1
|
Shumyantseva VV, Pronina VV, Bulko TV, Agafonova LE. Electroanalysis in Pharmacogenomic Studies: Mechanisms of Drug Interaction with DNA. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S224-S233. [PMID: 38621752 DOI: 10.1134/s0006297924140128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 04/17/2024]
Abstract
The review discusses electrochemical methods for analysis of drug interactions with DNA. The electroanalysis method is based on the registration of interaction-induced changes in the electrochemical oxidation potential of heterocyclic nitrogenous bases in the DNA molecule and in the maximum oxidation current amplitude. The mechanisms of DNA-drug interactions can be identified based on the shift in the electrooxidation potential of heterocyclic nitrogenous bases toward more negative (cathodic) or positive (anodic) values. Drug intercalation into DNA shifts the electrochemical oxidation potential to positive values, indicating thermodynamically unfavorable process that hinders oxidation of nitrogenous bases in DNA. The potential shift toward the negative values indicates electrostatic interactions, e.g., drug binding in the DNA minor groove, since this process does not interfere with the electrochemical oxidation of bases. The concentration-dependent decrease in the intensity of electrochemical oxidation of DNA bases allows to quantify the type of interaction and calculate the binding constants.
Collapse
Affiliation(s)
- Victoria V Shumyantseva
- Orekhovich Research Institute of Biomedical Chemistry, Laboratory of Bioelectrochemistry, Moscow, 119121, Russia.
- Department of Biochemistry, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Veronica V Pronina
- Orekhovich Research Institute of Biomedical Chemistry, Laboratory of Bioelectrochemistry, Moscow, 119121, Russia
| | - Tatiana V Bulko
- Orekhovich Research Institute of Biomedical Chemistry, Laboratory of Bioelectrochemistry, Moscow, 119121, Russia
| | - Lyubov E Agafonova
- Orekhovich Research Institute of Biomedical Chemistry, Laboratory of Bioelectrochemistry, Moscow, 119121, Russia
| |
Collapse
|
2
|
Yadav A, Srivastava S, Tyagi S, Krishna N, Katara P. In-silico mining to glean SNPs of pharmaco-clinical importance: an investigation with reference to the Indian populated SNPs. In Silico Pharmacol 2023; 11:17. [PMID: 37484779 PMCID: PMC10356698 DOI: 10.1007/s40203-023-00154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Drugs pharmacology is defined by pharmacokinetics and pharmacodynamics and both of them are affected by genetic variability. Genetic variability varies from population to population, and sometimes even within the population, it exists. Single nucleotide polymorphisms (SNPs) are one of the major genetic variability factors which are found to be associated with the pharmacokinetics and pharmacodynamics process of a drug and are responsible for variable drug response and clinical phenotypes. Studies of SNPs can help to perform genome-wide association studies for their association with pharmacological and clinical events, at the same time; their information can direct genome-wide association studies for their use as biomarkers. With the aim to mine and characterize Indian populated SNPs of pharmacological and clinical importance. Two hundred six candidate SNPs belonging to 43 genes were retrieved from Indian Genome Variation Database. The distribution pattern of considered SNPs was observed against all five world super-populations (AFR, AMR, EAS, EUR, and SAS). Further, their annotation was done through SNP-nexus by considering Human genome reference builds - hg38, pharmacological and clinical information was supplemented by PharmGKB and ClinVar database. At last, to find out the association between SNPs linkage disequilibrium was observed in terms of r2. Overall, the study reported 53 pharmaco-clinical active SNPs and found 24 SNP-pairs as potential markers, and recommended their clinical and experimental validation. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00154-4.
Collapse
Affiliation(s)
- Anamika Yadav
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002 India
| | - Shivani Srivastava
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002 India
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002 India
| | - Shivani Tyagi
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002 India
| | - Neelam Krishna
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002 India
| | - Pramod Katara
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, 211002 India
| |
Collapse
|
3
|
Rather MA, Agarwal D, Bhat TA, Khan IA, Zafar I, Kumar S, Amin A, Sundaray JK, Qadri T. Bioinformatics approaches and big data analytics opportunities in improving fisheries and aquaculture. Int J Biol Macromol 2023; 233:123549. [PMID: 36740117 DOI: 10.1016/j.ijbiomac.2023.123549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Aquaculture has witnessed an excellent growth rate during the last two decades and offers huge potential to provide nutritional as well as livelihood security. Genomic research has contributed significantly toward the development of beneficial technologies for aquaculture. The existing high throughput technologies like next-generation technologies generate oceanic data which requires extensive analysis using appropriate tools. Bioinformatics is a rapidly evolving science that involves integrating gene based information and computational technology to produce new knowledge for the benefit of aquaculture. Bioinformatics provides new opportunities as well as challenges for information and data processing in new generation aquaculture. Rapid technical advancements have opened up a world of possibilities for using current genomics to improve aquaculture performance. Understanding the genes that govern economically relevant characteristics, necessitates a significant amount of additional research. The various dimensions of data sources includes next-generation DNA sequencing, protein sequencing, RNA sequencing gene expression profiles, metabolic pathways, molecular markers, and so on. Appropriate bioinformatics tools are developed to mine the biologically relevant and commercially useful results. The purpose of this scoping review is to present various arms of diverse bioinformatics tools with special emphasis on practical translation to the aquaculture industry.
