1
|
Braunstein R, Hubanic G, Yerushalmy O, Oren-Alkalay S, Rimon A, Coppenhagen-Glazer S, Niv O, Marom H, Barsheshet A, Hazan R. Successful phage-antibiotic therapy of P. aeruginosa implant-associated infection in a Siamese cat. Vet Q 2024; 44:1-9. [PMID: 38726795 PMCID: PMC11089911 DOI: 10.1080/01652176.2024.2350661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/27/2024] [Indexed: 05/15/2024] Open
Abstract
Antibiotic-resistant pathogens are a growing global issue, leading to untreatable infectious diseases in both humans and animals. Personalized bacteriophage (phage) therapy, the use of specific anti-bacterial viruses, is currently a leading approach to combat antibiotic-resistant infections. The implementation of phage therapy has primarily been focused on humans, almost neglecting the impact of such infections on the health and welfare of companion animals. Pets also have the potential to spread resistant infections to their owners or the veterinary staff through zoonotic transmission. Here, we showcase personalized phage-antibiotic treatment of a cat with a multidrug-resistant Pseudomonas aeruginosa implant-associated infection post-arthrodesis surgery. The treatment encompassed a tailored combination of an anti-P. aeruginosa phage and ceftazidime, precisely matched to the pathogen. The phage was topically applied to the surgical wound while the antibiotic was administered intramuscularly. After two treatment courses spanning 7 and 3 weeks, the surgical wound, which had previously remained open for five months, fully closed. To the best of our knowledge, this is the first case of personalized phage therapy application in felines, which provides further evidence of the effectiveness of this approach. The successful outcome paves the way for personalized phage-antibiotic treatments against persistent infections therapy in veterinary practice.
Collapse
Affiliation(s)
- Ron Braunstein
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Goran Hubanic
- Vet-Holim, Animal Medical Center, Kiryat-Anavim, Israel
| | - Ortal Yerushalmy
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Sivan Oren-Alkalay
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Amit Rimon
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
- Tzameret, The Military Track of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shunit Coppenhagen-Glazer
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Ofir Niv
- Vet-Holim, Animal Medical Center, Kiryat-Anavim, Israel
| | - Hilik Marom
- Vet-Holim, Animal Medical Center, Kiryat-Anavim, Israel
| | | | - Ronen Hazan
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| |
Collapse
|
2
|
Rodriguez-Gonzalez RA, Balacheff Q, Debarbieux L, Marchi J, Weitz JS. Metapopulation model of phage therapy of an acute Pseudomonas aeruginosa lung infection. mSystems 2024; 9:e0017124. [PMID: 39230264 DOI: 10.1128/msystems.00171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
Infections caused by multidrug resistant (MDR) pathogenic bacteria are a global health threat. Bacteriophages ("phage") are increasingly used as alternative or last-resort therapeutics to treat patients infected by MDR bacteria. However, the therapeutic outcomes of phage therapy may be limited by the emergence of phage resistance during treatment and/or by physical constraints that impede phage-bacteria interactions in vivo. In this work, we evaluate the role of lung spatial structure on the efficacy of phage therapy for Pseudomonas aeruginosa infections. To do so, we developed a spatially structured metapopulation network model based on the geometry of the bronchial tree, including host innate immune responses and the emergence of phage-resistant bacterial mutants. We model the ecological interactions between bacteria, phage, and the host innate immune system at the airway (node) level. The model predicts the synergistic elimination of a P. aeruginosa infection due to the combined effects of phage and neutrophils, given the sufficient innate immune activity and efficient phage-induced lysis. The metapopulation model simulations also predict that MDR bacteria are cleared faster at distal nodes of the bronchial tree. Notably, image analysis of lung tissue time series from wild-type and lymphocyte-depleted mice revealed a concordant, statistically significant pattern: infection intensity cleared in the bottom before the top of the lungs. Overall, the combined use of simulations and image analysis of in vivo experiments further supports the use of phage therapy for treating acute lung infections caused by P. aeruginosa, while highlighting potential limits to therapy in a spatially structured environment given impaired innate immune responses and/or inefficient phage-induced lysis. IMPORTANCE Phage therapy is increasingly employed as a compassionate treatment for severe infections caused by multidrug-resistant (MDR) bacteria. However, the mixed outcomes observed in larger clinical studies highlight a gap in understanding when phage therapy succeeds or fails. Previous research from our team, using in vivo experiments and single-compartment mathematical models, demonstrated the synergistic clearance of acute P. aeruginosa pneumonia by phage and neutrophils despite the emergence of phage-resistant bacteria. In fact, the lung environment is highly structured, prompting the question of whether immunophage synergy explains the curative treatment of P. aeruginosa when incorporating realistic physical connectivity. To address this, we developed a metapopulation network model mimicking the lung branching structure to assess phage therapy efficacy for MDR P. aeruginosa pneumonia. The model predicts the synergistic elimination of P. aeruginosa by phage and neutrophils but emphasizes potential challenges in spatially structured environments, suggesting that higher innate immune levels may be required for successful bacterial clearance. Model simulations reveal a spatial pattern in pathogen clearance where P. aeruginosa are cleared faster at distal nodes of the bronchial tree than in primary nodes. Interestingly, image analysis of infected mice reveals a concordant and statistically significant pattern: infection intensity clears in the bottom before the top of the lungs. The combined use of modeling and image analysis supports the application of phage therapy for acute P. aeruginosa pneumonia while emphasizing potential challenges to curative success in spatially structured in vivo environments, including impaired innate immune responses and reduced phage efficacy.
Collapse
Affiliation(s)
- Rogelio A Rodriguez-Gonzalez
- Interdisciplinary Graduate Program in Quantitative Biosciences,Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Quentin Balacheff
- CHU Félix Guyon, Service des maladies respiratoires, La Réunion, France
| | - Laurent Debarbieux
- Department of Microbiology, Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Jacopo Marchi
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Joshua S Weitz
- Department of Biology, University of Maryland, College Park, Maryland, USA
- Department of Physics, University of Maryland, College Park, Maryland, USA
- Institut de Biologie, École Normale Supérieure, Paris, France
| |
Collapse
|
3
|
Pal N, Sharma P, Kumawat M, Singh S, Verma V, Tiwari RR, Sarma DK, Nagpal R, Kumar M. Phage therapy: an alternative treatment modality for MDR bacterial infections. Infect Dis (Lond) 2024; 56:785-817. [PMID: 39017931 DOI: 10.1080/23744235.2024.2379492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
The increasing global incidence of multidrug-resistant (MDR) bacterial infections threatens public health and compromises various aspects of modern medicine. Recognising the urgency of this issue, the World Health Organisation has prioritised the development of novel antimicrobials to combat ESKAPEE pathogens. Comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli, such pathogens represent a spectrum of high to critical drug resistance, accounting for a significant proportion of hospital-acquired infections worldwide. In response to the waning efficacy of antibiotics against these resilient pathogens, phage therapy (PT) has emerged as a promising therapeutic strategy. This review provides a comprehensive summary of clinical research on PT and explores the translational journey of phages from laboratory settings to clinical applications. It examines recent advancements in pre-clinical and clinical developments, highlighting the potential of phages and their proteins, alone or in combination with antibiotics. Furthermore, this review underlines the importance of establishing safe and approved routes of phage administration to patients. In conclusion, the evolving landscape of phage therapy offers a beacon of hope in the fight against MDR bacterial infections, emphasising the imperative for continued research, innovation and regulatory diligence to realise its full potential in clinical practice.
Collapse
Affiliation(s)
- Namrata Pal
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Poonam Sharma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Samradhi Singh
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Manoj Kumar
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
4
|
Siopi M, Skliros D, Paranos P, Koumasi N, Flemetakis E, Pournaras S, Meletiadis J. Pharmacokinetics and pharmacodynamics of bacteriophage therapy: a review with a focus on multidrug-resistant Gram-negative bacterial infections. Clin Microbiol Rev 2024; 37:e0004424. [PMID: 39072666 PMCID: PMC11391690 DOI: 10.1128/cmr.00044-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
SUMMARYDespite the early recognition of their therapeutic potential and the current escalation of multidrug-resistant (MDR) pathogens, the adoption of bacteriophages into mainstream clinical practice is hindered by unfamiliarity with their basic pharmacokinetic (PK) and pharmacodynamic (PD) properties, among others. Given the self-replicative nature of bacteriophages in the presence of host bacteria, the adsorption rate, and the clearance by the host's immunity, their PK/PD characteristics cannot be estimated by conventional approaches, and thus, the introduction of new considerations is required. Furthermore, the multitude of different bacteriophage types, preparations, and treatment schedules impedes drawing general conclusions on their in vivo PK/PD features. Additionally, the drawback of acquired bacteriophage resistance of MDR pathogens with clinical and environmental implications should be taken into consideration. Here, we provide an overview of the current state of the field of PK and PD of bacteriophage therapy with a focus on its application against MDR Gram-negative infections, highlighting the potential knowledge gaps and the challenges in translation from the bench to the bedside. After reviewing the in vitro PKs and PDs of bacteriophages against the four major MDR Gram-negative pathogens, Klebsiella pneumoniae, Acinetobacter baumannii complex, Pseudomonas aeruginosa, and Escherichia coli, specific data on in vivo PKs (tissue distribution, route of administration, and basic PK parameters in animals and humans) and PDs (survival and reduction of bacterial burden in relation to the route of administration, timing of therapy, dosing regimens, and resistance) are summarized. Currently available data merit close scrutiny, and optimization of bacteriophage therapy in the context of a better understanding of the underlying PK/PD principles is urgent to improve its therapeutic effect and to minimize the occurrence of bacteriophage resistance.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Koumasi
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Bucher MJ, Czyż DM. Phage against the Machine: The SIE-ence of Superinfection Exclusion. Viruses 2024; 16:1348. [PMID: 39339825 PMCID: PMC11436027 DOI: 10.3390/v16091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Prophages can alter their bacterial hosts to prevent other phages from infecting the same cell, a mechanism known as superinfection exclusion (SIE). Such alterations are facilitated by phage interactions with critical bacterial components involved in motility, adhesion, biofilm production, conjugation, antimicrobial resistance, and immune evasion. Therefore, the impact of SIE extends beyond the immediate defense against superinfection, influencing the overall fitness and virulence of the bacteria. Evaluating the interactions between phages and their bacterial targets is critical for leading phage therapy candidates like Pseudomonas aeruginosa, a Gram-negative bacterium responsible for persistent and antibiotic-resistant opportunistic infections. However, comprehensive literature on the mechanisms underlying SIE remains scarce. Here, we provide a compilation of well-characterized and potential mechanisms employed by Pseudomonas phages to establish SIE. We hypothesize that the fitness costs imposed by SIE affect bacterial virulence, highlighting the potential role of this mechanism in the management of bacterial infections.
