bone marrow, ranking 10th among the other common cancers. DNA methylation is an epigenetic dysregulation that plays a critical role in leukemogenesis. DNA methyltransferases (DNMTs) such as DNMT1, DNMT3A and DNMT3B are the key enzymes catalysing DNA methylation. Inhibition of DNMT1 with secondary metabolites from medicinal plants helps reverse DNA methylation. The present study focuses on inhibiting DNMT1 protein (PDB ID: 3PTA) with annonaceous acetogenins through in-silico studies. The docking and molecular dynamic (MD) simulation study was carried out using Schrödinger Maestro and Desmond, respectively. These compounds' drug likeliness, ADMET properties and bioactivity scores were analysed. About 76 different acetogenins were chosen for this study, among which 17 showed the highest binding energy in the range of -8.312 to -10.266 kcal/mol. The compounds with the highest negative binding energy were found to be annohexocin (-10.266 kcal/mol), isoannonacinone (-10.209 kcal/mol) and annonacin (-9.839 kcal/mol). MD simulation results reveal that annonacin remains stable throughout the simulation time of 100 ns and also binds to the catalytic domain of DNMT1 protein. From the above results, it can be concluded that annonacin has the potential to inhibit the DNA methylation process and prevent leukemogenesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Udayadharshini Subaramaniyam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Divya Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ranjini Balan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Pranati Sar
- Biotechnology Department, Silver Oak Institute of Science, Silver Oak University, Ahmedabad, India
| | - Nirmaladevi Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
2
|
Sousa LR, Oliveira AGS, Arantes A, Junqueira JGM, Alexandre GP, Severino VGP, Reis RM, Kim B, Ribeiro RIMA. Acetogenins-Rich Fractions of Annona coriacea Suppress Human Glioblastoma Viability and Migration by Regulating Necroptosis and MMP-2 Activity In Vitro. Molecules 2023; 28:molecules28093809. [PMID: 37175219 PMCID: PMC10179884 DOI: 10.3390/molecules28093809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is an incurable primary brain tumor with a poor prognosis. Resection, radiation therapy, and temozolomide (TMZ) are insufficient to increase survival, making the treatment limited. Thus, the search for more effective and specific treatments is essential, making plants a promising source for elucidating new anti-glioblastoma compounds. Accordingly, this study investigated the effects of four fractions of hexane and ethyl acetate extract of Annona coriacea Mart., enriched with acetogenins, against GBM cell lines. All four fractions were selectively cytotoxic to GBM cells when compared to TMZ. Moreover, A. coriacea fractions delayed cell migration; reduced cytoplasmic projections, the metalloproteinase 2 (MMP-2) activity; and induced morphological changes characteristic of necroptosis, possibly correlated with the increase in receptor-interacting protein kinase 1 and 3 (RIP-1 and RIP-3), apoptosis-inducing factor (AIF), and the non-activation of cleaved caspase 8. The present findings reinforce that fractions of A. coriacea Mart. should be considered for more studies focusing treatment of GBM.
Collapse
Affiliation(s)
- Lorena R Sousa
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | - Ana Gabriela S Oliveira
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | - Antônio Arantes
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | - João Gabriel M Junqueira
- Institute of Chemistry, Federal University of Goiás (UFG), University Campus, Goiânia 74968-755, GO, Brazil
| | - Gerso P Alexandre
- Institute of Chemistry, Federal University of Goiás (UFG), University Campus, Goiânia 74968-755, GO, Brazil
| | - Vanessa G P Severino
- Institute of Chemistry, Federal University of Goiás (UFG), University Campus, Goiânia 74968-755, GO, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Bonglee Kim
- College of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Rosy I M A Ribeiro
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| |
Collapse
|
3
|
Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines. Sci Rep 2022; 12:16165. [PMID: 36171339 PMCID: PMC9519583 DOI: 10.1038/s41598-022-20360-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
This study investigated for the first time a simple bio-synthesis approach for the synthesis of copper oxide nanoparticles (CuO NPs) using Annona muricata L (A. muricata) plant extract to test their anti-cancer effects. The presence of CuONPs was confirmed by UV–visible spectroscopy, Scanning electron microscope (SEM), and Transmission electron microscope (TEM). The antiproliferative properties of the synthesized nanoparticles were evaluated against (AMJ-13), (MCF-7) breast cancer cell lines, and the human breast epithelial cell line (HBL-100) as healthy cells. This study indicates that CuONPs reduced cell proliferation for AMJ-13 and MCF-7. HBL-100 cells were not significantly inhibited for several concentration levels or test periods. The outcomes suggest that the prepared copper oxide nanoparticles acted against the growth of specific cell lines observed in breast cancer. It was observed that cancer cells had minor colony creation after 24 h sustained CuONPs exposure using (IC50) concentration for AMJ-13 was (17.04 µg mL−1). While for MCF-7 cells was (18.92 µg mL−1). It indicates the uptake of CuONPs by cancer cells, triggering apoptosis. Moreover, treatment with CuONPs enhanced Lactate dehydrogenase (LDH) production, probably caused by cell membrane damage, creating leaks comprising cellular substances like lactate dehydrogenase. Hence, research results suggested that the synthesized CuONPs precipitated anti-proliferative effects by triggering cell death through apoptosis.
