1
|
Liu X, He H, Zhao B, Zhou L, Zhao X, Wang C, Zhang J, Zhang Y, Wang L. Preparation and Selective Adsorption Performance of the Carboxymethyl Salix psammophila Wood Powder-Imprinted Membrane for Tetracycline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16291-16302. [PMID: 39041625 DOI: 10.1021/acs.langmuir.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Carboxymethyl Salix psammophila wood powder-imprinted membranes (CMSM-MIPs) were prepared by using wet spinning technology and molecular-imprinting technology for the selective removal of tetracycline from wastewater. Scanning electron microscopy, X-ray diffraction, thermogravimetry, and X-ray photoelectron spectroscopy characterizations demonstrate that CMSM-MIPs retain the membranous structure of Carboxymethyl Salix psammophila wood powder membranes, successfully encapsulate thin layers of imprinted polymers on the membrane surface, and exhibit excellent thermal stability. The adsorption results showed that CMSM-MIPs had the highest selective adsorption capacity for tetracycline, which was 253.8 mg/g. In addition, the adsorption capacities for oxytetracycline and chlortetracycline were 208.8 and 188 mg/g, respectively. It can be observed that CMSM-MIPs not only exhibit a high adsorption capacity for tetracycline but also demonstrate good adsorption capacities for oxytetracycline and chlortetracycline. The experimental results showed that CMSM-MIPs were best fitted with pseudo-second-order kinetics and most consistent with Freundlich fitting. The regeneration experiment showed that CMSM-MIPs still had good regeneration performance after 5 regeneration cycles. In conclusion, the CMSM-MIPs can not only have the natural adsorption performance of Salix psammophila wood powder but also give it higher selectivity through molecular imprinting, so as to achieve efficient removal of target organic pollutants in water.
Collapse
Affiliation(s)
- Xiaokai Liu
- Key Laboratory of Desert Shrub Resource Fibrosis and Energy Development and Utilization in Inner Mongolia Autonomous Region, College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
- Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia 010018, China
| | - Hao He
- Key Laboratory of Desert Shrub Resource Fibrosis and Energy Development and Utilization in Inner Mongolia Autonomous Region, College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
- Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia 010018, China
| | - Baiyun Zhao
- Key Laboratory of Desert Shrub Resource Fibrosis and Energy Development and Utilization in Inner Mongolia Autonomous Region, College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
- Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia 010018, China
| | - Lijuan Zhou
- Key Laboratory of Desert Shrub Resource Fibrosis and Energy Development and Utilization in Inner Mongolia Autonomous Region, College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
- Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia 010018, China
| | - Xuan Zhao
- Key Laboratory of Desert Shrub Resource Fibrosis and Energy Development and Utilization in Inner Mongolia Autonomous Region, College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
- Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia 010018, China
| | - Chenxu Wang
- Key Laboratory of Desert Shrub Resource Fibrosis and Energy Development and Utilization in Inner Mongolia Autonomous Region, College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
- Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia 010018, China
| | - Jiyuan Zhang
- Key Laboratory of Desert Shrub Resource Fibrosis and Energy Development and Utilization in Inner Mongolia Autonomous Region, College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
- Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia 010018, China
| | - Yuanfang Zhang
- Key Laboratory of Desert Shrub Resource Fibrosis and Energy Development and Utilization in Inner Mongolia Autonomous Region, College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
- Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia 010018, China
| | - Li Wang
- Key Laboratory of Desert Shrub Resource Fibrosis and Energy Development and Utilization in Inner Mongolia Autonomous Region, College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
- Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia 010018, China
| |
Collapse
|
2
|
Wang Z, Dong Z, Shen X, Wu B. Molecularly Imprinted Polymers Using Yeast as a Supporting Substrate. Molecules 2023; 28:7103. [PMID: 37894582 PMCID: PMC10608888 DOI: 10.3390/molecules28207103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) have gained significant attention as artificial receptors due to their low cost, mild operating conditions, and excellent selectivity. To optimize the synthesis process and enhance the recognition performance, various support materials for molecular imprinting have been explored as a crucial research direction. Yeast, a biological material, offers advantages such as being green and environmentally friendly, low cost, and easy availability, making it a promising supporting substrate in the molecular imprinting process. We focus on the preparation of different types of MIPs involving yeast and elaborate on the specific roles it plays in each case. Additionally, we discuss the advantages and limitations of yeast in the preparation of MIPs and conclude with the challenges and future development trends of yeast in molecular imprinting research.
