1
|
Buder C, Langkabel N, Kirse A, Kalusa M, Fietz SA, Meemken D. Nano-coating with silicon dioxide to reduce the occurrence of bacterial contamination in a pig abattoir drinking system. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01243-x. [PMID: 39904879 DOI: 10.1007/s12223-025-01243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
A recently discovered source for infection of slaughter pigs, and thus entry for bacteria into the food chain, is the installed drinking equipment in lairage pens of pig abattoirs. To mitigate this, nano-coating of stainless steel, currently used in human medicine fields as well as in other parts of the food chain, appears as promising technology. In this study, silicon dioxide nano-coating was applied to six drinkers and installed for one and three months in a lairage of a pig abattoir, while results were compared with those of drinkers that had not been nano-coated. Laboratory examination of eight sample types related to the drinkers was conducted for total aerobic plate count, Enterobacteriaceae count, Pseudomonas spp. count, Salmonella presence, pathogenic Yersinia enterocolitica presence, Listeria monocytogenes presence and methicillin-resistant Staphylococcus aureus presence. The nipple drinker, which the pigs take into their mouth for drinking, was then examined using scanning electron microscopy and elemental analysis. The nano-coating did not produce statistically significant reductions in the loads or presence of these bacteria compared to the same but uncoated drinking equipment used under the same conditions. Further studies should focus on the implementation of combined methods, such as nano-coating and sanitary treatment, as well as modifications to the coating itself, to produce meaningful reductions of the bacterial loads on/in abattoir lairage drinking equipment.
Collapse
Affiliation(s)
- Celine Buder
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
| | - Nina Langkabel
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Alina Kirse
- Institute of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Mirjam Kalusa
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|
2
|
Amod A, Anand AA, Sahoo AK, Samanta SK. Diagnostic and therapeutic strategies in combating implanted medical device-associated bacterial biofilm infections. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01242-y. [PMID: 39865215 DOI: 10.1007/s12223-025-01242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide. Therefore, early and precise diagnosis of bacterial biofilms on implanted medical devices is essential to prevent their failure and associated complications. Culture-based methods are time consuming, more prone to contamination and often exhibit low sensitivity. Different molecular, imaging, and physical methods can aid in more accurate and faster detection of implant-associated bacterial biofilms. Biofilm growth on implant surface can be prevented either through modification of the implant material or by application of different antibacterial coatings on implant surface. Experimental studies have shown that pre-existing biofilms from medical implants can be removed by breaking down biofilm matrix, utilizing physical methods, nanomaterials and antimicrobial peptides. The current review delves into mechanism of biofilm formation on implanted medical devices and the subsequent host immune response. Much emphasis has been laid on different ongoing diagnostic and therapeutic strategies to achieve improved patient outcomes and reduced socio-economic burden.
Collapse
Affiliation(s)
- Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
| | - Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
| |
Collapse
|
3
|
Xiong T, Ning F, Chen Y, Gu M, Li M, Chen X, Wang L, Fan J, Peng X. Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination. ACS NANO 2025; 19:2822-2833. [PMID: 39764613 DOI: 10.1021/acsnano.4c15730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection. The charge regulation enables the multiple alkylation Nile blue (EB series) to exhibit substantially improved absorbance (∼2-fold), alkaline tolerance, and superoxide anion yield (2.2-4.2-fold) compared to the representative type I PS, sulfur-substituted Nile blue. Specifically, the enhanced electronic push-pull capabilities promote a more efficient electron recycling process, significantly boosting the efficiency of type I PDT. The superior PDT effect and enhanced bacterial uptake via charge regulation render the EB series more pronounced in hypoxic bacterial inhibition under red light or sunlight irradiation. Moreover, the hydrogel, constructed from oxidized dextran and quaternized chitosan, facilitates the localization and sustained retention of type I PSs, accelerating the healing of biofilm-infected wounds. This type I PS-based hydrogel could provide an efficient and user-friendly wound dressing for the clinical treatment and prevention of biofilm infections.