Collapse
|
4
|
A Review on Annona muricata and Its Anticancer Activity. Cancers (Basel) 2022; 14:cancers14184539. [PMID: 36139697 PMCID: PMC9497149 DOI: 10.3390/cancers14184539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is becoming more prevalent, raising concerns regarding how well current treatments work. Cancer patients frequently seek alternative treatments to surgery, chemotherapy, and radiation therapy. The use of medicinal plants in both preventative and curative healthcare is widely acknowledged. The compounds of graviola have shown promise as possible cancer-fighting agents and could be used to treat cancer. This review discusses bioactive metabolites present in graviola and their role in affecting the growth and death of different cancer cell types and the molecular mechanism of how it works to downregulate anti-apoptotic genes and the genes involved in pro-cancer metabolic pathways. Also, it reviews how simultaneously increasing the expression of genes promotes apoptosis and causes cancer cells to die so that the active phytochemicals found in graviola could be used as a promising anti-cancer agent. Abstract The ongoing rise in the number of cancer cases raises concerns regarding the efficacy of the various treatment methods that are currently available. Consequently, patients are looking for alternatives to traditional cancer treatments such as surgery, chemotherapy, and radiotherapy as a replacement. Medicinal plants are universally acknowledged as the cornerstone of preventative medicine and therapeutic practices. Annona muricata is a member of the family Annonaceae and is familiar for its medicinal properties. A. muricata has been identified to have promising compounds that could potentially be utilized for the treatment of cancer. The most prevalent phytochemical components identified and isolated from this plant are alkaloids, phenols, and acetogenins. This review focuses on the role of A. muricata extract against various types of cancer, modulation of cellular proliferation and necrosis, and bioactive metabolites responsible for various pharmacological activities along with their ethnomedicinal uses. Additionally, this review highlights the molecular mechanism of the role of A. muricata extract in downregulating anti-apoptotic and several genes involved in the pro-cancer metabolic pathways and decreasing the expression of proteins involved in cell invasion and metastasis while upregulating proapoptotic genes and genes involved in the destruction of cancer cells. Therefore, the active phytochemicals identified in A. muricata have the potential to be employed as a promising anti-cancer agent.
Collapse
|
5
|
Genistein, a Potential Phytochemical against Breast Cancer Treatment-Insight into the Molecular Mechanisms. Processes (Basel) 2022. [DOI: 10.3390/pr10020415] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignancies in women. Although widespread successful synthetic drugs are available, natural compounds can also be considered as significant anticancer agents for treating BC. Some natural compounds have similar effects as synthetic drugs with fewer side effects on normal cells. Therefore, we aimed to unravel and analyze several molecular mechanisms of genistein (GNT) against BC. GNT is a type of dietary phytoestrogen included in the flavonoid group with a similar structure to estrogen that might provide a strong alternative and complementary medicine to existing chemotherapeutic drugs. Previous research reported that GNT could target the estrogen receptor (ER) human epidermal growth factor receptor-2 (HER2) and several signaling molecules against multiple BC cell lines and sensitize cancer cell lines to this compound when used at an optimal inhibitory concentration. More specifically, GNT mediates the anticancer mechanism through apoptosis induction, arresting the cell cycle, inhibiting angiogenesis and metastasis, mammosphere formation, and targeting and suppressing tumor growth factors. Furthermore, it acts via upregulating tumor suppressor genes and downregulating oncogenes in vitro and animal model studies. In addition, this phytochemical synergistically reverses the resistance mechanism of standard chemotherapeutic drugs, increasing their efficacy against BC. Overall, in this review, we discuss several molecular interactions of GNT with numerous cellular targets in the BC model and show its anticancer activities alone and synergistically. We conclude that GNT can have favorable therapeutic advantages when standard drugs are not available in the pharma markets.