Collapse
Affiliation(s)
- Zhigang Wang
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Zhuangzhuang Dong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Bin Wu
- Anheuser-Busch Management (Shanghai) Co., Ltd. Wuhan Branch, Wuhan 430051, China;
| |
Collapse
|
3
|
Ma X, Wang Y, Wang W, Heinlein J, Pfefferle LD, Tian X. Strategic preparation of porous magnetic molecularly imprinted polymers via a simple and green method for high-performance adsorption and removal of meropenem. Talanta 2023; 258:124419. [PMID: 36893497 DOI: 10.1016/j.talanta.2023.124419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
In this study, a facile method has been developed to synthesize a novel type of porous magnetic molecularly imprinted polymers (Fe3O4-MER-MMIPs) for the selective adsorption and removal of meropenem. The Fe3O4-MER-MMIPs, with abundant functional groups and sufficient magnetism for easy separation, are prepared in aqueous solutions. The porous carriers reduce the overall mass of the MMIPs, greatly improving their adsorption capacity per unit mass and optimizing the overall value of the adsorbents. The green preparation conditions, adsorption performance, and physical and chemical properties of Fe3O4-MER-MMIPs have been carefully studied. The developed submicron materials exhibit a homogeneous morphology, satisfactory superparamagnetism (60 emu g-1), large adsorption capacity (11.49 mg g-1), quick adsorption kinetics (40 min), and good practical implementation in human serum and environmental water. Finally, the protocol developed in this work delivers a green and feasible method for synthesizing highly efficient adsorbents for the specific adsorption and removal of other antibiotics as well.
Collapse
Affiliation(s)
- Xuan Ma
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Wenting Wang
- Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, Jiangsu, 210023, China
| | - Jake Heinlein
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06520-8286, United States
| | - Lisa D Pfefferle
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06520-8286, United States
| | - Xuemeng Tian
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
4
|
Shi H, Wen M, Lin X, Zhou L, Shan L, Zhang C, Feng S. Designing and preparing metal mediated magnetic imprinted polymer for recognition of tetracycline. J Pharm Biomed Anal 2022; 220:115023. [DOI: 10.1016/j.jpba.2022.115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
5
|
Application of a nanocomposite based on modified salep glucomannan for monitoring controlled release of tetracycline as a model drug. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Stimuli-sensitive drug delivery systems for site-specific antibiotic release. Drug Discov Today 2022; 27:1698-1705. [DOI: 10.1016/j.drudis.2022.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
|
7
|
He S, Zhang L, Bai S, Yang H, Cui Z, Zhang X, Li Y. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Self-association process of tetracycline antibiotic in different aqueous solutions: a joint experimental study and molecular dynamics simulation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01977-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Wang SX, Ma RR, Mazzu YZ, Zhang JW, Li W, Tan L, Zhou LD, Xia ZN, Zhang QH, Yuan CS. Specific adsorption of tetracycline from milk by using biocompatible magnetic molecular imprinting material and evaluation by ECD. Food Chem 2020; 326:126969. [PMID: 32438229 DOI: 10.1016/j.foodchem.2020.126969] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 11/30/2022]
Abstract
Biocompatible magnetic molecularly imprinted polymers (BMMIPs) were prepared with Zein for the first time, and were used to enrich tetracycline compounds selectively. Innovative combination of BMMIPs and electrochemistry to obtain lower detection line to satisfy industrial detection demands. Using Zein as the crosslinking agent, the polymers were synthesized on the surface of Fe3O4 particles. The scanning electron microscope, transmission electron microscope and X-ray diffraction technologies were used to characterize BMMIPs. Through optimization, BMMIPs attained large adsorption capacity (236.40 mg/g) with fast kinetics (40 min) and followed the Langmuir isotherm and pseudo-second-order kinetic models. BMMIPs had good recognition ability, the selective factors of oxytetracycline, chlortetracycline, doxycycline were 4.78, 4.23, and 3.39, respectively. Excellent linearity was attained in the range of 0.025-500 μg/mL, with low detection limits and low quantitation limits of 0.025 and 0.083 μg/mL. According to our exploring, BMMIPs was ideal materials for enrichment of tetracycline in complex biological samples.