Collapse
Affiliation(s)
- Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India.
| | - Deepak Agarwal
- Institute of Fisheries Post Graduation Studies OMR Campus, Vaniyanchavadi, Chennai, India
| | | | - Irfan Ahamd Khan
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Pakistan
| | - Sujit Kumar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Pakistan
| | - Adnan Amin
- Postgraduate Institute of Fisheries Education and Research Kamdhenu University, Gandhinagar-India University of Kurasthra, India; Department of Aquatic Environmental Management, Faculty of Fisheries Rangil- Ganderbel -SKUAST-K, India
| | - Jitendra Kumar Sundaray
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India
| | - Tahiya Qadri
- Division of Food Science and Technology, SKUAST-K, Shalimar, India
| |
Collapse
|
4
|
Alimardan Z, Abbasi M, Khodarahmi G, Kashfi K, Hasanzadeh F, Mahmud A. Identification of new small molecules as dual FoxM1 and Hsp70 inhibitors using computational methods. Res Pharm Sci 2022; 17:635-656. [PMID: 36704430 PMCID: PMC9872178 DOI: 10.4103/1735-5362.359431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Background and purpose FoxM1 and Hsp70 proteins are highly expressed in many cancers. Thus, their inhibition serves as Bonafede targets in cancer treatment. Experimental approach FDI-6, an inhibitor of FoxM1, was selected as a template, and based on its structure, a new library from the ZINC database was obtained. Virtual screening was then performed using the created pharmacophore model. The second virtual screening phase was conducted with molecular docking to get the best inhibitor for both FoxM1 and Hsp70 active sites. In silico, ADMET properties were also calculated. Finally, molecular dynamics simulation was performed on the best ligand, ZINC1152745, for both Hsp70 and FoxM1 proteins during 100 ns. Findings / Results The results of this study indicated that ZINC1152745 was stable in the active site of both proteins, Hsp70 and FoxM1. The final scaffold identified by the presented computational approach could offer a hit compound for designing promising anticancer agents targeting both FoxM1 and Hsp70. Conclusion and implications Molecular dynamics simulations were performed on ZINC1152745 targeting FoxM1 and Hsp70 active sites. The results of several hydrogen bonds, the radius of gyration, RMSF, RMSD, and free energy during the simulations showed good stability of ZINC1152745 with FoxM1 and Hsp70.
Collapse
Affiliation(s)
- Zahra Alimardan
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, I.R. Iran,Corresponding authors: M. Abbasi, Tel: +987633710406, Fax: +98- Gh.A. Khodarahmi, Tel: +98-3137927095, Fax: +98-3136680011
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Corresponding authors: M. Abbasi, Tel: +987633710406, Fax: +98- Gh.A. Khodarahmi, Tel: +98-3137927095, Fax: +98-3136680011
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA,Graduate Program in Biology, City University of New York Graduate Center, New York, USA,Department of Chemistry and Physics, State University of New York at Old Westbury, New York, USA
| | - Farshid Hasanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Aghaei Mahmud
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
5
|
Singh S, Singh DB, Gautam B, Singh A, Yadav N. Pharmacokinetics and pharmacodynamics analysis of drug candidates. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
El-Emam SZ, Abo El-Ella DM, Fayez SM, Asker M, Nazeam JA. Novel dandelion mannan-lipid nanoparticle: Exploring the molecular mechanism underlying the potent anticancer effect against non-small lung carcinoma. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Malik A, Naz A, Ahmad S, Hafeez M, Awan FM, Jafar TH, Zahid A, Ikram A, Rauff B, Hassan M. Inhibitory Potential of Phytochemicals on Interleukin-6-Mediated T-Cell Reduction in COVID-19 Patients: A Computational Approach. Bioinform Biol Insights 2021; 15:11779322211021430. [PMID: 34163151 PMCID: PMC8191067 DOI: 10.1177/11779322211021430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A recent COVID-19 pandemic has resulted in a large death toll rate globally and even no cure or vaccine has been successfully employed to combat this disease. Patients have been reported with multi-organ dysfunction along with acute respiratory distress syndrome which implies a critical situation for patients and made them difficult to breathe and survive. Moreover, pathology of COVID-19 is also related to cytokine storm which indicates the elevated levels of interleukin (IL)-1, IL-6, IL-12, and IL-18 along with tumor necrosis factor (TNF)-α. Among them, the proinflammatory cytokine IL-6 has been reported to be induced via binding of severe acute respiratory syndrome coronavirus 2 (SARS)-CoV-2 to the host receptors. METHODOLOGY Interleukin-6 blockade has been proposed to constitute novel therapeutics against COVID-19. Thus, in this study, 15 phytocompounds with known antiviral activity have been subjected to test for their inhibitory effect on IL-6. Based on the affinity prediction, top 3 compounds (isoorientin, lupeol, and andrographolide) with best scores were selected for 50 ns molecular dynamics simulation and MMGB/PBSA binding free energy analysis. RESULTS Three phytocompounds including isoorientin, lupeol, and andrographolide have shown strong interactions