Collapse
Affiliation(s)
- Michael J Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Ikpe F, Williams T, Orok E, Ikpe A. Antimicrobial resistance: use of phage therapy in the management of resistant infections. Mol Biol Rep 2024; 51:925. [PMID: 39167154 DOI: 10.1007/s11033-024-09870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The emergence and increase in antimicrobial resistance (AMR) is now widely recognized as a major public health challenge. Traditional antimicrobial drugs are becoming increasingly ineffective, while the development of new antibiotics is waning. As a result, alternative treatments for infections are garnering increased interest. Among these alternatives, bacteriophages, also known as phages, are gaining renewed attention and are reported to offer a promising solution to alleviate the burden of bacterial infections. This review discusses the current successes of phage therapy (PT) against multidrug-resistant organisms (MDROs), such as Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter spp. The review also compares the efficacy of PT with that of chemical antibiotics, reporting on its benefits and limitations, while highlighting its impact on the human gut microbiome and immune system. Despite its potential, phage therapy is reported to face challenges such as the narrow antibacterial range, the complexity of developing phage cocktails, and the need for precise dosing and duration protocols. Nevertheless, continued research, improved regulatory frameworks, and increased public awareness are essential to realize its full potential and integration into standard medical practice, paving the way for innovative treatments that can effectively manage infections in an era of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Favour Ikpe
- Department of Pharmaceutical Microbiology and Biotechnology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Tonfamoworio Williams
- Department of Pharmaceutical Microbiology and Biotechnology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Edidiong Orok
- Department of Clinical Pharmacy and Public Health, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria.
| | - Augustine Ikpe
- Department of Sciences, Champion Group of Schools, Okene, Kogi State, Nigeria
| |
Collapse
|
7
|
Cocorullo M, Stelitano G, Chiarelli LR. Phage Therapy: An Alternative Approach to Combating Multidrug-Resistant Bacterial Infections in Cystic Fibrosis. Int J Mol Sci 2024; 25:8321. [PMID: 39125890 PMCID: PMC11313351 DOI: 10.3390/ijms25158321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Patients with cystic fibrosis (CF) are prone to developing life-threatening lung infections with a variety of pathogens that are difficult to eradicate, such as Burkholderia cepacia complex (Bcc), Hemophilus influenzae, Mycobacterium abscessus (Mab), Pseudomonas aeruginosa, and Staphylococcus aureus. These infections still remain an important issue, despite the therapy for CF having considerably improved in recent years. Moreover, prolonged exposure to antibiotics in combination favors the development and spread of multi-resistant bacteria; thus, the development of alternative strategies is crucial to counter antimicrobial resistance. In this context, phage therapy, i.e., the use of phages, viruses that specifically infect bacteria, has become a promising strategy. In this review, we aim to address the current status of phage therapy in the management of multidrug-resistant infections, from compassionate use cases to ongoing clinical trials, as well as the challenges this approach presents in the particular context of CF patients.
Collapse
Affiliation(s)
| | | | - Laurent Robert Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy; (M.C.); (G.S.)
| |
Collapse
|
8
|
Alipour-Khezri E, Skurnik M, Zarrini G. Pseudomonas aeruginosa Bacteriophages and Their Clinical Applications. Viruses 2024; 16:1051. [PMID: 39066214 PMCID: PMC11281547 DOI: 10.3390/v16071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance poses a serious risk to contemporary healthcare since it reduces the number of bacterial illnesses that may be treated with antibiotics, particularly for patients with long-term conditions like cystic fibrosis (CF). People with a genetic predisposition to CF often have recurrent bacterial infections in their lungs due to a buildup of sticky mucus, necessitating long-term antibiotic treatment. Pseudomonas aeruginosa infections are a major cause of CF lung illness, and P. aeruginosa airway isolates are frequently resistant to many antibiotics. Bacteriophages (also known as phages), viruses that infect bacteria, are a viable substitute for antimicrobials to treat P. aeruginosa infections in individuals with CF. Here, we reviewed the utilization of P. aeruginosa bacteriophages both in vivo and in vitro, as well as in the treatment of illnesses and diseases, and the outcomes of the latter.
Collapse
Affiliation(s)
- Elaheh Alipour-Khezri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
- Microbial Biotechnology Research Group, University of Tabriz, Tabriz 51368, Iran
| |
Collapse
|
9
|
Kovacs CJ, Rapp EM, Rankin WR, McKenzie SM, Brasko BK, Hebert KE, Bachert BA, Kick AR, Burpo FJ, Barnhill JC. Combinations of Bacteriophage Are Efficacious against Multidrug-Resistant Pseudomonas aeruginosa and Enhance Sensitivity to Carbapenem Antibiotics. Viruses 2024; 16:1000. [PMID: 39066163 PMCID: PMC11281517 DOI: 10.3390/v16071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
The Gram-negative ESKAPE bacterium Pseudomonas aeruginosa has become a pathogen of serious concern due its extensive multi-drug resistance (MDR) profile, widespread incidences of hospital-acquired infections throughout the United States, and high occurrence in wound infections suffered by warfighters serving abroad. Bacteriophage (phage) therapy has received renewed attention as an alternative therapeutic option against recalcitrant bacterial infections, both as multi-phage cocktails and in combination with antibiotics as synergistic pairings. Environmental screening and phage enrichment has yielded three lytic viruses capable of infecting the MDR P. aeruginosa strain PAO1. Co-administration of each phage with the carbapenem antibiotics ertapenem, imipenem, and meropenem generated enhanced overall killing of bacteria beyond either phage or drug treatments alone. A combination cocktail of all three phages was completely inhibitory to growth, even without antibiotics. The same 3× phage cocktail also disrupted PAO1 biofilms, reducing biomass by over 75% compared to untreated biofilms. Further, the phage cocktail demonstrated broad efficacy as well, capable of infecting 33 out of 100 diverse clinical isolate strains of P. aeruginosa. Together, these results indicate a promising approach for designing layered medical countermeasures to potentiate antibiotic activity and possibly overcome resistance against recalcitrant, MDR bacteria such as P. aeruginosa. Combination therapy, either by synergistic phage-antibiotic pairings, or by phage cocktails, presents a means of controlling mutations that can allow for bacteria to gain a competitive edge.
Collapse
Affiliation(s)
- Christopher J. Kovacs
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Erika M. Rapp
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - William R. Rankin
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Sophia M. McKenzie
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Brianna K. Brasko
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Katherine E. Hebert
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Beth A. Bachert
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Andrew R. Kick
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - F. John Burpo
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Jason C. Barnhill
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| |
Collapse
|
10
|
Khosravi A, Chen Q, Echterhof A, Koff JL, Bollyky PL. Phage Therapy for Respiratory Infections: Opportunities and Challenges. Lung 2024; 202:223-232. [PMID: 38772946 DOI: 10.1007/s00408-024-00700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/13/2024] [Indexed: 05/23/2024]
Abstract
We are entering the post-antibiotic era. Antimicrobial resistance (AMR) is a critical problem in chronic lung infections resulting in progressive respiratory failure and increased mortality. In the absence of emerging novel antibiotics to counter AMR infections, bacteriophages (phages), viruses that infect bacteria, have become a promising option for chronic respiratory infections. However, while personalized phage therapy is associated with improved outcomes in individual cases, clinical trials demonstrating treatment efficacy are lacking, limiting the therapeutic potential of this approach for respiratory infections. In this review, we address the current state of phage therapy for managing chronic respiratory diseases. We then discuss how phage therapy may address major microbiologic obstacles which hinder disease resolution of chronic lung infections with current antibiotic-based treatment practices. Finally, we highlight the challenges that must be addressed for successful phage therapy clinical trials. Through this discussion, we hope to expand on the potential of phages as an adjuvant therapy in chronic lung infections, as well as the microbiologic challenges that need to be addressed for phage therapy to expand beyond personalized salvage therapy.
Collapse
Affiliation(s)
- Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA.
- Division of Infectious Diseases, Department of Medicine, Stanford University, 279 Campus Drive, Beckman Center, Room B237, Stanford, CA, 94305, USA.
| | - Qingquan Chen
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Arne Echterhof
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care & Sleep Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Alipour-Khezri E, Moqadami A, Barzegar A, Mahdavi M, Skurnik M, Zarrini G. Bacteriophages and Green Synthesized Zinc Oxide Nanoparticles in Combination Are Efficient against Biofilm Formation of Pseudomonas aeruginosa. Viruses 2024; 16:897. [PMID: 38932188 PMCID: PMC11209622 DOI: 10.3390/v16060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteriophages (phages) are viruses that infect the bacteria within which their reproduction cycle takes place, a process that ends in the lysis and death of the bacterial cell. Some phages are also able to destroy bacterial biofilms. Due to increased antibiotics resistance, Pseudomonas aeruginosa, another biofilm-forming pathogen, is a problem in many parts of the world. Zinc oxide (ZnO) and other metal nanoparticles (NPs) are biologically active and also possess anti-biofilm properties. ZnO-NPs were prepared by the green synthesis method using orange peels. The vibrational peaks of the ZnO-NPs were analyzed using FTIR analysis, and their size and morphological properties were determined using scanning electron microscopy (SEM). The ability of the ZnO-NPs to reduce or eliminate P. aeruginosa biofilm alone or in combination with phages PB10 and PA19 was investigated. The P. aeruginosa cells were effectively killed in the preformed 48 h biofilms during a 24 h incubation with the ZnO-NP-phage combination, in comparison with the control or ZnO-NPs alone. The treatments on growing biofilms were most efficient in the final stages of biofilm development. All five treatment groups showed a significant biofilm reduction compared to the control group (p < 0.0001) at 48 h of incubation. The influence of the ZnO-NPs and phages on the quorum sensing system of P. aeruginosa was monitored by quantitative real-time PCR (qRT-PCR) of the autoinducer biosynthesis gene lasI. While the ZnO-NPs repressed the lasI gene transcription, the phages slightly activated it at 24 and 48 h of incubation. Also, the effect of the ZnO-NPs and phage PA19 on the viability of HFF2 cells was investigated and the results showed that the combination of NPs with PA19 reduced the toxic effect of ZnO-NPs and also stimulated the growth in normal cells.
