1
|
Yang HR, Wang H, Wang P, Liu FZ, Chai HX, Cai CH, Yang L, Yuan JZ, Jiang B, Mei WL, Dai HF. Bi-2-(2-phenethyl)chromone derivatives from agarwood of Aquilaria filaria in the Philippines. PHYTOCHEMISTRY 2024; 222:114108. [PMID: 38663825 DOI: 10.1016/j.phytochem.2024.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/14/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Twelve undescribed 2-(2-phenethyl)chromone dimers (1-12) were isolated from EtOAc extract of agarwood originating from Aquilaria filaria in the Philippines, guided by a UHPLC-MS analysis. Their structures were elucidated by 1D NMR, 2D NMR, and HR-ESI-MS spectra. The absolute configuration of 2-(2-phenylethyl)chromone dimers was determined by single-crystal X-ray diffraction analysis and comparison of the experimental and calculated ECD spectra. Compounds 1, 2, 5 and 9-12 exhibited potent to moderate anti-inflammatory activity with IC50 values in the range of 22.43 ± 0.86 to 53.88 ± 4.06 μM.
Collapse
Affiliation(s)
- Hong-Run Yang
- International Joint Research Center of Agarwood, Haikou, 571101, PR China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali, 671000, PR China
| | - Hao Wang
- International Joint Research Center of Agarwood, Haikou, 571101, PR China
| | - Pei Wang
- International Joint Research Center of Agarwood, Haikou, 571101, PR China
| | - Fang-Zheng Liu
- International Joint Research Center of Agarwood, Haikou, 571101, PR China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali, 671000, PR China
| | - Hong-Xing Chai
- International Joint Research Center of Agarwood, Haikou, 571101, PR China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali, 671000, PR China
| | - Cai-Hong Cai
- International Joint Research Center of Agarwood, Haikou, 571101, PR China
| | - Li Yang
- International Joint Research Center of Agarwood, Haikou, 571101, PR China
| | - Jing-Zhe Yuan
- International Joint Research Center of Agarwood, Haikou, 571101, PR China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali, 671000, PR China
| | - Wen-Li Mei
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; International Joint Research Center of Agarwood, Haikou, 571101, PR China.
| | - Hao-Fu Dai
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; International Joint Research Center of Agarwood, Haikou, 571101, PR China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali, 671000, PR China.
| |
Collapse
|
2
|
Li X, Fang X, Cui Z, Hong Z, Liu X, Li G, Hu H, Xu D. Anatomical, chemical and endophytic fungal diversity of a Qi-Nan clone of Aquilaria sinensis (Lour.) Spreng with different induction times. FRONTIERS IN PLANT SCIENCE 2024; 15:1320226. [PMID: 38590741 PMCID: PMC10999641 DOI: 10.3389/fpls.2024.1320226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
Recently, some new Qi-Nan clones of Aquilaria sinensis (Lour.) Spreng which intensively produces high-quality agarwood have been identified and propagated through grafting techniques. Previous studies have primarily focused on ordinary A. sinensis and the differences in composition when compared to Qi-Nan and ordinary A. sinensis. There are few studies on the formation mechanism of Qi-Nan agarwood and the dynamic changes in components and endophytic fungi during the induction process. In this paper, the characteristics, chemical composition, and changes in endophytic fungi of Qi-Nan agarwood induced after 1 year, 2 years, and 3 years were studied, and Qi-Nan white wood was used as the control. The results showed that the yield of Qi-Nan agarwood continued to increase with the induction time over a period of 3 years, while the content of alcohol extract from Qi-Nan agarwood reached its peak at two years. During the formation of agarwood, starch and soluble sugars in xylem rays and interxylary phloem are consumed and reduced. Most of the oily substances in agarwood were filled in xylem ray cells and interxylary phloem, and a small amount was filled in xylem vessels. The main components of Qi-Nan agarwood are also chromones and sesquiterpenes. With an increasing induction time, the content of sesquiterpenes increased, while the content of chromones decreased. The most abundant chromones in Qi-Nan agarwood were 2-(2-Phenethyl) chromone, 2-[2-(3-Methoxy-4-hydroxyphenyl) ethyl] chromone, and2-[2-(4-Methoxyphenyl) ethyl] chromone. Significant differences were observed in the species of the endophytic fungi found in Qi-Nan agarwood at different induction times. A total of 4 phyla, 73 orders, and 448 genera were found in Qi-Nan agarwood dominated by Ascomycota and Basidiomycota. Different induction times had a significant effect on the diversity of the endophytic fungal community in Qi-Nan. After the induction of agarwood formation, the diversity of Qi-Nan endophytic fungi decreased. Correlation analysis showed that there was a significant positive correlation between endophytic fungi and the yield, alcohol extract content, sesquiterpene content, and chromone content of Qi-Nan agarwood, which indicated that endophytic fungi play a role in promoting the formation of Qi-Nan agarwood. Qi-Nan agarwood produced at different induction times exhibited strong antioxidant capacity. DPPH free radical scavenging activity and reactive oxygen species clearance activity were significantly positively correlated with the content of sesquiterpenes and chromones in Qi-Nan agarwood.