with the targeted protein IL-6 with least binding energies (-7.1 to -7.7 kcal/mol). Drug-likeness and ADMET profiles of prioritized phytocompounds are also very prominsing and can be further tested to be potential IL-6 blockers and thus benficial for COVID-19 treatment. The moelcular dynamics simulation couple with MMGB/PBSA binding free energy estimation validated conformational stability of the ligands and stronger intermolecular binding. The mean RMSD of the complexes is as: IL6-isoorientin complex (3.97 Å ± 0.77), IL6-lupeol (3.97 Å ± 0.76), and IL6-andrographolide complex (3.96 Å ± 0.77). In addition, the stability observation was affirmed by compounds mean RMSD: isoorientin (0.72 Å ± 0.32), lupeol (mean 0.38 Å ± 0.08), and andrographolide (1.09 Å ± 0.49). A similar strong agreement on systems stability was unraveled by MMGB/PBSA that found net binding net ~ -20 kcal/mol for the complexes dominated by van der Waal interaction energy. CONCLUSION It has been predicted that proposing potential IL-6 inhibitors with less side effects can help critical COVID-19 patients because it may control the cytokine storm, a major responsible factor of its pathogenesis. In this study, 3 potential phytocompounds have been proposed to have inhibitory effect on IL-6 that can be tested as potential therapeutic options against SARS-CoV-2.
Collapse
Affiliation(s)
- Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Sajjad Ahmad
- Foundation University Medical College, Foundation University Islamabad, Islamabad, Pakistan
| | - Mansoor Hafeez
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Tassadaq Hussain Jafar
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Ayesha Zahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Bisma Rauff
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| |
Collapse
|
8
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Babes EE, Brisc C, Stoicescu M, Toma MM, Sava C, Bungau SG. Bioinformatics Accelerates the Major Tetrad: A Real Boost for the Pharmaceutical Industry. Int J Mol Sci 2021; 22:6184. [PMID: 34201152 PMCID: PMC8227524 DOI: 10.3390/ijms22126184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/01/2023] Open
Abstract
With advanced technology and its development, bioinformatics is one of the avant-garde fields that has managed to make amazing progress in the pharmaceutical-medical field by modeling the infrastructural dimensions of healthcare and integrating computing tools in drug innovation, facilitating prevention, detection/more accurate diagnosis, and treatment of disorders, while saving time and money. By association, bioinformatics and pharmacovigilance promoted both sample analyzes and interpretation of drug side effects, also focusing on drug discovery and development (DDD), in which systems biology, a personalized approach, and drug repositioning were considered together with translational medicine. The role of bioinformatics has been highlighted in DDD, proteomics, genetics, modeling, miRNA discovery and assessment, and clinical genome sequencing. The authors have collated significant data from the most known online databases and publishers, also narrowing the diversified applications, in order to target four major areas (tetrad): DDD, anti-microbial research, genomic sequencing, and miRNA research and its significance in the management of current pandemic context. Our analysis aims to provide optimal data in the field by stratification of the information related to the published data in key sectors and to capture the attention of researchers interested in bioinformatics, a field that has succeeded in advancing the healthcare paradigm by introducing developing techniques and multiple database platforms, addressed in the manuscript.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram 122413, India;
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
9
|
Kesharwani A, Chaurasia DK, Katara P. Repurposing of FDA approved drugs and their validation against potential drug targets for Salmonella enterica through molecular dynamics simulation. J Biomol Struct Dyn 2021; 40:6255-6271. [PMID: 33525976 DOI: 10.1080/07391102.2021.1880482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Salmonella is a widely distributed pathogen causing infection of intestinal tract, typhoid, and paratyphoid fever. Number of drugs was developed against salmonella, but in the last few decades due to the emergence of drug resistant strains, most of these drugs became dormant. As a result Salmonellosis emerges as a trivial cause of human mortality worldwide; therefore, there is an urgent need for unexploited drug targets and drugs to treat Salmonellosis. As development of new drug molecules is very time consuming and costly, drug repurposing is in consideration as a better alternative. With the aim to identify a new drug molecule against the Salmonella through repurposing approach, we utilized 14 well reported druggable targets known to play a vital role in the life cycle of pathogens. These targets were used to screen DrugBank and got 53 FDA approved drugs against them. To find the interaction between considered target proteins and screened drugs, molecular docking was performed. Fourteen docked drug-target complexes with reasonable binding affinities were subjected to Molecular Dynamics Simulation (MDS) at 150 ns, using Amber18. At the end MMPBSA and MMGBSA calculations were performed for all stable complexes and finally, got 3 precise and favourable complexes, i.e. ArcB-Cefpiramide, MrcB-Cefoperazone, and PhoQ-Carindacillin. Rigorous structural and energetic analysis for these complexes validates the potential of drug molecules to act as therapeutic drugs against Salmonella enterica. With this study we hypothesize that the drugs Cefpiramide (DB00430), Cefoperazone (DB01329) and Carindacillin (DB09319) will be the good repurposed-drugs for the treatment of Salmonellosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akanksha Kesharwani
- Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Dheeraj Kumar Chaurasia
- Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj, Uttar Pradesh, India.,Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, New Delhi, India
| | - Pramod Katara
- Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
10
|
Borba JVVB, Silva AC, Lima MNN, Mendonca SS, Furnham N, Costa FTM, Andrade CH. Chemogenomics and bioinformatics approaches for prioritizing kinases as drug targets for neglected tropical diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:187-223. [PMID: 33632465 DOI: 10.1016/bs.apcsb.2020.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) are a group of twenty-one diseases classified by the World Health Organization that prevail in regions with tropical and subtropical climate and affect more than one billion people. There is an urgent need to develop new and safer drugs for these diseases. Protein kinases are a potential class of targets for developing new drugs against NTDs, since they play crucial role in many biological processes, such as signaling pathways, regulating cellular communication, division, metabolism and death. Bioinformatics is a field that aims to organize large amounts of biological data as well as develop and use tools for understanding and analyze them in order to produce meaningful information in a biological manner. In combination with chemogenomics, which analyzes chemical-biological interactions to screen ligands against selected targets families, these approaches can be used to stablish a rational strategy for prioritizing new drug targets for NTDs. Here, we describe how bioinformatics and chemogenomics tools can help to identify protein kinases and their potential inhibitors for the development of new drugs for NTDs. We present a review of bioinformatics tools and techniques that can be used to define an organisms kinome for drug prioritization, drug and target repurposing, multi-quinase inhibition approachs and selectivity profiling. We also present some successful examples of the application of such approaches in recent case studies.
Collapse
Affiliation(s)
- Joyce Villa Verde Bastos Borba
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Tropical Diseases-Prof. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, SP, Brazil
| | - Arthur Carvalho Silva
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marilia Nunes Nascimento Lima
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sabrina Silva Mendonca
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, SP, Brazil
| | - Carolina Horta Andrade
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil; Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
11
|
Jhawat V, Gulia M, Gupta S, Maddiboyina B, Dutt R. Integration of pharmacogenomics and theranostics with nanotechnology as quality by design (QbD) approach for formulation development of novel dosage forms for effective drug therapy. J Control Release 2020; 327:500-511. [PMID: 32858073 DOI: 10.1016/j.jconrel.2020.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
To cater to medication needs in the future healthcare system, we need to shift from the conventional system of drug delivery to modern molecular signature-based drug delivery systems. The current drug therapies are either less effective, ineffective, or produce numerous adverse reactions. One scientific principle or discipline cannot adequately address all the problems, so we need an innovative application of the current scientific principles. Here we are proposing a novel concept of nanoformulation based on pharmacogenomics and theranostics for personalized error-free and targeted therapeutic agent delivery. The addition of more knowledge about the human genome opens the new way to study disease-gene, gene-drug, and drug-effect interactions, which is the basis of future medicines. Pharmacogenomics provides information about the disease etiology, role in genes in disease pathophysiology, disease biomarkers, drug targets, drug effects, and the fate of drugs inside the body. Theranostics approach utilizes the above information in diagnosis, treatment, and monitoring of the disease on a real-time basis. Personalized dosage forms can be formulated into a nanoformulation that provides a better therapeutic effect and minimizes adverse drug reactions. The therapeutic system needs to be shifted from the principle of one drug fits all to one drug unique population. In the present manuscript, we tried to conceptualize a modern therapeutic system by combining the three approaches viz. pharmacogenomics, theranostics, and nanotechnology applied in the area of formulation development to produce a multifunctional single tiny entity.