Collapse
Affiliation(s)
- Shu-Xian Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Rong-Rong Ma
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Ying Z Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York 10021, USA
| | - Jia-Wei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Ling Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lian-Di Zhou
- Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York 10021, USA.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Rezaei M, Rajabi HR, Rafiee Z. Selective and rapid extraction of piroxicam from water and plasma samples using magnetic imprinted polymeric nanosorbent: Synthesis, characterization and application. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124253] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Gao W, Li J, Li P, Huang Z, Cao Y, Liu X. Preparation of Magnetic Molecularly Imprinted Polymer (MMIP) Nanoparticles (NPs) for the Selective Extraction of Tetracycline from Milk. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1698049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Wanru Gao
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jiayin Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Pao Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhao Huang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yanan Cao
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xia Liu
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
12
|
Tang J, Mu B, Zong L, Wang A. From waste hot-pot oil as carbon precursor to development of recyclable attapulgite/carbon composites for wastewater treatment. J Environ Sci (China) 2019; 75:346-358. [PMID: 30473300 DOI: 10.1016/j.jes.2018.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 05/12/2023]
Abstract
The utilization of waste products as valuable materials was a technical imperative for waste management. In this study, the cost-effective attapulgite/carbon (APT/C) composite was developed for wastewater treatment using waste hot-pot oil as a carbon precursor through a facile one-step calcination process. The APT/C composite prepared at 300°C exhibited the excellent adsorption capacity and rapid equilibrium rate over a broad pH range for the removal of various pollutants. More importantly, the removal ratios of the composites toward Methyl Violet and tetracycline still remained 77.6% and 60.2% of the initial adsorption capacity after ten adsorption-regeneration cycles via a facile thermal regeneration strategy, respectively. Beyond all doubt, this research provided a feasible and economical way for the sustainable utilization of waste hot-pot oil in wastewater treatment, achieving the concept of disposal waste with waste and recycling.
Collapse
Affiliation(s)
- Jie Tang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700, China.
| | - Li Zong
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700, China.
| |
Collapse
|
13
|
Ma C, Huang H, Gao X, Wang T, Zhu Z, Huo P, Liu Y, Yan Y. Honeycomb tubular biochar from fargesia leaves as an effective adsorbent for tetracyclines pollutants. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Zhang YZ, Zhang J, Tan L, Xia Z, Wang CZ, Zhou LD, Zhang Q, Yuan CS. Preparation and evaluation of temperature and magnetic dual-responsive molecularly imprinted polymers for the specific enrichment of formononetin. J Sep Sci 2018; 41:3060-3068. [PMID: 29878532 DOI: 10.1002/jssc.201800275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
Thermo-responsive magnetic molecularly imprinted polymers were prepared by simple surface molecular imprinting polymerization for the selective adsorption and enrichment of formononetin from Trifolium pretense by temperature regulation. Using formononetin as a template, N-isopropylacrylamide as the thermo-responsive functional monomer, and methacrylic acid as an assisting functional monomer, the polymers were synthesized on the surface of the magnetic substrate. The results show that imprinted polymers attained controlled adsorption of formononetin in response to the temperature change, with large adsorption capacity (16.43 mg/g), fast kinetics (60 min) and good selectivity at 35°C compared with that at 25 and 45°C. The selectivity experiment indicated that the materials had excellent recognition ability for formononetin and the selectivity factors were between 1.32 and 2.98 towards genistein and daidzein. The excellent linearity was attained in the range of 5-100 μg/mL, with low detection limits and low quantitation limits of 0.017 and 0.063 μg/mL, respectively. Furthermore, the thermo-responsive magnetic molecularly imprinted polymers were successfully utilized for enriching and purifying formononetin from Trifolium pretense. The analytical results indicate that the imprinted polymers are promising materials for selective identification and enrichment of formononetin in complicated herbal medicines by simple temperature-responsive regulation.