Collapse
Affiliation(s)
- Xiaofei Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiaoying Fang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Zhiyi Cui
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Zhou Hong
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Xiaojin Liu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Gaiyun Li
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Houzhen Hu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Daping Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
4
|
Zhou H, Li XY, Fang HB, Jiang HZ, Cheng YX. Five new sesquiterpenoids from agarwood of Aquilaria sinensis. Beilstein J Org Chem 2023; 19:998-1007. [PMID: 37404799 PMCID: PMC10315886 DOI: 10.3762/bjoc.19.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
Five new eudesmane-type sesquiterpenoids (aquisinenoids F-J (1-5)) and five known compounds (6-10) were isolated from the agarwood of Aquilaria sinensis. Their structures, including absolute configurations, were identified by comprehensive spectroscopic analyses and computational methods. Inspired by our previous study on the same kinds of skeletons, we speculated that the new compounds have anticancer and anti-inflammatory activities. The results did not show any activity, but they revealed the structure-activity relationships (SAR).
Collapse
Affiliation(s)
- Hong Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Xu-Yang Li
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Hong-Bin Fang
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - He-Zhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yong-Xian Cheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
5
|
Yang J, Hu DB, Xia MY, Luo JF, Li XY, Wang YH. Bioassay-guided isolation of cytotoxic constituents from the flowers of Aquilaria sinensis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:11. [PMID: 35364755 PMCID: PMC8975978 DOI: 10.1007/s13659-022-00334-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Bioassay-guided fractionation of the EtOH extract from the flowers of Aquilaria sinensis (Lour.) Spreng. (Thymelaeaceae) led to the isolation of a new cucurbitane-type triterpenoid, aquilarolide A (1), along with five known compounds (2-6). The structure of 1 was elucidated by extensive 1D and 2D nuclear magnetic resonance (NMR) experiments and mass spectrometry (MS) data and theoretical calculations of its electronic circular dichroism (ECD) spectra. Aquilarolide A, cucurbitacin E (3), cucurbitacin B (4), and 7-hydroxy-6-methoxy-2-[2-(4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one (6) showed significant cytotoxicity against human lung adenocarcinoma SPC-A-1, human lung squamous cell carcinoma NCI-H520, human lung adenocarcinoma A549, and paclitaxel-resistant A549 (A549/Taxol) cell lines. All four active compounds, with IC50 values ranging from 0.002 to 0.91 μM, had better inhibitory activities against A549/Taxol cells than paclitaxel (IC50 = 1.80 μM). Among them, cucurbitacin E (IC50 = 0.002 μM) is the most active. Further studies are needed to evaluate their in vivo antitumor activities and to clarify their mechanisms.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Dong-Bao Hu
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi, 653100, People's Republic of China
| | - Meng-Yuan Xia
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ji-Feng Luo
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xing-Yu Li
- College of Science, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
6
|
Zhang L, Yi P, Yan H, Li XN, Xia MY, Yang J, Luo JF, He YQ, Wang YH. Five new 2-(2-phenylethyl)chromone derivatives and three new sesquiterpenoids from the heartwood of Aquilaria sinensis, an aromatic medicine in China. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:2. [PMID: 35088157 PMCID: PMC8795264 DOI: 10.1007/s13659-022-00326-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Five new 2-(2-phenylethyl)chromone derivatives, (5S,6R,7R,8S,7'R)-7'-hydroxyagarotetrol (1), (5S,6R,7R,8S,7'S)-7'-hydroxyagarotetrol (2), (6S,7S,8R)-2‑[2‑(4-methoxyphenyl)ethyl]‑6,7,8‑trihydroxy‑5,6,7,8‑tetrahydrochromone (3), (6S,7S,8R)-2‑(2-phenylethyl)‑6,7,8‑trihydroxy‑5,6,7,8‑tetrahydrochromone (4), (5S,6R,7S,8R)-2-(2-phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tetrahydro-8-[2-(2-phenylethyl)-7-methoxychromonyl-6-oxy]chromone (5), three new sesquiterpenoids, (4S,5S,7S,8S,10S,13R)-7,8,13-trihydroxyrotunda-1,11-dien-3-one (6), (4S,5S,7S,8S,10S,13S)-7,8,13-trihydroxyrotunda-1,11-dien-3-one (7), and (4R,5S,7S,8S,10S,13S)-7,8,13-trihydroxyrotunda-1,11-dien-3-one (8), along with 14 known compounds were isolated from the resinous heartwood of Aquilaria sinensis (Thymelaeaceae). The chemical structures of these new compounds were elucidated by 1D and 2D NMR and MS data, single-crystal X-ray diffraction analysis, and electronic circular dichroism (ECD) calculations. The neuroprotective activities of these isolates were evaluated using an in vitro model of rat adrenal pheochromocytoma (PC12) cell injury induced by corticosterone. At concentrations from 5 to 40 µM, compounds 4 and 6, agarotetrol (9), and 6-hydroxy-2-(2-phenylethyl)chromone (17) showed significant protective activities against corticosterone-induced PC12 cell injury (P < 0.001).
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ping Yi
- Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang, 550014, People's Republic of China
| | - Hui Yan
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiao-Nian Li
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Meng-Yuan Xia
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Jun Yang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ji-Feng Luo
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Yue-Qiu He
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
| | - Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
7
|
Baldovini N. The Chemistry of Agarwood Odorants. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 118:47-100. [PMID: 35416517 DOI: 10.1007/978-3-030-92030-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The phytochemistry of the fragrant infected heartwood of Aquilaria and Gyrinops species, agarwood (oud), is critically reviewed, highlighting the use of this remarkable natural raw material in perfumery. The chemistry of the two main groups of constituents of agarwood (sesquiterpenoids and chromones) is discussed, focusing particularly on the former structural type. The identities of the main key odorants of agarwood essential oil and of the smoke produced by heating the wood of agarwood are also discussed.
Collapse
Affiliation(s)
- Nicolas Baldovini
- Institut de Chimie de Nice, Université Côte d'Azur, Parc Valrose, 06108, Nice, France.
| |
Collapse
|