Collapse
Affiliation(s)
- Vikas Jhawat
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India.
| | - Monika Gulia
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, Haryana, India
| | - Balaji Maddiboyina
- Department of Pharmaceutical Sciences, Vishwa Bharathi College of Pharmaceutical Sciences, Guntur, A.P, India
| | - Rohit Dutt
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
12
|
Reckoning the Dearth of Bioinformatics in the Arena of Diabetic Nephropathy (DN)—Need to Improvise. Processes (Basel) 2020. [DOI: 10.3390/pr8070808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Diabetic nephropathy (DN) is a recent rising concern amongst diabetics and diabetologist. Characterized by abnormal renal function and ending in total loss of kidney function, this is becoming a lurking danger for the ever increasing population of diabetics. This review touches upon the intensity of this complication and briefly reviews the role of bioinformatics in the area of diabetes. The advances made in the area of DN using proteomic approaches are presented. Compared to the enumerable inputs observed through the use of bioinformatics resources in the area of proteomics and even diabetes, the existing scenario of skeletal application of bioinformatics advances to DN is highlighted and the reasons behind this discussed. As this review highlights, almost none of the well-established tools that have brought breakthroughs in proteomic research have been applied into DN. Laborious, voluminous, cost expensive and time-consuming methodologies and advances in diagnostics and biomarker discovery promised through beckoning bioinformatics mechanistic approaches to improvise DN research and achieve breakthroughs. This review is expected to sensitize the researchers to fill in this gap, exploiting the available inputs from bioinformatics resources.
Collapse
|
13
|
Pharmacogenes (PGx-genes): Current understanding and future directions. Gene 2019; 718:144050. [DOI: 10.1016/j.gene.2019.144050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022]
|
14
|
Bioinformatics for Marine Products: An Overview of Resources, Bottlenecks, and Perspectives. Mar Drugs 2019; 17:md17100576. [PMID: 31614509 PMCID: PMC6835618 DOI: 10.3390/md17100576] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
The sea represents a major source of biodiversity. It exhibits many different ecosystems in a huge variety of environmental conditions where marine organisms have evolved with extensive diversification of structures and functions, making the marine environment a treasure trove of molecules with potential for biotechnological applications and innovation in many different areas. Rapid progress of the omics sciences has revealed novel opportunities to advance the knowledge of biological systems, paving the way for an unprecedented revolution in the field and expanding marine research from model organisms to an increasing number of marine species. Multi-level approaches based on molecular investigations at genomic, metagenomic, transcriptomic, metatranscriptomic, proteomic, and metabolomic levels are essential to discover marine resources and further explore key molecular processes involved in their production and action. As a consequence, omics approaches, accompanied by the associated bioinformatic resources and computational tools for molecular analyses and modeling, are boosting the rapid advancement of biotechnologies. In this review, we provide an overview of the most relevant bioinformatic resources and major approaches, highlighting perspectives and bottlenecks for an appropriate exploitation of these opportunities for biotechnology applications from marine resources.
Collapse
|
15
|
Lysenko A, Sharma A, Boroevich KA, Tsunoda T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci Alliance 2018; 1:e201800098. [PMID: 30515477 PMCID: PMC6262234 DOI: 10.26508/lsa.201800098] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
Recent trends in drug development have been marked by diminishing returns caused by the escalating costs and falling rates of new drug approval. Unacceptable drug toxicity is a substantial cause of drug failure during clinical trials and the leading cause of drug withdraws after release to the market. Computational methods capable of predicting these failures can reduce the waste of resources and time devoted to the investigation of compounds that ultimately fail. We propose an original machine learning method that leverages identity of drug targets and off-targets, functional impact score computed from Gene Ontology annotations, and biological network data to predict drug toxicity. We demonstrate that our method (TargeTox) can distinguish potentially idiosyncratically toxic drugs from safe drugs and is also suitable for speculative evaluation of different target sets to support the design of optimal low-toxicity combinations.