Collapse
Affiliation(s)
- Elaheh Alipour-Khezri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
| | - Amin Moqadami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
| | - Abolfazl Barzegar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
- Microbial Biotechnology Research Group, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
12
|
Kovacs CJ, Rapp EM, McKenzie SM, Mazur MZ, Mchale RP, Brasko B, Min MY, Burpo FJ, Barnhill JC. Disruption of Biofilm by Bacteriophages in Clinically Relevant Settings. Mil Med 2024; 189:e1294-e1302. [PMID: 37847552 DOI: 10.1093/milmed/usad385] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
INTRODUCTION Antibiotic-resistant bacteria are a growing threat to civilian and military health today. Although infections were once easily treatable by antibiotics and wound cleaning, the frequent mutation of bacteria has created strains impermeable to antibiotics and physical attack. Bacteria further their pathogenicity because of their ability to form biofilms on wounds, medical devices, and implant surfaces. Methods for treating biofilms in clinical settings are limited, and when formed by antibiotic-resistant bacteria, can generate chronic infections that are recalcitrant to available therapies. Bacteriophages are natural viral predators of bacteria, and their ability to rapidly destroy their host has led to increased attention in potential phage therapy applications. MATERIALS AND METHODS The present article sought to address a knowledge gap in the available literature pertaining to the usage of bacteriophage in clinically relevant settings and the resolution of infections particular to military concerns. PRISMA guidelines were followed for a systematic review of available literature that met the criteria for analysis and inclusion. The research completed for this review article originated from the U.S. Military Academy's library "Scout" search engine, which complies results from 254 available databases (including PubMed, Google Scholar, and SciFinder). The search criteria included original studies that employed bacteriophage use against biofilms, as well as successful phage therapy strategies for combating chronic bacterial infections. We specifically explored the use of bacteriophage against antibiotic- and treatment-resistant bacteria. RESULTS A total of 80 studies were identified that met the inclusion criteria following PRISMA guidelines. The application of bacteriophage has been demonstrated to robustly disrupt biofilm growth in wounds and on implant surfaces. When traditional therapies have failed to disrupt biofilms and chronic infections, a combination of these treatments with phage has proven to be effective, often leading to complete wound healing without reinfection. CONCLUSIONS This review article examines the available literature where bacteriophages have been utilized to treat biofilms in clinically relevant settings. Specific attention is paid to biofilms on implant medical devices, biofilms formed on wounds, and clinical outcomes, where phage treatment has been efficacious. In addition to the clinical benefit of phage therapies, the military relevance and treatment of combat-related infections is also examined. Phages offer the ability to expand available treatment options in austere environments with relatively low cost and effort, allowing the impacted warfighter to return to duty quicker and healthier.
Collapse
Affiliation(s)
- Christopher J Kovacs
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Erika M Rapp
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Sophia M McKenzie
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Michael Z Mazur
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Riley P Mchale
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Briana Brasko
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Michael Y Min
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - F John Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Jason C Barnhill
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| |
Collapse
|
13
|
Gourari-Bouzouina K, Boucherit-Otmani Z, Halla N, Seghir A, Baba Ahmed-Kazi Tani ZZ, Boucherit K. Exploring the dynamics of mixed-species biofilms involving Candida spp. and bacteria in cystic fibrosis. Arch Microbiol 2024; 206:255. [PMID: 38734793 DOI: 10.1007/s00203-024-03967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Cystic fibrosis (CF) is an inherited disease that results from mutations in the gene responsible for the cystic fibrosis transmembrane conductance regulator (CFTR). The airways become clogged with thick, viscous mucus that traps microbes in respiratory tracts, facilitating colonization, inflammation and infection. CF is recognized as a biofilm-associated disease, it is commonly polymicrobial and can develop in biofilms. This review discusses Candida spp. and both Gram-positive and Gram-negative bacterial biofilms that affect the airways and cause pulmonary infections in the CF context, with a particular focus on mixed-species biofilms. In addition, the review explores the intricate interactions between fungal and bacterial species within these biofilms and elucidates the underlying molecular mechanisms that govern their dynamics. Moreover, the review addresses the multifaceted issue of antimicrobial resistance in the context of CF-associated biofilms. By synthesizing current knowledge and research findings, this review aims to provide insights into the pathogenesis of CF-related infections and identify potential therapeutic approaches to manage and combat these complex biofilm-mediated infections.
Collapse
Affiliation(s)
- Karima Gourari-Bouzouina
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria.
| | - Zahia Boucherit-Otmani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Noureddine Halla
- Laboratory of Biotoxicology, Pharmacognosy and Biological Recovery of Plants, Department of Biology, Faculty of Sciences, University of Moulay-Tahar, 20000, Saida, Algeria
| | - Abdelfettah Seghir
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Zahira Zakia Baba Ahmed-Kazi Tani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Kebir Boucherit
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| |
Collapse
|
14
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
15
|
Manley R, Fitch C, Francis V, Temperton I, Turner D, Fletcher J, Phil M, Michell S, Temperton B. Resistance to bacteriophage incurs a cost to virulence in drug-resistant Acinetobacter baumannii. J Med Microbiol 2024; 73:001829. [PMID: 38743467 PMCID: PMC11170128 DOI: 10.1099/jmm.0.001829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Robyn Manley
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Christian Fitch
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Vanessa Francis
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Isaac Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Julie Fletcher
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Mitchelmore Phil
- University of Exeter, College of Medicine and Health, Department of Respiratory Medicine, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Steve Michell
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Ben Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| |
Collapse
|
16
|
Dominic C, Pye HV, Mishra EK, Adriaenssens EM. Bacteriophages for bronchiectasis: treatment of the future? Curr Opin Pulm Med 2024; 30:235-242. [PMID: 38345396 DOI: 10.1097/mcp.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW Bronchiectasis is a chronic respiratory disease characterized by dilated airways, persistent sputum production and recurrent infective exacerbations. The microbiology of bronchiectasis includes various potentially pathogenic microorganisms including Pseudomonas aeruginosa which is commonly cultured from patients' sputum. P. aeruginosa is difficult to eradicate and frequently exhibits antimicrobial resistance. Bacteriophage therapy offers a novel and alternative method to treating bronchiectasis and can be used in conjunction with antibiotics to improve patient outcome. RECENT FINDINGS Thirteen case reports/series to date have successfully used phages to treat infections in bronchiectasis patients, however these studies were constrained to few patients ( n = 32) and utilized personalized phage preparations and adjunct antibiotics. In these studies, phage therapy was delivered by inhalation, intravenously or orally and was well tolerated in most patients without any unfavourable effects. Favourable clinical or microbiological outcomes were seen following phage therapy in many patients. Longitudinal patient follow-up reported regrowth of bacteria and phage neutralization in some studies. There are five randomized clinical controlled trials ongoing aiming to use phage therapy to treat P. aeruginosa associated respiratory conditions, with limited results available to date. SUMMARY More research, particularly robust clinical trials, into how phages can clear respiratory infections, interact with resident microbiota, and how bacteria might develop resistance will be important to establish to ensure the success of this promising therapeutic alternative.
Collapse
Affiliation(s)
- Catherine Dominic
- Department of Respiratory Medicine, Norfolk and Norwich University Hospitals Foundation Trust
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park
| | - Eleanor K Mishra
- Department of Respiratory Medicine, Norfolk and Norwich University Hospitals Foundation Trust
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
17
|
Kunz Coyne AJ, Bleick C, Stamper K, Kebriaei R, Bayer AS, Lehman SM, Rybak MJ. Phage-antibiotic synergy against daptomycin-nonsusceptible MRSA in an ex vivo simulated endocardial pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 2024; 68:e0138823. [PMID: 38376187 PMCID: PMC10989002 DOI: 10.1128/aac.01388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Phage-antibiotic combinations (PAC) offer a potential solution for treating refractory daptomycin-nonsusceptible (DNS) methicillin-resistant Staphylococcus aureus (MRSA) infections. We examined PAC activity against two well-characterized DNS MRSA strains (C4 and C37) in vitro and ex vivo. PACs comprising daptomycin (DAP) ± ceftaroline (CPT) and a two-phage cocktail (Intesti13 + Sb-1) were evaluated for phage-antibiotic synergy (PAS) against high MRSA inoculum (109 CFU/mL) using (i) modified checkerboards (CB), (ii) 24-h time-kill assays (TKA), and (iii) 168-h ex vivo simulated endocardial vegetation (SEV) models. PAS was defined as a fractional inhibitory concentration ≤0.5 in CB minimum inhibitory concentration (MIC) or a ≥2 log10 CFU/mL reduction compared to the next best regimen in time-kill assays and SEV models. Significant differences between regimens were assessed by analysis of variance with Tukey's post hoc modification (α = 0.05). CB assays revealed PAS with Intesti13 + Sb-1 + DAP ± CPT. In 24-h time-kill assays against C4, Intesti13 + Sb-1 + DAP ± CPT demonstrated synergistic activity (-Δ7.21 and -Δ7.39 log10 CFU/mL, respectively) (P < 0.05 each). Against C37, Intesti13 + Sb-1 + CPT ± DAP was equally effective (-Δ7.14 log10 CFU/mL each) and not significantly different from DAP + Intesti13 + Sb-1 (-Δ6.65 log10 CFU/mL). In 168-h SEV models against C4 and C37, DAP ± CPT + the phage cocktail exerted synergistic activities, significantly reducing bio-burdens to the detection limit [2 log10 CFU/g (-Δ7.07 and -Δ7.11 log10 CFU/g, respectively)] (P < 0.001). At 168 h, both models maintained stable MICs, and no treatment-emergent phage resistance occurred with DAP or DAP + CPT regimens. The two-phage cocktail demonstrated synergistic activity against two DNS MRSA isolates in combination with DAP + CPT in vitro and ex vivo. Further in vivo PAC investigations are needed.
Collapse
Affiliation(s)
- Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Callan Bleick
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kyle Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Arnold S. Bayer
- The Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- The Lundquist Institution for Biomedical Innovation at Harbor-UCLA, Torrance, California, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
18
|
Kunz Coyne AJ, Stamper K, Bleick C, Kebriaei R, Lehman SM, Rybak MJ. Synergistic bactericidal effects of phage-enhanced antibiotic therapy against MRSA biofilms. Microbiol Spectr 2024; 12:e0321223. [PMID: 38411110 PMCID: PMC10986480 DOI: 10.1128/spectrum.03212-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes biofilm-related medical device infections. Phage-antibiotic combinations offer potential therapy due to proven in vitro antibiofilm efficacy. We evaluated phage-antibiotic synergy against biofilms using modified checkerboard and 24-h time-kill assays. Humanized-simulated daptomycin (DAP) (10, 8, and 6 mg/kg q24h) and ceftaroline (CPT) (600 mg q12h) were combined with Intesti13, Sb-1, and Romulus phages (tMOI 1, q12h). Assays were conducted in 168-h biofilm reactor models against DAP non-susceptible (DNS) vancomycin intermediate S. aureus (VISA) MRSA D712 and DAP-susceptible MRSA 8014. Synergistic activity and bactericidal activity were defined as ≥2log10 CFU/mL reduction from antibiotic-only regimens and ≥3log10 CFU/mL decrease from baseline at 24 h. Differences were analyzed by one-way analysis of variance with Tukey's post hoc test (P ≤ 0.05 is considered significant). Surviving bacteria were examined for antibiotic minimum biofilm inhibitory concentration (MBIC) changes and phage susceptibility. In 168-h biofilm models, humanized DAP 10 mg/kg + CPT, combined with a 2-phage cocktail (Intesti13 + Sb-1) against D712, and a 3-phage cocktail (Intesti13 + Sb-1 + Romulus) against 8014, demonstrated synergistic bactericidal activity. At 168 h, bacteria were minimally detectable [2log10 CFU/cm2 (-Δ4.23 and -Δ4.42 log10 CFU/cm2; both P < 0.001)]. Antibiotic MBIC remained unchanged compared to baseline across various time points. None of the tested bacteria at 168 h exhibited complete phage resistance. This study reveals bactericidal efficacy of DAP + CPT with 2-phage and 3-phage cocktails against DNS VISA and MRSA isolates (D712 and 8014) in biofilm models, maintaining susceptibility. Further research is needed for diverse strains and durations, aligning with infection care. IMPORTANCE The prevalence of biofilm-associated medical device infections caused by methicillin-resistant Staphylococcus aureus (MRSA) presents a pressing medical challenge. The latest research demonstrates the potential of phage-antibiotic combinations (PACs) as a promising solution, notably in vitro antibiofilm efficacy. By adopting modified checkerboard and 24-h time-kill assays, the study investigated the synergistic action of phages combined with humanized-simulated doses of daptomycin (DAP) and ceftaroline (CPT). The results were promising: a combination of DAP, CPT, and either a 2-phage or 3-phage cocktail effectively exhibited bactericidal activity against both DAP non-susceptible vancomycin intermediate S. aureus MRSA and DAP-susceptible MRSA strains within 168-h biofilm models. Moreover, post-treatment evaluations revealed no discernible rise in antibiotic resistance or complete phage resistance. This pioneering work suggests the potential of PACs in addressing MRSA biofilm infections, setting the stage for further expansive research tailored to diverse bacterial strains and treatment durations.