Collapse
Affiliation(s)
- Tao Xiong
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Fangrui Ning
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Mingrui Gu
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Mingle Li
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Behera SK, Huwaikem M, Jena B, Shah MP, Chakrabortty S, Tripathy SK, Mishra A. Fabrication of ZnO/Gypsum/Gelatine nanocomposites films and their antibacterial mechanism against Staphylococcus aureus. Biotechnol Genet Eng Rev 2024; 40:4713-4736. [PMID: 37243587 DOI: 10.1080/02648725.2023.2216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Staphylococcus aureus (S. aureus) has long been acknowledged as being one of the most harmful bacteria for human civilization. It is the main contributor to skin and soft tissue infections. The gram positive pathogen also contributes to bloodstream infections, pneumonia, or bone and joint infections. Hence, developing an efficient and targeted treatment for these illnesses is greatly desired. Recently, studies on nanocomposites (NCs) have significantly increased due to their potent antibacterial and antibiofilm properties. These NCs provide an intriguing way to control the growth of bacteria without causing the development of resistance strains that come from improper or excessive use of the conventional antibiotics. In this context, we have demonstrated the synthesis of a NC system by precipitation of ZnO nanoparticles (NPs) on Gypsum followed by encapsulation with Gelatine, in the present study. Fourier transform infrared (FTIR) spectroscopy was used to validate the presence of ZnO NPs and Gypsum. The film was characterized by X-ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The system exhibited promising antibiofilm action and was effective in combating S. aureus and MRSA in concentrations between 10 and 50 ug/ml. The bactericidal mechanism by release of reactive oxygen species (ROS) was anticipated to be induced by the NC system. Studies on cell survival and in-vitro infection support the film's notable biocompatibility and its potential for treating Staphylococcus infections in the future.
Collapse
Affiliation(s)
- Susanta Kumar Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- IMGENEX India Pvt. Ltd, Bhubaneswar, India
| | - Mashael Huwaikem
- Clinical Nutrition Department, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Bhumika Jena
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | | | - Sankha Chakrabortty
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Suraj K Tripathy
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Amrita Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| |
Collapse
|
5
|
Rajkhowa S, Hussain SZ, Agarwal M, Zaheen A, Al-Hussain SA, Zaki MEA. Advancing Antibiotic-Resistant Microbe Combat: Nanocarrier-Based Systems in Combination Therapy Targeting Quorum Sensing. Pharmaceutics 2024; 16:1160. [PMID: 39339197 PMCID: PMC11434747 DOI: 10.3390/pharmaceutics16091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The increase in antibiotic-resistant bacteria presents a significant risk to worldwide public health, emphasizing the necessity of novel approaches to address infections. Quorum sensing, an essential method of communication among bacteria, controls activities like the formation of biofilms, the production of virulence factors, and the synthesis of secondary metabolites according to the number of individuals in the population. Quorum quenching, which interferes with these processes, emerges as a vital approach to diminish bacterial virulence and prevent biofilm formation. Nanocarriers, characterized by their small size, high surface-area-to-volume ratio, and modifiable surface chemistry, offer a versatile platform for the disruption of bacterial communication by targeting various stages within the quorum sensing pathway. These features allow nanocarriers to infiltrate biofilms, disrupt cell membranes, and inhibit bacterial proliferation, presenting a promising alternative to traditional antibiotics. Integrating nanocarrier-based systems into combination therapies provides a multi-pronged approach to infection control, enhancing both the efficacy and specificity of treatment regimens. Nonetheless, challenges related to the stability, safety, and clinical effectiveness of nanomaterial-based antimicrobial treatments remain. Continued research and development are essential to overcoming these obstacles and fully harnessing the potential of nano-antimicrobial therapies. This review emphasizes the importance of quorum sensing in bacterial behavior and highlights the transformative potential of nanotechnology in advancing antimicrobial treatments, offering innovative solutions to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Safrina Zeenat Hussain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Manisha Agarwal
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| |
Collapse
|
6
|
Eghbalpoor F, Gorji M, Alavigeh MZ, Moghadam MT. Genetically engineered phages and engineered phage-derived enzymes to destroy biofilms of antibiotics resistance bacteria. Heliyon 2024; 10:e35666. [PMID: 39170521 PMCID: PMC11336853 DOI: 10.1016/j.heliyon.2024.e35666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
"An impregnable stronghold where one or more warrior clans can evade enemy attacks" may serve as a description of bacterial biofilm on a smaller level than human conflicts. Consider this hypothetical conflict: who would emerge victorious? The occupants of secure trenches or those carrying out relentless assault? Either faction has the potential for triumph; the defenders will prevail if they can fortify the trench with unwavering resolve, while the assailants will succeed if they can devise innovative means to breach the trench. Hence, bacterial biofilms pose a significant challenge and are formidable adversaries for medical professionals, often leading to the failure of antibiotic treatments in numerous hospital infections. Phage engineering has become the foundation for the targeted enhancement of various phage properties, facilitating the eradication of biofilms. Researchers across the globe have studied the impact of engineered phages and phage-derived enzymes on biofilms formed by difficult-to-treat bacteria. These novel biological agents have shown promising results in addressing biofilm-related challenges. The compilation of research findings highlights the impressive capabilities of engineered phages in combating antibiotic-resistant bacteria, superbugs, and challenging infections. Specifically, these engineered phages exhibit enhanced biofilm destruction, penetration, and prevention capabilities compared to their natural counterparts. Additionally, the engineered enzymes derived from phages demonstrate improved effectiveness in addressing bacterial biofilms. As a result, these novel solutions, which demonstrate high penetration, destruction, and inhibition of biofilms, can be regarded as a viable option for addressing infectious biofilms in the near future.