Collapse
Affiliation(s)
- Artem Lysenko
- Laboratory for Medical Science Mathematics, Rikagaku Kenkyūjyo Center for Integrative Medical Sciences, Tsurumi, Japan
| | - Alok Sharma
- Laboratory for Medical Science Mathematics, Rikagaku Kenkyūjyo Center for Integrative Medical Sciences, Tsurumi, Japan
- School of Engineering and Physics, University of the South Pacific, Suva, Fiji
| | - Keith A Boroevich
- Laboratory for Medical Science Mathematics, Rikagaku Kenkyūjyo Center for Integrative Medical Sciences, Tsurumi, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Rikagaku Kenkyūjyo Center for Integrative Medical Sciences, Tsurumi, Japan
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Core Research for Evolutionary Science and Technology Program, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
16
|
Overview of Trends in the Application of Metagenomic Techniques in the Analysis of Human Enteric Viral Diversity in Africa's Environmental Regimes. Viruses 2018; 10:v10080429. [PMID: 30110939 PMCID: PMC6115975 DOI: 10.3390/v10080429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
There has been an increase in the quest for metagenomics as an approach for the identification and study of the diversity of human viruses found in aquatic systems, both for their role as waterborne pathogens and as water quality indicators. In the last few years, environmental viral metagenomics has grown significantly and has enabled the identification, diversity and entire genome sequencing of viruses in environmental and clinical samples extensively. Prior to the arrival of metagenomics, traditional molecular procedures such as the polymerase chain reaction (PCR) and sequencing, were mostly used to identify and classify enteric viral species in different environmental milieu. After the advent of metagenomics, more detailed reports have emerged about the important waterborne viruses identified in wastewater treatment plant effluents and surface water. This paper provides a review of methods that have been used for the concentration, detection and identification of viral species from different environmental matrices. The review also takes into consideration where metagenomics has been explored in different African countries, as well as the limitations and challenges facing the approach. Procedures including sample processing, experimental design, sequencing technology, and bioinformatics analysis are discussed. The review concludes by summarising the current thinking and practices in the field and lays bare key issues that those venturing into this field need to consider and address.
Collapse
|
17
|
Vincent AT, Bourbonnais Y, Brouard JS, Deveau H, Droit A, Gagné SM, Guertin M, Lemieux C, Rathier L, Charette SJ, Lagüe P. Implementing a web-based introductory bioinformatics course for non-bioinformaticians that incorporates practical exercises. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 46:31-38. [PMID: 28902453 DOI: 10.1002/bmb.21086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
A recent scientific discipline, bioinformatics, defined as using informatics for the study of biological problems, is now a requirement for the study of biological sciences. Bioinformatics has become such a powerful and popular discipline that several academic institutions have created programs in this field, allowing students to become specialized. However, biology students who are not involved in a bioinformatics program also need a solid toolbox of bioinformatics software and skills. Therefore, we have developed a completely online bioinformatics course for non-bioinformaticians, entitled "BIF-1901 Introduction à la bio-informatique et à ses outils (Introduction to bioinformatics and bioinformatics tools)," given by the Department of Biochemistry, Microbiology, and Bioinformatics of Université Laval (Quebec City, Canada). This course requires neither a bioinformatics background nor specific skills in informatics. The underlying main goal was to produce a completely online up-to-date bioinformatics course, including practical exercises, with an intuitive pedagogical framework. The course, BIF-1901, was conceived to cover the three fundamental aspects of bioinformatics: (1) informatics, (2) biological sequence analysis, and (3) structural bioinformatics. This article discusses the content of the modules, the evaluations, the pedagogical framework, and the challenges inherent to a multidisciplinary, fully online course. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):31-38, 2018.