Collapse
Affiliation(s)
- Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kyle Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Callan Bleick
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
- Department of Medicine, Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
19
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Yamashita W, Ojima S, Tamura A, Azam AH, Kondo K, Yuancheng Z, Cui L, Shintani M, Suzuki M, Takahashi Y, Watashi K, Tsuneda S, Kiga K. Harnessing a T1 Phage-Derived Spanin for Developing Phage-Based Antimicrobial Development. BIODESIGN RESEARCH 2024; 6:0028. [PMID: 38516182 PMCID: PMC10954549 DOI: 10.34133/bdr.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/27/2023] [Indexed: 03/23/2024] Open
Abstract
The global increase in the prevalence of drug-resistant bacteria has necessitated the development of alternative treatments that do not rely on conventional antimicrobial agents. Using bacteriophage-derived lytic enzymes in antibacterial therapy shows promise; however, a thorough comparison and evaluation of their bactericidal efficacy are lacking. This study aimed to compare and investigate the bactericidal activity and spectrum of such lytic enzymes, with the goal of harnessing them for antibacterial therapy. First, we examined the bactericidal activity of spanins, endolysins, and holins derived from 2 Escherichia coli model phages, T1 and T7. Among these, T1-spanin exhibited the highest bactericidal activity against E. coli. Subsequently, we expressed T1-spanin within bacterial cells and assessed its bactericidal activity. T1-spanin showed potent bactericidal activity against all clinical isolates tested, including bacterial strains of 111 E. coli, 2 Acinetobacter spp., 3 Klebsiella spp., and 3 Pseudomonas aeruginosa. In contrast, T1 phage-derived endolysin showed bactericidal activity against E. coli and P. aeruginosa, yet its efficacy against other bacteria was inferior to that of T1-spanin. Finally, we developed a phage-based technology to introduce the T1-spanin gene into target bacteria. The synthesized non-proliferative phage exhibited strong antibacterial activity against the targeted bacteria. The potent bactericidal activity exhibited by spanins, combined with the novel phage synthetic technology, holds promise for the development of innovative antimicrobial agents.
Collapse
Affiliation(s)
- Wakana Yamashita
- Research Center for Drug and Vaccine Development,
National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Department of Life Science and Medical Bioscience,
Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development,
National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Azumi Tamura
- Research Center for Drug and Vaccine Development,
National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science,
The University of Tokyo, Tokyo 108-8639, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development,
National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kohei Kondo
- Research Center for Drug and Vaccine Development,
National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Antimicrobial Resistance Research Center,
National Institute of Infectious Diseases, Tokyo, Japan
| | - Zhang Yuancheng
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine,
Jichi Medical University, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine,
Jichi Medical University, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Masaki Shintani
- Department of Engineering,
Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center,
National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development,
National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Department of Life Science and Medical Bioscience,
Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development,
National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience,
Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Phage Therapy Institute,
Comprehensive Research Organization, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development,
National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine,
Jichi Medical University, Shimotsuke-shi, Tochigi 329-0498, Japan
- Phage Therapy Institute,
Comprehensive Research Organization, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
21
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
22
|
Hong Q, Chang RYK, Assafiri O, Morales S, Chan HK. Optimizing in vitro phage-ciprofloxacin combination formulation for respiratory therapy of multi-drug resistant Pseudomonas aeruginosa infections. Int J Pharm 2024; 652:123853. [PMID: 38280500 DOI: 10.1016/j.ijpharm.2024.123853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Respiratory infection caused by multi-drug resistant (MDR) Pseudomonas aeruginosa is challenging to treat. In this study, we investigate the optimal dose of anti-pseudomonas phage PEV31 (103, 105, and 108 PFU/mL) combined with ciprofloxacin (ranging from 1/8× MIC to 8× MIC) to treat the MDR P. aeruginosa strain FADD1-PA001 using time-kill studies. We determined the impact of phage growth kinetics in the presence of ciprofloxacin through one-step growth analysis. Single treatments with either phage PEV31 or ciprofloxacin (except at 8× MIC) showed limited bactericidal efficiency, with bacterial regrowth observed at 48 h. The most effective treatments were PEV31 at multiplicity of infection (MOI) of 0.1 and 100 combined with ciprofloxacin at concentrations above 1× MIC, resulting in a >4 log10 reduction in bacterial counts. While the burst size of phage PEV31 was decreased with increasing ciprofloxacin concentration, robust antimicrobial effects were still maintained in the combination treatment. Aerosol samples collected from vibrating mesh nebulization of the combination formulation at phage MOI of 100 with 2× MIC effectively inhibited bacterial density. In summary, our combination treatments eradicated in vitro bacterial growth and sustained antimicrobial effects for 48 h. These results indicated the potential application of nebulization-based strategies for the combination treatment against MDR lung infections.
Collapse
Affiliation(s)
- Qixuan Hong
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Omar Assafiri
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
23
|
Kifelew LG, Warner MS, Morales S, Gordon DL, Thomas N, Mitchell JG, Speck PG. Lytic activity of phages against bacterial pathogens infecting diabetic foot ulcers. Sci Rep 2024; 14:3515. [PMID: 38347019 PMCID: PMC10861545 DOI: 10.1038/s41598-024-53317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Complications of diabetes, such as diabetic foot ulcers (DFUs), are common, multifactorial in origin, and costly to treat. DFUs are the cause of nearly 90% of limb amputations among persons with diabetes. In most chronic infections such as DFU, biofilms are involved. Bacteria in biofilms are 100-1000 times more resistant to antibiotics than their planktonic counterparts. Multidrug-resistant (MDR) Staphylococcus aureus and Pseudomonas aeruginosa infections in DFUs may require alternative therapeutic agents such as bacteriophages ("phages"). This study describes the lytic activity of phage cocktails AB-SA01 (3-phage cocktail) and AB-PA01 (4-phage cocktail), which target S. aureus and P. aeruginosa, respectively. The host range and lytic effect of AB-SA01 and AB-PA01 on a planktonic culture, single-species biofilm, and mixed-species biofilm were evaluated. In vitro testing showed that 88.7% of S. aureus and 92.7% of P. aeruginosa isolates were susceptible to AB-SA01 and AB-PA01, respectively, in the planktonic state. The component phages of AB-SA01 and AB-PA01 infected 66% to 94.3% of the bacterial isolates tested. Furthermore, AB-SA01 and AB-PA01 treatment significantly (p < 0.05) reduced the biofilm biomass of their hosts, regardless of the antibiotic-resistant characteristics of the isolates and the presence of a non-susceptible host. In conclusion, the strong lytic activity, broad host range, and significant biofilm biomass reduction of AB-SA01 and AB-PA01 suggest the considerable potential of phages in treating antibiotic-resistant S. aureus and P. aeruginosa infections alone or as coinfections in DFUs.
Collapse
Affiliation(s)
- Legesse Garedew Kifelew
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
- St Paul's Hospital Millennium Medical College, 1271, Addis Ababa, Ethiopia.
| | - Morgyn S Warner
- Infectious Diseases Unit, Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sandra Morales
- AmpliPhi Australia Pty Ltd., Brookvale, NSW, 2100, Australia
- Phage Consulting, Sydney, NSW, 2100, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Nicky Thomas
- Basil Hetzel Institute for Translational Health Research, Woodville South, SA, 5011, Australia
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - James G Mitchell
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Peter G Speck
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
24
|
Rodriguez-Gonzalez RA, Balacheff Q, Debarbieux L, Marchi J, Weitz JS. Metapopulation model of phage therapy of an acute Pseudomonas aeruginosa lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578251. [PMID: 38352502 PMCID: PMC10862780 DOI: 10.1101/2024.01.31.578251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Infections caused by multi-drug resistant (MDR) pathogenic bacteria are a global health threat. Phage therapy, which uses phage to kill bacterial pathogens, is increasingly used to treat patients infected by MDR bacteria. However, the therapeutic outcome of phage therapy may be limited by the emergence of phage resistance during treatment and/or by physical constraints that impede phage-bacteria interactions in vivo. In this work, we evaluate the role of lung spatial structure on the efficacy of phage therapy for Pseudomonas aeruginosa infection. To do so, we developed a spatially structured metapopulation network model based on the geometry of the bronchial tree, and included the emergence of phage-resistant bacterial mutants and host innate immune responses. We model the ecological interactions between bacteria, phage, and the host innate immune system at the airway (node) level. The model predicts the synergistic elimination of a P. aeruginosa infection due to the combined effects of phage and neutrophils given sufficiently active immune states and suitable phage life history traits. Moreover, the metapopulation model simulations predict that local MDR pathogens are cleared faster at distal nodes of the bronchial tree. Notably, image analysis of lung tissue time series from wild-type and lymphocyte-depleted mice (n=13) revealed a concordant, statistically significant pattern: infection intensity cleared in the bottom before the top of the lungs. Overall, the combined use of simulations and image analysis of in vivo experiments further supports the use of phage therapy for treating acute lung infections caused by P. aeruginosa while highlighting potential limits to therapy given a spatially structured environment, such as impaired innate immune responses and low phage efficacy.