Collapse
Affiliation(s)
- Yu-Zhen Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Jiawei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Ling Tan
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, USA
| | - Lian-Di Zhou
- Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Qihui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.,Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, USA
| |
Collapse
|
15
|
Romano EF, Holdsworth CI, Quirino JP, So RC. Room temperature synthesis and binding studies of solution-processable histamine-imprinted microspheres. J Mol Recognit 2017; 31. [PMID: 28872251 DOI: 10.1002/jmr.2659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/29/2017] [Accepted: 08/02/2017] [Indexed: 11/08/2022]
Abstract
Accurate quantification of histamine levels in food and in biological samples is important for monitoring the quality of food products and for the detection of pathophysiological conditions. In this study, solution processable histamine-imprinted microspheres were synthesized at 30°C via dilute free radical phototochemical polymerization technique using ethylene glycol dimethacrylate (EGDMA) as the crosslinker and methacrylic acid (MAA) as the monomer. The processability of the resulting polymer is dictated by the monomer feed concentration (eg, 4 wt% 80:20 EGDMA:MAA formulation) and solvent (acetonitrile). Whereas, the particle size is influenced by the monomer feed concentration, the presence of template molecule, and independent of the crosslinker content. Evaluation of the binding performance of the photochemically imprinted polymers (PCP) with different crosslinker content (80 and 90 wt%) indicated that the selective binding capacity was notably higher in PCP-80 (N= 16.0 μmol/g) compared to PCP-90 (N= 10.1 μmol/g) when analyzed via frontal analysis capillary electrophoresis (FACE) using Freundlich isotherm. In addition, PCP-80 microspheres are more selective toward histamine than conventional thermal polymers (CTP-80) prepared at 60°C in the presence of structural analogs such as histidine, imidazole, and tryptamine under cross-rebinding and competitive conditions. These results demonstrated that histamine-selective imprinted polymers can be obtained readily using room temperature photochemical polymerization where these materials can be subsequently used as recognition element for optical-based histamine sensing.
Collapse
Affiliation(s)
- Edwin F Romano
- Department of Chemistry, Ateneo de Manila University, Quezon City, Philippines.,Department of Chemistry, College of Arts and Sciences, Negros Oriental State University, Dumaguete City, Philippines
| | - Clovia I Holdsworth
- School of Environmental and Life Sciences, Chemistry Building-C218, University of Newcastle, Callaghan, New South Wales, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Regina C So
- Department of Chemistry, Ateneo de Manila University, Quezon City, Philippines
| |
Collapse
|
16
|
Recent configurations and progressive uses of magnetic molecularly imprinted polymers for drug analysis. Talanta 2017; 167:470-485. [PMID: 28340747 DOI: 10.1016/j.talanta.2017.02.049] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022]
Abstract
Since the introduction of the molecularly imprinting technology (MIT) in the 1970s, it becomes an emerging technology with the potential for wide-ranging applications in drug determination. With the rise of green chemistry, many researchers began to focus on the application and development of green materials which led to the breakthrough of molecularly imprinted polymers (MIPs) in the green chemistry. Because of the low concentration levels in the human matrices, almost adequate analytical methods should be used for quantification of drugs at the trace levels. In recent years there have been reported benefits of combining MIPs with additional features, e.g. magnetic properties, through the build-up of this type of material on magnetite particles. Magnetic molecularly imprinted polymer (MMIP) is a new material which is composed of magnetic material and non-magnetic polymer material and shares the characteristics of high adsorption capacity to template molecule, special selective recognition ability, and the magnetic adsorption property. These materials have been widely used in the different fields such as chemical, biological and medical science. This review describes the novel configurations and progressive applications of magnetic molecularly imprinted polymers to the drug analysis. Also, the advantages and drawbacks of each methodology, as well as the future expected trends, are evaluated.
Collapse
|
17
|
Hu Y, Huang W, Tong Y, Xia Q, Tian M. Boronate-affinity hollow molecularly imprinted polymers for the selective extraction of nucleosides. NEW J CHEM 2017. [DOI: 10.1039/c7nj00148g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Preparation of a boronate-affinity hollow molecularly imprinted polymer and its application as an SPE adsorbent for the selective enrichment of nucleosides.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Wei Huang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Qinfei Xia
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| |
Collapse
|