Collapse
Affiliation(s)
- Fatemeh Eghbalpoor
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdieh Gorji
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Zamani Alavigeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Wang S, Lei H, Mi Y, Ma P, Fan D. Chitosan and hyaluronic acid based injectable dual network hydrogels - Mediating antimicrobial and inflammatory modulation to promote healing of infected bone defects. Int J Biol Macromol 2024; 274:133124. [PMID: 38897505 DOI: 10.1016/j.ijbiomac.2024.133124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
In bone defects, infections lead to excessive inflammation, increased bacterial, and bone lysis, resulting in irregular wounds that hinder new bone regeneration. Injectable bioactive materials with adequate antimicrobial activity and strong osteogenic potential are urgently required to remedy irregular defects, eradicate bacteria, and facilitate the generation of new bone tissue. In this research, injectable dual-network composite hydrogels consisting of sulfated chitosan, oxidized hyaluronic acid, β-sodium glycerophosphate, and CuSr doped mesoporous bioactive glass loaded with bone morphogenetic protein (CuSrMBGBMP-2) were utilized for the first time to treat infectious bone defects. Initially, the hydrogel was injected into the wound at 37 °C with minimal invasion to establish a stable state and prevent hydrogel loss. Subsequently, sulfated chitosan eliminated bacteria at the wound site and facilitated cell proliferation with oxidized hyaluronic acid. Additionally, CuSrMBGBMP-2 strengthened antibacterial properties, regulated inflammatory reactions, promoted angiogenesis and osteogenic differentiation, addressing the deficiency in late-stage osteogenesis. Specifically, the injectable dual-network hydrogel based on chitosan and hyaluronic acid is minimally invasive, offering antibacterial, anti-inflammatory, pro-angiogenic, and bone regeneration properties. Therefore, this hydrogel with injectable dual network properties holds great promise for the treatment of bone infections in the future.
Collapse
Affiliation(s)
- Shang Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Yu Mi
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Pei Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
8
|
Jayaraman S, Rajendhran N, Kannan MA, Ramasamy T. Quercetin disrupts biofilm formation and attenuates virulence of Aeromonas hydrophila. Arch Microbiol 2024; 206:326. [PMID: 38922407 DOI: 10.1007/s00203-024-04034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Aeromonas hydrophila poses significant health and economic challenges in aquaculture owing to its pathogenicity and prevalence. Overuse of antibiotics has led to multidrug resistance and environmental pollution, necessitating alternative strategies. This study investigated the antibacterial and antibiofilm potentials of quercetin against A. hydrophila. Efficacy was assessed using various assays, including antibacterial activity, biofilm inhibition, specific growth time, hemolysis inhibition, autoaggregation, and microscopic evaluation. Additionally, docking analysis was performed to explore potential interactions between quercetin and virulence proteins of A. hydrophila, including proaerolysin, chaperone needle-subunit complex of the type III secretion system, and alpha-pore forming toxin (PDB ID: 1PRE, 2Q1K, 6GRK). Quercetin exhibited potent antibacterial activity with 21.1 ± 1.1 mm zone of inhibition at 1.5 mg mL-1. It also demonstrated significant antibiofilm activity, reducing biofilm formation by 46.3 ± 1.3% at the MIC and attenuating autoaggregation by 55.9 ± 1.5%. Hemolysis was inhibited by 41 ± 1.8%. Microscopic analysis revealed the disintegration of the A. hydrophila biofilm matrix. Docking studies indicated active hydrogen bond interactions between quercetin and the targeted virulence proteins with the binding energy -3.2, -5.6, and -5.1 kcal mol⁻1, respectively. These results suggest that quercetin is an excellent alternative to antibiotics for combating A. hydrophila infection in aquaculture. The multifaceted efficacy of quercetin in inhibiting bacterial growth, biofilm formation, virulence factors, and autoaggregation highlights the potential for aquaculture health and sustainability. Future research should delve into the precise mechanisms of action and explore synergistic combinations with other compounds for enhanced efficacy and targeted interventions.