Collapse
Affiliation(s)
- Antony T Vincent
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des sciences et de génie, Université Laval, Québec (Québec), Canada
| | - Yves Bourbonnais
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des sciences et de génie, Université Laval, Québec (Québec), Canada
| | - Jean-Simon Brouard
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des sciences et de génie, Université Laval, Québec (Québec), Canada
| | - Hélène Deveau
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des sciences et de génie, Université Laval, Québec (Québec), Canada
| | - Arnaud Droit
- Centre Hospitalier de l'Université Laval, Faculté de Médecine, Université Laval, Québec (Québec), Canada
| | - Stéphane M Gagné
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des sciences et de génie, Université Laval, Québec (Québec), Canada
| | - Michel Guertin
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des sciences et de génie, Université Laval, Québec (Québec), Canada
| | - Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des sciences et de génie, Université Laval, Québec (Québec), Canada
| | - Louis Rathier
- Équipe de soutien informatique, Faculté des sciences et de génie, Université Laval, Québec (Québec), Canada
| | - Steve J Charette
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des sciences et de génie, Université Laval, Québec (Québec), Canada
| | - Patrick Lagüe
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des sciences et de génie, Université Laval, Québec (Québec), Canada
| |
Collapse
|
18
|
Schuler J, Hudson ML, Schwartz D, Samudrala R. A Systematic Review of Computational Drug Discovery, Development, and Repurposing for Ebola Virus Disease Treatment. Molecules 2017; 22:E1777. [PMID: 29053626 PMCID: PMC6151658 DOI: 10.3390/molecules22101777] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022] Open
Abstract
Ebola virus disease (EVD) is a deadly global public health threat, with no currently approved treatments. Traditional drug discovery and development is too expensive and inefficient to react quickly to the threat. We review published research studies that utilize computational approaches to find or develop drugs that target the Ebola virus and synthesize its results. A variety of hypothesized and/or novel treatments are reported to have potential anti-Ebola activity. Approaches that utilize multi-targeting/polypharmacology have the most promise in treating EVD.
Collapse
Affiliation(s)
- James Schuler
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| | - Matthew L Hudson
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| | - Diane Schwartz
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| |
Collapse
|
19
|
Beninger P, Connelly J, Natarajan C. Data Sharing in the Pharmaceutical Enterprise: The Genie's Out of the Bottle. Clin Ther 2017; 39:1890-1894. [PMID: 28823517 DOI: 10.1016/j.clinthera.2017.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This Commentary shows that the present emphasis on the sharing of data from clinical trials can be extended to the entire pharmaceutical enterprise. METHODS The authors constructed a Data Sharing Dashboard that shows the relationship between all of the life-cycle domains of the pharmaceutical enterprise from discovery to obsolescence and the domain-bridging disciplines, such as target credentialing, structure-activity relationships, and exposure-effect relationships. FINDINGS The published literature encompassing the pharmaceutical enterprise is expansive, covering the major domains of discovery, translation, clinical development, and post-marketing outcomes research, all of which have even larger, though generally inaccessible, troves of legacy data bases. Notable exceptions include the fields of genomics and bioinformatics. IMPLICATIONS We have the opportunity to broaden the present momentum of interest in data sharing to the entire pharmaceutical enterprise, beginning with discovery and extending into health technology assessment and post-patent expiry generic use with the plan of integrating new levels and disciplines of knowledge and with the ultimate goal of improving the care of our patients.
Collapse
Affiliation(s)
- Paul Beninger
- Public Health & Community Medicine, Tufts University School of Medicine, Boston, Massachusetts.
| | | | | |
Collapse
|
20
|
Gupta S, Jhawat V. Quality by design (QbD) approach of pharmacogenomics in drug designing and formulation development for optimization of drug delivery systems. J Control Release 2016; 245:15-26. [PMID: 27871989 DOI: 10.1016/j.jconrel.2016.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023]
Abstract
Conventional approaches of drug discovery are very complex, costly and time consuming. But after the completion of human genome project, applications of pharmacogenomics in this area completely revolutionize the drug discovery and development process to produce a quality by design (QbD) approach based products. The applications of two areas of pharmacogenomics i.e. structural and functional pharmacogenomics excel the drug discovery process by employing genomic data in drug target identification and evaluation, lead optimization via high throughput screening, evaluation of drug metabolizing enzymes, drug transporters and drug receptors using computer aided technique and bioinformatics library data base. Pharmacogenomics also provides an important and reliable basis for evaluation and optimization of the dosage forms as well as repositioning of failed drugs for the treatment of new disease. Various dosage forms of category of drugs such as anticancer drugs, vaccines, gene and DNA delivery systems and immunological agents can be easily evaluated based on the genetic markers of the related disease. The effect of different formulation polymers on pharmacokinetic and pharmacodynamic properties of drugs can be assessed easily and therefore it plays an important role in formulation optimization. However, current applications of pharmacogenomics in drug discovery and formulation optimization are very limited because of costly and non accessible techniques for everyone, but in future, with the advancement in the technology; the application of genomic data in drug discovery will provide us with innovative, safer and more efficacious medicines.