Collapse
Affiliation(s)
- Rogelio A. Rodriguez-Gonzalez
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Quentin Balacheff
- CHU Felix Guyon, Service des maladies respiratoires, La Réunion, France
| | | | - Jacopo Marchi
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Joshua S. Weitz
- Department of Biology, University of Maryland, College Park, Maryland, USA
- Department of Physics, University of Maryland, College Park, Maryland, USA
- Institut de Biologie de l’École Normale Supérieure, Paris, France
| |
Collapse
|
25
|
Gordon M, Ramirez P. Efficacy and Experience of Bacteriophages in Biofilm-Related Infections. Antibiotics (Basel) 2024; 13:125. [PMID: 38391511 PMCID: PMC10886175 DOI: 10.3390/antibiotics13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Bacterial infection has always accompanied human beings, causing suffering and death while also contributing to the advancement of medical science. However, the treatment of infections has become more complex in recent times. The increasing resistance of bacterial strains to antibiotics has diminished the effectiveness of the therapeutic arsenal, making it less likely to find the appropriate empiric antibiotic option. Additionally, the development and persistence of bacterial biofilms have become more prevalent, attributed to the greater use of invasive devices that facilitate biofilm formation and the enhanced survival of chronic infection models where biofilm plays a crucial role. Bacteria within biofilms are less susceptible to antibiotics due to physical, chemical, and genetic factors. Bacteriophages, as biological weapons, can overcome both antimicrobial resistance and biofilm protection. In this review, we will analyze the scientific progress achieved in vitro to justify their clinical application. In the absence of scientific evidence, we will compile publications of clinical cases where phages have been used to treat infections related to biofilm. The scientific basis obtained in vitro and the success rate and safety observed in clinical practice should motivate the medical community to conduct clinical trials establishing a protocol for the proper use of bacteriophages.
Collapse
Affiliation(s)
- Monica Gordon
- Critical Care Department, Hospital Universitario y Politécnico la Fe, Av. Vicente Abril Martorell 106, 46026 Valencia, Spain
| | - Paula Ramirez
- Critical Care Department, Hospital Universitario y Politécnico la Fe, Av. Vicente Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
26
|
Kulshrestha M, Tiwari M, Tiwari V. Bacteriophage therapy against ESKAPE bacterial pathogens: Current status, strategies, challenges, and future scope. Microb Pathog 2024; 186:106467. [PMID: 38036110 DOI: 10.1016/j.micpath.2023.106467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
The ESKAPE pathogens are the primary threat due to their constant spread of drug resistance worldwide. These pathogens are also regarded as opportunistic pathogens and could potentially cause nosocomial infections. Most of the ESKAPE pathogens have developed resistance to almost all the antibiotics that are used against them. Therefore, to deal with antimicrobial resistance, there is an urgent requirement for alternative non-antibiotic strategies to combat this rising issue of drug-resistant organisms. One of the promising alternatives to this scenario is implementing bacteriophage therapy. This under-explored mode of treatment in modern medicine has posed several concerns, such as preferable phages for the treatment, impact on the microbiome (or gut microflora), dose optimisation, safety, etc. The review will cover a rationale for phage therapy, clinical challenges, and propose phage therapy as an effective therapeutic against bacterial coinfections during pandemics. This review also addresses the expected uncertainties for administering the phage as a treatment against the ESKAPE pathogens and the advantages of using lytic phage over temperate, the immune response to phages, and phages in combinational therapies. The interaction between bacteria and bacteriophages in humans and countless animal models can also be used to design novel and futuristic therapeutics like personalised medicine or bacteriophages as anti-biofilm agents. Hence, this review explores different aspects of phage therapy and its potential to emerge as a frontline therapy against the ESKAPE bacterial pathogen.
Collapse
Affiliation(s)
- Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
27
|
Morozova VV, Kozlova YN, Tikunova NV. Successful Use of Phage and Antibiotics Therapy for the Eradication of Two Bacterial Pathogens from the Respiratory Tract of an Infant. Methods Mol Biol 2024; 2734:237-243. [PMID: 38066373 DOI: 10.1007/978-1-0716-3523-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Phage therapy can be a useful approach in a number of clinical cases associated with multidrug-resistant (MDR) bacterial infections. In this study, we describe a successful consecutive phage and antibiotic application to cure a 3-month-old girl suffering from severe bronchitis after tracheostomy. Bronchitis was associated with two bacterial agents, MDR Pseudomonas aeruginosa and a rare opportunistic pathogen Dolosigranulum pigrum. The phage cocktail "Pyobacteriophage" containing at least two different phages against isolated MDR P. aeruginosa strain was used via inhalation and nasal drops. Topical application of the phage cocktail removed most of P. aeruginosa cells and contributed to a change in the antimicrobial resistance profile of surviving P. aeruginosa cells. As a result, it became possible to choose and administer an appropriate antibiotic that was effective against both infectious agents. Complete recovery of the infant was recorded.
Collapse
Affiliation(s)
- Vera V Morozova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Laboratory of Molecular Microbiology, Novosibirsk, Russian Federation.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.
| | - Yulia N Kozlova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Laboratory of Molecular Microbiology, Novosibirsk, Russian Federation
| | - Nina V Tikunova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Laboratory of Molecular Microbiology, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
28
|
Forti F, Bertoli C, Cafora M, Gilardi S, Pistocchi A, Briani F. Identification and impact on Pseudomonas aeruginosa virulence of mutations conferring resistance to a phage cocktail for phage therapy. Microbiol Spectr 2023; 11:e0147723. [PMID: 37966242 PMCID: PMC10714927 DOI: 10.1128/spectrum.01477-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE In this work, we identified the putative receptors of 16 Pseudomonas phages and evaluated how resistance to phages recognizing different bacterial receptors may affect the virulence. Our findings are relevant for the implementation of phage therapy of Pseudomonas aeruginosa infections, which are difficult to treat with antibiotics. Overall, our results highlight the need to modify natural phages to enlarge the repertoire of receptors exploited by therapeutic phages and suggest that phages using the PAO1-type T4P as receptor may have limited value for the therapy of the cystic fibrosis infection.
Collapse
Affiliation(s)
- Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Claudia Bertoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Marco Cafora
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Sara Gilardi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
29
|
Mohammed HT, Mageeney C, Korenberg J, Graham L, Ware VC. Characterization of novel recombinant mycobacteriophages derived from homologous recombination between two temperate phages. G3 (BETHESDA, MD.) 2023; 13:jkad210. [PMID: 37713616 PMCID: PMC10700106 DOI: 10.1093/g3journal/jkad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Comparative analyses of mycobacteriophage genomes reveals extensive genetic diversity in genome organization and gene content, contributing to widespread mosaicism. We previously reported that the prophage of mycobacteriophage Butters (cluster N) provides defense against infection by Island3 (subcluster I1). To explore the anti-Island3 defense mechanism, we attempted to isolate Island3 defense escape mutants on a Butters lysogen, but only uncovered phages with recombinant genomes comprised of regions of Butters and Island3 arranged from left arm to right arm as Butters-Island3-Butters (BIBs). Recombination occurs within two distinct homologous regions that encompass lysin A, lysin B, and holin genes in one segment, and RecE and RecT genes in the other. Structural genes of mosaic BIB genomes are contributed by Butters while the immunity cassette is derived from Island3. Consequently, BIBs are morphologically identical to Butters (as shown by transmission electron microscopy) but are homoimmune with Island3. Recombinant phages overcome antiphage defense and silencing of the lytic cycle. We leverage this observation to propose a stratagem to generate novel phages for potential therapeutic use.
Collapse
Affiliation(s)
- Hamidu T Mohammed
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
- Memsel, Inc., 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Catherine Mageeney
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Jamie Korenberg
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
- New York Institute of Technology College of Osteopathic Medicine, 101 Northern Blvd., Glen Head, NY 11545, USA
| | - Lee Graham
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Vassie C Ware
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
30
|
Li J, Yan B, He B, Li L, Zhou X, Wu N, Wang Q, Guo X, Zhu T, Qin J. Development of phage resistance in multidrug-resistant Klebsiella pneumoniae is associated with reduced virulence: a case report of a personalised phage therapy. Clin Microbiol Infect 2023; 29:1601.e1-1601.e7. [PMID: 37652124 DOI: 10.1016/j.cmi.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVES Phage-resistant bacteria often emerge rapidly when performing phage therapy. However, the relationship between the emergence of phage-resistant bacteria and improvements in clinical symptoms is still poorly understood. METHODS An inpatient developed a pulmonary infection caused by multidrug-resistant Klebsiella pneumoniae. He received a first course of treatment with a single nebulized phage (ΦKp_GWPB35) targeted at his bacterial isolate of Kp7450. After 14 days, he received a second course of treatment with a phage cocktail (ΦKp_GWPB35+ΦKp_GWPA139). Antibiotic treatment was continued throughout the course of phage therapy. Whole-genome analysis was used to identify mutations in phage-resistant strains. Mutated genes associated with resistance were further analysed by generating knockouts of Kp7450 and by measuring phage adsorption rates of bacteria treated with proteinase K and periodate. Bacterial virulence was evaluated in mouse and zebrafish infection models. RESULTS Phage-resistant Klebsiella pneumoniae strains emerged after the second phage treatment. Comparative genomic analyses revealed that fabF was deleted in phage-resistant strains. The fabF knockout strain (Kp7450ΔfabF) resulted in an altered structure of lipopolysaccharide (LPS), which was identified as the host receptor for the therapeutic phages. Virulence evaluations in mice and zebrafish models showed that LPS was the main determinant of virulence in Kp7450 and alteration of LPS structure in Kp7450ΔfabF, and the bacteriophage-resistant strains reduced their virulence at cost. DISCUSSION This study may shed light on the mechanism by which some patients experience clinical improvement in their symptoms post phage therapy, despite the incomplete elimination of pathogenic bacteria.
Collapse
Affiliation(s)
- Jianhui Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Bo Yan
- Centre for Tuberculosis Research, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Bin He
- Department of Neurology, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Lisha Li
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xin Zhou
- CreatiPhage Biotechnology Co., Ltd, Shanghai, China
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China; CreatiPhage Biotechnology Co., Ltd, Shanghai, China
| | - Qingming Wang
- Department of Neurology, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Xiaokui Guo
- Shanghai Institute of Phage, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Tongyu Zhu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Jinhong Qin
- Shanghai Institute of Phage, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China; Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Singh J, Yeoh E, Fitzgerald DA, Selvadurai H. A systematic review on the use of bacteriophage in treating Staphylococcus aureus and Pseudomonas aeruginosa infections in cystic fibrosis. Paediatr Respir Rev 2023; 48:3-9. [PMID: 37598024 DOI: 10.1016/j.prrv.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Respiratory infections caused by Staphylococcus aureus and Pseudomonas aeruginosa are a major concern for cystic fibrosis (CF) patients due to increasing antibiotic resistance. Bacteriophages, which are viruses that selectively target and kill bacteria, are being studied as an alternative treatment for these infections. This systematic review evaluates the safety and effectiveness of bacteriophages for the treatment of CF-related infections caused by S. aureus and/or P. aeruginosa. We conducted a search for original, published articles in the English language up to March 2023. Studies that administered bacteriophages via intravenous, nebulised, inhaled, or intranasal routes were included, with no comparators required. In vitro and in vivo studies were eligible for inclusion, and only animal in vivo studies that utilised a CF transmembrane conductance regulator (CFTR) animal model were included. Bacteriophage treatment resulted in a decrease in bacterial load in both humans and animals infected with P. aeruginosa. Complete eradication of P. aeruginosa was only observed in one human subject. Additionally, there was a reduction in biofilm, improvement in resistance profile, and reduced pulmonary exacerbations in individual case reports. Evidence suggests that bacteriophage therapy may be a promising treatment option for CF-related infections caused by P. aeruginosa and S. aureus. However, larger and more robust trials are needed to establish its safety and efficacy and create necessary evidence for global legislative frameworks.