Collapse
|
6
|
Dalal MD, Medithi S. A Review on the Nutraceutical Anti-Metastatic Importance of Annona Muricata Crude Extract (AMCE) and its Coping Mechanism Against Breast Cancer. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220218110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Annona Muricata is used as a folkloric herbal medicine as it has anticancer, antiproliferative and anti-tumorigenic properties. The extracts from various parts of the plant are considered therapeutic due to Annonaceous Acetogenin compounds which are an absolute boon to the versatility of the plant, paving the mechanistic pathways for its therapeutic potential.
Method:
Google Scholar and PubMed databases were reviewed with the main focus on availing information on Annona muricata and its anticancer effect on breast cancer.
Results and Discussion:
- An array of clinical investigations on the dosage of extracts on cell lines, animal models, and human trials provide confirmatory insights of A. muricata as a preventive and therapeutic measure for cancer. The extract when administered at different dosages shows a high cytotoxic effect on the cancer cells, mostly accounting for an IC50 of less than 1000µg/mL which is of significance.
Conclusion -:
Although high efficacy has been conclusive, assurance of the safety prior to commercialization is of significance. Investigations are required to define the origin and magnitude of side effects along with long-term safety for the enhancement of efficacy and optimum utilization of potential chemo-preventive properties of the plant for the curation of a nutraceutical intervention for cancer that surpasses the traditional medicine.
Collapse
Affiliation(s)
- Ms. Dimple Dalal
- Symbiosis Institute of Health Sciences (SIHS),
Symbiosis International (Deemed University),
Pune, Maharashtra, India
| | - Srujana Medithi
- Symbiosis Institute of Health Sciences (SIHS),
Symbiosis International (Deemed University),
Pune, Maharashtra, India
| |
Collapse
|
7
|
Ahmed KA, Hasib TA, Paul SK, Saddam M, Mimi A, Saikat ASM, Faruque HA, Rahman MA, Uddin MJ, Kim B. Potential Role of CCN Proteins in Breast Cancer: Therapeutic Advances and Perspectives. Curr Oncol 2021; 28:4972-4985. [PMID: 34940056 PMCID: PMC8700172 DOI: 10.3390/curroncol28060417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
CCNs are a specific type of matricellular protein, which are essential signaling molecules, and play multiple roles in multicellular eukaryotes. This family of proteins consists of six separate members, which exist only in vertebrates. The architecture of CCN proteins is multi-modular comprising four distinct modules. CCN Proteins achieve their primary functional activities by binding with several integrin7 receptors. The CCN family has been linked to cell adhesion, chemotaxis and migration, mitogenesis, cell survival, angiogenesis, differentiation, tumorigenesis, chondrogenesis, and wound healing, among other biological interactions. Breast cancer is the most commonly diagnosed cancer worldwide and CCN regulated breast cancer stands at the top. A favorable or unfavorable association between various CCNs has been reported in patients with breast carcinomas. The pro-tumorigenic CCN1, CCN2, CCN3, and CCN4 may lead to human breast cancer, although the anti-tumorigenic actions of CCN5 and CCN6 are also present. Several studies have been conducted on CCN proteins and cancer in recent years. CCN1 and CCN3 have been shown to exhibit a dual nature of tumor inhibition and tumor suppression to some extent in quiet recent time. Pharmacological advances in treating breast cancer by targeting CCN proteins are also reported. In our study, we intend to provide an overview of these research works while keeping breast cancer in focus. This information may facilitate early diagnosis, early prognosis and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Kazi Ahsan Ahmed
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Tasnin Al Hasib
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Shamrat Kumar Paul
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Md. Saddam
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Afsana Mimi
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
| | - Hasan Al Faruque
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Md. Ataur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (M.A.R.); (M.J.U.); (B.K.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Women’s University, Seoul 03760, Korea
- Correspondence: (M.A.R.); (M.J.U.); (B.K.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (M.A.R.); (M.J.U.); (B.K.)
| |
Collapse
|