Collapse
Affiliation(s)
- Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, M. M. University, Mullana, Ambala, Haryana, India.
| | - Vikas Jhawat
- Department of Pharmacology, M. M. College of Pharmacy, M. M. University, Mullana, Ambala, Haryana, India
| |
Collapse
|
21
|
Sneha P, Doss CGP. Molecular Dynamics: New Frontier in Personalized Medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 102:181-224. [PMID: 26827606 DOI: 10.1016/bs.apcsb.2015.09.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The field of drug discovery has witnessed infinite development over the last decade with the demand for discovery of novel efficient lead compounds. Although the development of novel compounds in this field has seen large failure, a breakthrough in this area might be the establishment of personalized medicine. The trend of personalized medicine has shown stupendous growth being a hot topic after the successful completion of Human Genome Project and 1000 genomes pilot project. Genomic variant such as SNPs play a vital role with respect to inter individual's disease susceptibility and drug response. Hence, identification of such genetic variants has to be performed before administration of a drug. This process requires high-end techniques to understand the complexity of the molecules which might bring an insight to understand the compounds at their molecular level. To sustenance this, field of bioinformatics plays a crucial role in revealing the molecular mechanism of the mutation and thereby designing a drug for an individual in fast and affordable manner. High-end computational methods, such as molecular dynamics (MD) simulation has proved to be a constitutive approach to detecting the minor changes associated with an SNP for better understanding of the structural and functional relationship. The parameters used in molecular dynamic simulation elucidate different properties of a macromolecule, such as protein stability and flexibility. MD along with docking analysis can reveal the synergetic effect of an SNP in protein-ligand interaction and provides a foundation for designing a particular drug molecule for an individual. This compelling application of computational power and the advent of other technologies have paved a promising way toward personalized medicine. In this in-depth review, we tried to highlight the different wings of MD toward personalized medicine.
Collapse
Affiliation(s)
- P Sneha
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
22
|
Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery. BIOMED RESEARCH INTERNATIONAL 2015; 2015:731292. [PMID: 26579539 PMCID: PMC4633536 DOI: 10.1155/2015/731292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/04/2015] [Accepted: 10/04/2015] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery.
Collapse
|
23
|
TPMT Polymorphism: When Shield Becomes Weakness. Interdiscip Sci 2015; 8:150-155. [PMID: 26297310 DOI: 10.1007/s12539-015-0111-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/17/2014] [Accepted: 12/25/2014] [Indexed: 01/14/2023]
Abstract
Thiopurine methyltransferase (TPMT) is a cytoplasmic transmethylase present in both prokaryotes and eukaryotes. In humans, it shows its presence in almost all of the tissues, predominantly in liver and kidney. TPMT is one of the important metabolic enzymes of phase II metabolic pathway and catalyzes methylation of thiopurine drugs such as azathioprine, 6-thioguanine and 6-mercaptopurine, which are used to treat patients with neoplasia and autoimmune disease as well as transplant recipients. In this sense, TPMT acts as shield against toxic effect of these drugs. Pharmacogenomic studies revealed that genetic polymorphism in TPMT is responsible for variable and, in some cases, adverse drug reaction. Those human groups who carry variants of TPMT (i.e., [Formula: see text], [Formula: see text], [Formula: see text]) are at high risk, because they are unable to metabolize thiopurine drugs thus becoming a weakness of patients against these drugs. Keeping in the mind the importance of TPMT, this review discusses the existence and distribution of various TPMT variants throughout different ethnic groups and risk of adverse drug reactions to them, and how they can avoid this risk of side effects. The review also highlighted factors responsible for variable reactions of TPMT, how this TPMT polymorphism can be considered in drug designing process to avoid toxic effects, designing precautions against them and more importantly designing personalized medicine.
Collapse
|
24
|
Arora PK, Bae H. Integration of bioinformatics to biodegradation. Biol Proced Online 2014; 16:8. [PMID: 24808763 PMCID: PMC4012781 DOI: 10.1186/1480-9222-16-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/19/2014] [Indexed: 12/22/2022] Open
Abstract
Bioinformatics and biodegradation are two primary scientific fields in applied microbiology and biotechnology. The present review describes development of various bioinformatics tools that may be applied in the field of biodegradation. Several databases, including the University of Minnesota Biocatalysis/Biodegradation database (UM-BBD), a database of biodegradative oxygenases (OxDBase), Biodegradation Network-Molecular Biology Database (Bionemo) MetaCyc, and BioCyc have been developed to enable access to information related to biochemistry and genetics of microbial degradation. In addition, several bioinformatics tools for predicting toxicity and biodegradation of chemicals have been developed. Furthermore, the whole genomes of several potential degrading bacteria have been sequenced and annotated using bioinformatics tools.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|