Collapse
Affiliation(s)
- Jagdev Singh
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Eugene Yeoh
- Department of Emergency Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Dominic A Fitzgerald
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Hiran Selvadurai
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Yao G, Le T, Korn AM, Peterson HN, Liu M, Gonzalez CF, Gill JJ. Phage Milagro: a platform for engineering a broad host range virulent phage for Burkholderia. J Virol 2023; 97:e0085023. [PMID: 37943040 PMCID: PMC10688314 DOI: 10.1128/jvi.00850-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE Burkholderia infections are a significant concern in people with CF and other immunocompromising disorders, and are difficult to treat with conventional antibiotics due to their inherent drug resistance. Bacteriophages, or bacterial viruses, are now seen as a potential alternative therapy for these infections, but most of the naturally occurring phages are temperate and have narrow host ranges, which limit their utility as therapeutics. Here we describe the temperate Burkholderia phage Milagro and our efforts to engineer this phage into a potential therapeutic by expanding the phage host range and selecting for phage mutants that are strictly virulent. This approach may be used to generate new therapeutic agents for treating intractable infections in CF patients.
Collapse
Affiliation(s)
- Guichun Yao
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Tram Le
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Abby M. Korn
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Hannah N. Peterson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Carlos F. Gonzalez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
33
|
Zalewska-Piątek B. Phage Therapy-Challenges, Opportunities and Future Prospects. Pharmaceuticals (Basel) 2023; 16:1638. [PMID: 38139765 PMCID: PMC10747886 DOI: 10.3390/ph16121638] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing drug resistance of bacteria to commonly used antibiotics creates the need to search for and develop alternative forms of treatment. Phage therapy fits this trend perfectly. Phages that selectively infect and kill bacteria are often the only life-saving therapeutic option. Full legalization of this treatment method could help solve the problem of multidrug-resistant infectious diseases on a global scale. The aim of this review is to present the prospects for the development of phage therapy, the ethical and legal aspects of this form of treatment given the current situation of such therapy, and the benefits of using phage products in persons for whom available therapeutic options have been exhausted or do not exist at all. In addition, the challenges faced by this form of therapy in the fight against bacterial infections are also described. More clinical studies are needed to expand knowledge about phages, their dosage, and a standardized delivery system. These activities are necessary to ensure that phage-based therapy does not take the form of an experiment but is a standard medical treatment. Bacterial viruses will probably not become a miracle cure-a panacea for infections-but they have a chance to find an important place in medicine.
Collapse
Affiliation(s)
- Beata Zalewska-Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
34
|
El Ghali A, Stamper K, Kunz Coyne AJ, Holger D, Kebriaei R, Alexander J, Lehman SM, Rybak MJ. Ciprofloxacin in combination with bacteriophage cocktails against multi-drug resistant Pseudomonas aeruginosa in ex vivo simulated endocardial vegetation models. Antimicrob Agents Chemother 2023; 67:e0072823. [PMID: 37877697 PMCID: PMC10649104 DOI: 10.1128/aac.00728-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/18/2023] [Indexed: 10/26/2023] Open
Abstract
Pseudomonas aeruginosa-associated infective endocarditis represents difficult-to-treat, deep-seated infections. Phage-antibiotic combinations have shown to eradicate multi-drug resistant (MDR) P. aeruginosa, limit the development of phage resistance, and restore antibiotic sensitivity. The objective of this study was to evaluate the activity of phage-ciprofloxacin (CIP) combinations in 4-day ex vivo simulated endocardial vegetation (SEV) models against drug-resistant P. aeruginosa isolates. Two P. aeruginosa isolates, extensively drug-resistant AR351 and MDR I0003-1, were selected for their drug resistance and sensitivity to phage. Three phages [LL-5504721-AH (LL), E2005-C (EC), and 109] and CIP were evaluated alone and in combination for their activity and influence on drug and phage resistance using 24-h time-kill analysis. The three-phage cocktail (q24h) in combination with CIP (400 mg q12h) was then tested in dynamic 4-day ex vivo SEV models, with reduction of log10 CFU/mL compared using ANOVA with Bonferroni analysis. Compared to other combinations, CIP-LL-EC-109 demonstrated synergistic and bactericidal activity from starting CFU/g against AR351 and I0003-1 (-Δ5.65 and 6.60 log10 CFU/g, respectively; P < 0.001). Additionally, CIP-LL-EC-109 mitigated phage resistance, while all other therapies had a high degree of resistance to >1 phages, and all phage-containing regimens prevented CIP mean inhibitory concentration increases compared to CIP alone for both AR351 and I0003-1 at 96 h.
Collapse
Affiliation(s)
- Amer El Ghali
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Kyle Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Dana Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Jose Alexander
- Department of Microbiology, Virology and Immunology, AdventHealth Central Florida, Orlando, Florida, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
- Department of Medicine, Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
35
|
Abstract
Patients with chronic lung disease and lung transplantation have high rates of colonization and infection from multidrug-resistant (MDR) organisms. This article summarizes the current state of knowledge regarding phage therapy in the setting of lung transplantation. Phage therapy has been used in several lung transplant candidates and recipients on a compassionate use basis targeting mostly MDR gram-negative infections and atypical mycobacterial infections with demonstrated clinical safety. Phage biodistribution given intravenously or via nebulization has not been extensively studied, though preliminary data are presented. Phage interacts with both the innate and adaptive immune system; current literature demonstrates the development of serum neutralization in some cases of phage therapy, although the clinical impact seems variable. A summary of current clinical trials involving patients with chronic lung disease is presented, though none are specifically targeting lung transplant candidates or recipients. In addition to treatment of active infections, a variety of clinical scenarios may benefit from phage therapy, and well-designed clinical trials involving this vulnerable patient population are needed: pre- or peritransplantation use of phage in the setting of MDR organism colonization may lead to waitlisting of candidates currently declined by many centers, along with potential reduction of waitlist mortality rates and posttransplant infections; phage may be used for biofilm-related bronchial stent infections; and, finally, there is a possibility that phage use can affect allograft function and chronic rejection.
Collapse
Affiliation(s)
- Saima Aslam
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
36
|
Yerushalmy O, Braunstein R, Alkalay-Oren S, Rimon A, Coppenhagn-Glazer S, Onallah H, Nir-Paz R, Hazan R. Towards Standardization of Phage Susceptibility Testing: The Israeli Phage Therapy Center "Clinical Phage Microbiology"-A Pipeline Proposal. Clin Infect Dis 2023; 77:S337-S351. [PMID: 37932122 DOI: 10.1093/cid/ciad514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Using phages as salvage therapy for nonhealing infections is gaining recognition as a viable solution for patients with such infections. The escalating issue of antibiotic resistance further emphasizes the significance of using phages in treating bacterial infections, encompassing compassionate-use scenarios and clinical trials. Given the high specificity of phages, selecting the suitable phage(s) targeting the causative bacteria becomes critical for achieving treatment success. However, in contrast to conventional antibiotics, where susceptibility-testing procedures were well established for phage therapy, there is a lack of standard frameworks for matching phages from a panel to target bacterial strains and assessing their interactions with antibiotics or other agents. This review discusses and compares published methods for clinical phage microbiology, also known as phage susceptibility testing, and proposes guidelines for establishing a standard pipeline based on our findings over the past 5 years of phage therapy at the Israeli Phage Therapy Center.
Collapse
Affiliation(s)
- Ortal Yerushalmy
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Braunstein
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Alkalay-Oren
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Rimon
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shunit Coppenhagn-Glazer
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadil Onallah
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ran Nir-Paz
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Hazan
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
37
|
Fujiki J, Nakamura K, Nakamura T, Iwano H. Fitness Trade-Offs between Phage and Antibiotic Sensitivity in Phage-Resistant Variants: Molecular Action and Insights into Clinical Applications for Phage Therapy. Int J Mol Sci 2023; 24:15628. [PMID: 37958612 PMCID: PMC10650657 DOI: 10.3390/ijms242115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In recent decades, phage therapy has been overshadowed by the widespread use of antibiotics in Western countries. However, it has been revitalized as a powerful approach due to the increasing prevalence of antimicrobial-resistant bacteria. Although bacterial resistance to phages has been reported in clinical cases, recent studies on the fitness trade-offs between phage and antibiotic resistance have revealed new avenues in the field of phage therapy. This strategy aims to restore the antibiotic susceptibility of antimicrobial-resistant bacteria, even if phage-resistant variants develop. Here, we summarize the basic virological properties of phages and their applications within the context of antimicrobial resistance. In addition, we review the occurrence of phage resistance in clinical cases, and examine fitness trade-offs between phage and antibiotic sensitivity, exploring the potential of an evolutionary fitness cost as a countermeasure against phage resistance in therapy. Finally, we discuss future strategies and directions for phage-based therapy from the aspect of fitness trade-offs. This approach is expected to provide robust options when combined with antibiotics in this era of phage 're'-discovery.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Keisuke Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Tomohiro Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Phage Therapy Institute, Waseda University, Tokyo 169-8050, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
- Department of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Phage Therapy Institute, Waseda University, Tokyo 169-8050, Japan
| |
Collapse
|
38
|
Karn SL, Gangwar M, Kumar R, Bhartiya SK, Nath G. Phage therapy: a revolutionary shift in the management of bacterial infections, pioneering new horizons in clinical practice, and reimagining the arsenal against microbial pathogens. Front Med (Lausanne) 2023; 10:1209782. [PMID: 37928478 PMCID: PMC10620811 DOI: 10.3389/fmed.2023.1209782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy's potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo. Phage therapy used with compassion (a profound understanding of and empathy for another's suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes.
Collapse
Affiliation(s)
- Subhash Lal Karn
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mayank Gangwar
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajesh Kumar
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyanam Kumar Bhartiya
- Department of General Surgery, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal Nath
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
39
|
Chung KM, Liau XL, Tang SS. Bacteriophages and Their Host Range in Multidrug-Resistant Bacterial Disease Treatment. Pharmaceuticals (Basel) 2023; 16:1467. [PMID: 37895938 PMCID: PMC10610060 DOI: 10.3390/ph16101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 10/29/2023] Open
Abstract
The rapid emergence of multidrug-resistant (MDR) bacteria in recent times has prompted the search for new and more potent antibiotics. Bacteriophages (commonly known as phages) are viruses that target and infect their bacterial hosts. As such, they are also a potential alternative to antibiotics. These phages can be broadly categorized into monovalent (with a narrow host range spectrum and specific to a single bacterial genus) and polyvalent (with a broad host range and specific to more than two genera). However, there is still much ambiguity in the use of these terms, with researchers often describing their phages differently. There is considerable research on the use of both narrow- and broad-host range phages in the treatment of infections and diseases caused by MDR bacteria, including tuberculosis, cystic fibrosis, and carbapenem-resistant Enterobacterales (CRE) infectious diseases. From this, it is clear that the host range of these phages plays a vital role in determining the effectiveness of any phage therapy, and this factor is usually analyzed based on the advantages and limitations of different host ranges. There have also been efforts to expand phage host ranges via phage cocktail development, phage engineering and combination therapies, in line with current technological advancements. This literature review aims to provide a more in-depth understanding of the role of phage host ranges in the effectiveness of treating MDR-bacterial diseases, by exploring the following: phage biology, the importance of phages in MDR bacteria diseases treatment, the importance of phage host range and its advantages and limitations, current findings and recent developments, and finally, possible future directions for wide host range phages.
Collapse
Affiliation(s)
- Ka Mun Chung
- Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Sciences, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Xiew Leng Liau
- Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Sciences, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Swee Seong Tang
- Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Sciences, University Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Research in Biotechnology for Agriculture, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
40
|
Pacios O, Blasco L, Ortiz Cartagena C, Bleriot I, Fernández-García L, López M, Barrio-Pujante A, Cuenca FF, Aracil B, Oteo-Iglesias J, Tomás M. Molecular studies of phages- Klebsiella pneumoniae in mucoid environment: innovative use of mucolytic agents prior to the administration of lytic phages. Front Microbiol 2023; 14:1286046. [PMID: 37886069 PMCID: PMC10598653 DOI: 10.3389/fmicb.2023.1286046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Mucins are important glycoproteins that form a protective layer throughout the gastrointestinal and respiratory tracts. There is scientific evidence of increase in phage-resistance in the presence of mucin for some bacterial pathogens. Manipulation in mucin composition may ultimately influence the effectiveness of phage therapy. In this work, two clinical strains of K. pneumoniae (K3574 and K3325), were exposed to the lytic bacteriophage vB_KpnS-VAC35 in the presence and absence of mucin on a long-term co-evolution assay, in an attempt to mimic in vitro the exposure to mucins that bacteria and their phages face in vivo. Enumerations of the bacterial and phage counts at regular time intervals were conducted, and extraction of the genomic DNA of co-evolved bacteria to the phage, the mucin and both was performed. We determined the frequency of phage-resistant mutants in the presence and absence of mucin and including a mucolytic agent (N-acetyl L-cysteine, NAC), and sequenced them using Nanopore. We phenotypically demonstrated that the presence of mucin induces the emergence of bacterial resistance against lytic phages, effectively decreased in the presence of NAC. In addition, the genomic analysis revealed some of the genes relevant to the development of phage resistance in long-term co-evolution, with a special focus on the mucoid environment. Genes involved in the metabolism of carbohydrates were mutated in the presence of mucin. In conclusion, the use of mucolytic agents prior to the administration of lytic phages could be an interesting therapeutic option when addressing K. pneumoniae infections in environments where mucin is overproduced.
Collapse
Affiliation(s)
- Olga Pacios
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Lucía Blasco
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Concha Ortiz Cartagena
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Inés Bleriot
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Laura Fernández-García
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - María López
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Antonio Barrio-Pujante
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Felipe Fernández Cuenca
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Instituto de Biomedicina de Sevilla (Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla), Sevilla, Spain
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
| | - Belén Aracil
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
- Laboratorio de Referencia e Investigación de Resistencias a Antibióticos e Infecciones Sanitarias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
- Laboratorio de Referencia e Investigación de Resistencias a Antibióticos e Infecciones Sanitarias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Tomás
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
| |
Collapse
|
41
|
Chung KM, Nang SC, Tang SS. The Safety of Bacteriophages in Treatment of Diseases Caused by Multidrug-Resistant Bacteria. Pharmaceuticals (Basel) 2023; 16:1347. [PMID: 37895818 PMCID: PMC10610463 DOI: 10.3390/ph16101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 10/29/2023] Open
Abstract
Given the urgency due to the rapid emergence of multidrug-resistant (MDR) bacteria, bacteriophages (phages), which are viruses that specifically target and kill bacteria, are rising as a potential alternative to antibiotics. In recent years, researchers have begun to elucidate the safety aspects of phage therapy with the aim of ensuring safe and effective clinical applications. While phage therapy has generally been demonstrated to be safe and tolerable among animals and humans, the current research on phage safety monitoring lacks sufficient and consistent data. This emphasizes the critical need for a standardized phage safety assessment to ensure a more reliable evaluation of its safety profile. Therefore, this review aims to bridge the knowledge gap concerning phage safety for treating MDR bacterial infections by covering various aspects involving phage applications, including phage preparation, administration, and the implications for human health and the environment.
Collapse
Affiliation(s)
- Ka Mun Chung
- Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sue C Nang
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Swee Seong Tang
- Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
42
|
Esposito C, Kamper M, Trentacoste J, Galvin S, Pfister H, Wang J. Advances in the Cystic Fibrosis Drug Development Pipeline. Life (Basel) 2023; 13:1835. [PMID: 37763239 PMCID: PMC10532558 DOI: 10.3390/life13091835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis is a genetic disease that results in progressive multi-organ manifestations with predominance in the respiratory and gastrointestinal systems. The significant morbidity and mortality seen in the CF population has been the driving force urging the CF research community to further advance treatments to slow disease progression and, in turn, prolong life expectancy. Enormous strides in medical advancements have translated to improvement in quality of life, symptom burden, and survival; however, there is still no cure. This review discusses the most current mainstay treatments and anticipated therapeutics in the CF drug development pipeline within the mechanisms of mucociliary clearance, anti-inflammatory and anti-infective therapies, restoration of the cystic fibrosis transmembrane conductance regulator (CFTR) protein (also known as highly effective modulator therapy (HEMT)), and genetic therapies. Ribonucleic acid (RNA) therapy, gene transfer, and gene editing are being explored in the hopes of developing a treatment and potential cure for people with CF, particularly for those not responsive to HEMT.
Collapse
Affiliation(s)
- Christine Esposito
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
| | - Martin Kamper
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
| | - Jessica Trentacoste
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
| | - Susan Galvin
- Division of Pediatric Pulmonology, The Steven and Alexandra Cohen Children’s Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, NY 11042, USA;
| | - Halie Pfister
- Manhasset Office of Clinical Research, The Feinstein Institutes for Medical Research, Lake Success, New York, NY 11042, USA;
| | - Janice Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA; (M.K.); (J.W.)
- Manhasset Office of Clinical Research, The Feinstein Institutes for Medical Research, Lake Success, New York, NY 11042, USA;
| |
Collapse
|
43
|
Cobián Güemes AG, Le T, Rojas MI, Jacobson NE, Villela H, McNair K, Hung SH, Han L, Boling L, Octavio JC, Dominguez L, Cantú VA, Archdeacon S, Vega AA, An MA, Hajama H, Burkeen G, Edwards RA, Conrad DJ, Rohwer F, Segall AM. Compounding Achromobacter Phages for Therapeutic Applications. Viruses 2023; 15:1665. [PMID: 37632008 PMCID: PMC10457797 DOI: 10.3390/v15081665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Achromobacter species colonization of Cystic Fibrosis respiratory airways is an increasing concern. Two adult patients with Cystic Fibrosis colonized by Achromobacter xylosoxidans CF418 or Achromobacter ruhlandii CF116 experienced fatal exacerbations. Achromobacter spp. are naturally resistant to several antibiotics. Therefore, phages could be valuable as therapeutics for the control of Achromobacter. In this study, thirteen lytic phages were isolated and characterized at the morphological and genomic levels for potential future use in phage therapy. They are presented here as the Achromobacter Kumeyaay phage collection. Six distinct Achromobacter phage genome clusters were identified based on a comprehensive phylogenetic analysis of the Kumeyaay collection as well as the publicly available Achromobacter phages. The infectivity of all phages in the Kumeyaay collection was tested in 23 Achromobacter clinical isolates; 78% of these isolates were lysed by at least one phage. A cryptic prophage was induced in Achromobacter xylosoxidans CF418 when infected with some of the lytic phages. This prophage genome was characterized and is presented as Achromobacter phage CF418-P1. Prophage induction during lytic phage preparation for therapy interventions require further exploration. Large-scale production of phages and removal of endotoxins using an octanol-based procedure resulted in a phage concentrate of 1 × 109 plaque-forming units per milliliter with an endotoxin concentration of 65 endotoxin units per milliliter, which is below the Food and Drugs Administration recommended maximum threshold for human administration. This study provides a comprehensive framework for the isolation, bioinformatic characterization, and safe production of phages to kill Achromobacter spp. in order to potentially manage Cystic Fibrosis (CF) pulmonary infections.
Collapse
Affiliation(s)
- Ana Georgina Cobián Güemes
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Tram Le
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Maria Isabel Rojas
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Nicole E. Jacobson
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Helena Villela
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Marine Microbiomes Lab, Red Sea Research Center, King Abdullah University of Science and Technology, Building 2, Level 3, Room 3216 WS03, Thuwal 23955-6900, Saudi Arabia
| | - Katelyn McNair
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Shr-Hau Hung
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Lili Han
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lance Boling
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Jessica Claire Octavio
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Lorena Dominguez
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Vito Adrian Cantú
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Sinéad Archdeacon
- College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Alejandro A. Vega
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90025, USA
| | - Michelle A. An
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Hamza Hajama
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Gregory Burkeen
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Robert A. Edwards
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
- Flinders Accelerator for Microbiome Exploration, Flinders University, Sturt Road, Bedford Park 5042, Australia
| | - Douglas J. Conrad
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA 9500, USA
| | - Forest Rohwer
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Anca M. Segall
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
44
|
Zou G, He L, Rao J, Song Z, Du H, Li R, Wang W, Zhou Y, Liang L, Chen H, Li J. Improving the safety and efficacy of phage therapy from the perspective of phage-mammal interactions. FEMS Microbiol Rev 2023; 47:fuad042. [PMID: 37442611 DOI: 10.1093/femsre/fuad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023] Open
Abstract
Phage therapy has re-emerged as a promising solution for combating antimicrobial-resistant bacterial infections. Increasingly, studies have revealed that phages possess therapeutic potential beyond their antimicrobial properties, including regulating the gut microbiome and maintain intestinal homeostasis, as a novel nanocarrier for targeted drug delivery. However, the complexity and unpredictability of phage behavior during treatment pose a significant challenge in clinical practice. The intricate interactions established between phages, humans, and bacteria throughout their long coexistence in the natural ecosystem contribute to the complexity of phage behavior in therapy, raising concerns about their efficacy and safety as therapeutic agents. Revealing the mechanisms by which phages interact with the human body will provide a theoretical basis for increased application of promising phage therapy. In this review, we provide a comprehensive summary of phage-mammal interactions, including signaling pathways, adaptive immunity responses, and phage-mediated anti-inflammatory responses. Then, from the perspective of phage-mammalian immune system interactions, we present the first systematic overview of the factors affecting phage therapy, such as the mode of administration, the physiological status of the patient, and the biological properties of the phage, to offer new insights into phage therapy for various human diseases.
Collapse
Affiliation(s)
- Geng Zou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun He
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Rao
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Du
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Runze Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Liang
- School of Bioscience, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
45
|
Bustos IG, Martín-Loeches I, Acosta-González A, Chotirmall SH, Dickson RP, Reyes LF. Exploring the complex relationship between the lung microbiome and ventilator-associated pneumonia. Expert Rev Respir Med 2023; 17:889-901. [PMID: 37872770 DOI: 10.1080/17476348.2023.2273424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Understanding the presence and function of a diverse lung microbiome in acute lung infections, particularly ventilator-associated pneumonia (VAP), is still limited, evidencing significant gaps in our knowledge. AREAS COVERED In this comprehensive narrative review, we aim to elucidate the contribution of the respiratory microbiome in the development of VAP by examining the current knowledge on the interactions among microorganisms. By exploring these intricate connections, we endeavor to enhance our understanding of the disease's pathophysiology and pave the way for novel ideas and interventions in studying the respiratory tract microbiome. EXPERT OPINION The conventional perception of lungs as sterile is deprecated since it is currently recognized the existence of a diverse microbial community within them. However, despite extensive research on the role of the respiratory microbiome in healthy lungs, respiratory chronic diseases and acute lung infections such as pneumonia are not fully understood. It is crucial to investigate further the relationship between the pathophysiology of VAP and the pulmonary microbiome, elucidating the mechanisms underlying the interactions between the microbiome, host immune response and mechanical ventilation for the development of VAP.
Collapse
Affiliation(s)
- Ingrid G Bustos
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Doctorado de Biociencias, Department of Engineering, Universidad de la Sabana, Chia, Colombia
| | - Ignacio Martín-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Dublin, Ireland
| | - Alejandro Acosta-González
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Bioprospection Research Group (GIBP), Department of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research & Innovation, Ann Arbor, MI, USA
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Critical Care Department, Clinica Universidad de La Sabana, Chia, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Köhler T, Luscher A, Falconnet L, Resch G, McBride R, Mai QA, Simonin JL, Chanson M, Maco B, Galiotto R, Riat A, McCallin S, Chan B, van Delden C. Personalized aerosolised bacteriophage treatment of a chronic lung infection due to multidrug-resistant Pseudomonas aeruginosa. Nat Commun 2023; 14:3629. [PMID: 37369702 PMCID: PMC10300124 DOI: 10.1038/s41467-023-39370-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Bacteriophage therapy has been suggested as an alternative or complementary strategy for the treatment of multidrug resistant (MDR) bacterial infections. Here, we report the favourable clinical evolution of a 41-year-old male patient with a Kartagener syndrome complicated by a life-threatening chronic MDR Pseudomonas aeruginosa infection, who is treated successfully with iterative aerosolized phage treatments specifically directed against the patient's isolate. We follow the longitudinal evolution of both phage and bacterial loads during and after phage administration in respiratory samples. Phage titres in consecutive sputum samples indicate in patient phage replication. Phenotypic analysis and whole genome sequencing of sequential bacterial isolates reveals a clonal, but phenotypically diverse population of hypermutator strains. The MDR phenotype in the collected isolates is multifactorial and mainly due to spontaneous chromosomal mutations. All isolates recovered after phage treatment remain phage susceptible. These results demonstrate that clinically significant improvement is achievable by personalised phage therapy even in the absence of complete eradication of P. aeruginosa lung colonization.
Collapse
Affiliation(s)
- Thilo Köhler
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| | - Alexandre Luscher
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Léna Falconnet
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Grégory Resch
- Center for Research and Innovation in Clinical Pharmaceutical Sciences (CRISP), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | - Juliette L Simonin
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Marc Chanson
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Raphaël Galiotto
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Arnaud Riat
- Diagnostic Bacteriology Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Shawna McCallin
- Department of Neuro-Urology Balgrist Hospital, Zurich, Switzerland
| | | | - Christian van Delden
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
Santamaría-Corral G, Senhaji-Kacha A, Broncano-Lavado A, Esteban J, García-Quintanilla M. Bacteriophage-Antibiotic Combination Therapy against Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:1089. [PMID: 37508185 PMCID: PMC10376841 DOI: 10.3390/antibiotics12071089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Phage therapy is an alternative therapy that is being used as the last resource against infections caused by multidrug-resistant bacteria after the failure of standard treatments. Pseudomonas aeruginosa can cause pneumonia, septicemia, urinary tract, and surgery site infections mainly in immunocompromised people, although it can cause infections in many different patient profiles. Cystic fibrosis patients are particularly vulnerable. In vitro and in vivo studies of phage therapy against P. aeruginosa include both bacteriophages alone and combined with antibiotics. However, the former is the most promising strategy utilized in clinical infections. This review summarizes the recent studies of phage-antibiotic combinations, highlighting the synergistic effects of in vitro and in vivo experiments and successful treatments in patients.
Collapse
Affiliation(s)
| | - Abrar Senhaji-Kacha
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBERINFEC-Infectious Diseases CIBER, 28029 Madrid, Spain
| | - Antonio Broncano-Lavado
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBERINFEC-Infectious Diseases CIBER, 28029 Madrid, Spain
| | - Meritxell García-Quintanilla
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBERINFEC-Infectious Diseases CIBER, 28029 Madrid, Spain
| |
Collapse
|
48
|
Ali Y, Inusa I, Sanghvi G, Mandaliya V, Bishoyi AK. The current status of phage therapy and its advancement towards establishing standard antimicrobials for combating multi drug-resistant bacterial pathogens. Microb Pathog 2023:106199. [PMID: 37336428 DOI: 10.1016/j.micpath.2023.106199] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Phage therapy; a revived antimicrobial weapon, has great therapeutic advantages with the main ones being its ability to eradicate multidrug-resistant pathogens as well as selective toxicity, which ensures that beneficial microbiota is not harmed, unlike antibiotics. These therapeutic properties make phage therapy a novel approach for combating resistant pathogens. Since millions of people across the globe succumb to multidrug-resistant infections, the implementation of phage therapy as a standard antimicrobial could transform global medicine as it offers greater therapeutic advantages than conventional antibiotics. Although phage therapy has incomplete clinical data, such as a lack of standard dosage and the ideal mode of administration, the conducted clinical studies report its safety and efficacy in some case studies, and therefore, this could lessen the concerns of its skeptics. Since its discovery, the development of phage therapeutics has been in a smooth progression. Concerns about phage resistance in populations of pathogenic bacteria are raised when bacteria are exposed to phages. Bacteria can use restriction-modification, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) defense, or mutations in the phage receptors to prevent phage invasion. Phage resistance, however, is often costly for the bacteria and may lead to a reduction in its virulence. The ongoing competition between bacteria and phage, on the other hand, ensures the emergence of phage strains that have evolved to infect resistant bacteria. A phage can quickly adapt by altering one or more aspects of its mode of infection, evading a resistance mechanism through genetic modifications, or directly thwarting the CRISPR-Cas defense. Using phage-bacterium coevolution as a technique could be crucial in the development of phage therapy as well. Through its recent advancement, gene-editing tools such as CRISPR-Cas allow the bioengineering of phages to produce phage cocktails that have broad spectrum activities, which could maximize the treatment's efficacy. This review presents the current state of phage therapy and its progression toward establishing standard medicine for combating antibiotic resistance. Recent clinical trials of phage therapy, some important case studies, and other ongoing clinical studies of phage therapy are all presented in this review. Furthermore, the recent advancement in the development of phage therapeutics, its application in various sectors, and concerns regarding its implementation are also highlighted here. Phage therapy has great potential and could help the fight against drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Yussuf Ali
- Department of Microbiology, Marwadi University, Gujarat, India
| | - Ibrahim Inusa
- Department of Information Technology, Marwadi University, Gujarat, India
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Gujarat, India
| | | | | |
Collapse
|
49
|
Baláž A, Kajsik M, Budiš J, Szemes T, Turňa J. PHERI-Phage Host ExploRation Pipeline. Microorganisms 2023; 11:1398. [PMID: 37374901 DOI: 10.3390/microorganisms11061398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic resistance is becoming a common problem in medicine, food, and industry, with multidrug-resistant bacterial strains occurring in all regions. One of the possible future solutions is the use of bacteriophages. Phages are the most abundant form of life in the biosphere, so we can highly likely purify a specific phage against each target bacterium. The identification and consistent characterization of individual phages was a common form of phage work and included determining bacteriophages' host-specificity. With the advent of new modern sequencing methods, there was a problem with the detailed characterization of phages in the environment identified by metagenome analysis. The solution to this problem may be to use a bioinformatic approach in the form of prediction software capable of determining a bacterial host based on the phage whole-genome sequence. The result of our research is the machine learning algorithm-based tool called PHERI. PHERI predicts the suitable bacterial host genus for the purification of individual viruses from different samples. In addition, it can identify and highlight protein sequences that are important for host selection.
Collapse
Affiliation(s)
- Andrej Baláž
- Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia
| | - Michal Kajsik
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 841 04 Bratislava, Slovakia
- Medirex Group Academy n.o., Novozamocka 1, 949 05 Nitra, Slovakia
| | - Jaroslav Budiš
- Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information (SCSTI), Lamacska Cesta 8/A, 811 04 Bratislava, Slovakia
| | - Tomáš Szemes
- Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 841 04 Bratislava, Slovakia
| | - Ján Turňa
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 841 04 Bratislava, Slovakia
| |
Collapse
|
50
|
Ling KM, Stick SM, Kicic A. Pulmonary bacteriophage and cystic fibrosis airway mucus: friends or foes? Front Med (Lausanne) 2023; 10:1088494. [PMID: 37265479 PMCID: PMC10230084 DOI: 10.3389/fmed.2023.1088494] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/11/2023] [Indexed: 06/03/2023] Open
Abstract
For those born with cystic fibrosis (CF), hyper-concentrated mucus with a dysfunctional structure significantly impacts CF airways, providing a perfect environment for bacterial colonization and subsequent chronic infection. Early treatment with antibiotics limits the prevalence of bacterial pathogens but permanently alters the CF airway microenvironment, resulting in antibiotic resistance and other long-term consequences. With little investment into new traditional antibiotics, safe and effective alternative therapeutic options are urgently needed. One gathering significant traction is bacteriophage (phage) therapy. However, little is known about which phages are effective for respiratory infections, the dynamics involved between phage(s) and the host airway, and associated by-products, including mucus. Work utilizing gut cell models suggest that phages adhere to mucus components, reducing microbial colonization and providing non-host-derived immune protection. Thus, phages retained in the CF mucus layer result from the positive selection that enables them to remain in the mucus layer. Phages bind weakly to mucus components, slowing down the diffusion motion and increasing their chance of encountering bacterial species for subsequent infection. Adherence of phage to mucus could also facilitate phage enrichment and persistence within the microenvironment, resulting in a potent phage phenotype or vice versa. However, how the CF microenvironment responds to phage and impacts phage functionality remains unknown. This review discusses CF associated lung diseases, the impact of CF mucus, and chronic bacterial infection. It then discusses the therapeutic potential of phages, their dynamic relationship with mucus and whether this may enhance or hinder airway bacterial infections in CF.
Collapse
Affiliation(s)
- Kak-Ming Ling
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA, Australia
| | - Stephen Michael Stick
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Division of Paediatrics, Medical School, The University of Western Australia, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| |
Collapse
|