Collapse
Affiliation(s)
- Sudharshini Jayaraman
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Nandhini Rajendhran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Monika Adhilaxmi Kannan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.
| |
Collapse
|
9
|
Mohammed AE, Aldahasi RM, Rahman I, Shami A, Alotaibi M, BinShabaib MS, ALHarthi SS, Aabed K. The antimicrobial activity of tea tree oil ( Melaleuca alternifolia) and its metal nanoparticles in oral bacteria. PeerJ 2024; 12:e17241. [PMID: 38854801 PMCID: PMC11162611 DOI: 10.7717/peerj.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/25/2024] [Indexed: 06/11/2024] Open
Abstract
Tea tree (Melaleuca alternifolia) oil (TTO) is an antimicrobial agent, and hence, its use in fabricating nanoparticles (NP) may be useful in providing more efficacious antimicrobial agents. The current research aimed to test the antimicrobial efficacy of TTO and its TTO-Metal-NPs against oral microbes: Porphyromonas gingivalis, Enterococcus faecalis, and Streptococcus mutans. The antimicrobial activity of TTO and zinc (Zn) and iron (Fe) nanoparticles (NPs) and the combined effects of antimicrobial agents were investigated using agar well diffusion assays. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of TTO. Field emission scanning electron microscopy (FE-SEM), dynamic light scatter (DLS), and zeta potential were utilized to analyze the biogenic nanoparticles' morphology, size, and potential. The antimicrobial mode of action was determined by assessing the morphological changes under scanning electron microscopy (SEM). The TTO extracts converted Zn and Fe ions to NPs, having an average size of 97.50 (ZnNPs) and 102.4 nm (FeNPs). All tested agents had significant antibacterial efficacy against the tested oral microbes. However, the TTO extract was more efficacious than the NPs. Combination treatment of TTO with antibiotics resulted in partial additive effects against P. gingivalis and partial antagonistic effects against E. faecalis, S. mutans, and common mouthwashes (Oral B and chlorhexidine). TTO and NP-treated bacteria underwent morphological changes on treatment. M. alternifolia phytochemicals could be useful for further research and development of antimicrobial NPs. The current study highlights the variance in activity observed for different types of bacteria and antagonistic effects seen with common mouthwashes, which represent a threat to therapeutic efficacy and heighten the risk of clinical microbial resistance.
Collapse
Affiliation(s)
- Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham M. Aldahasi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Modhi Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Munerah S. BinShabaib
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shatha S. ALHarthi
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
El-Subeyhi M, Hamid LL, Gayadh EW, Saod WM, Ramizy A. Biogenic Synthesis and Characterisation of Novel Potassium Nanoparticles by Capparis spinosa Flower Extract and Evaluation of Their Potential Antibacterial, Anti-biofilm and Antibiotic Development. Indian J Microbiol 2024; 64:548-557. [PMID: 39010993 PMCID: PMC11246407 DOI: 10.1007/s12088-024-01190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/30/2023] [Indexed: 07/17/2024] Open
Abstract
Scientific researches on the synthesis, characterisation, and biological activity of potassium nanoparticles (K NPs) are extremely rare. In our study, we successfully synthesised a novel form of K NPs using Capparis spinosa (C. spinosa) flower extract as a reducing and capping agent. The formation of K NPs in new form (K2O NPs) was confirmed by UV-vis and XRD spectra. Furthermore, the FTIR results indicated the presence of specific active biomolecules in the C. spinosa extract which played a crucial role in reducing and stabilising K2O NPs. SEM imaging demonstrated that the K2O NPs exhibited irregular shapes with nanosizes ranging between 25 and 95 nm. Remarkably, the biosynthesised K2O NPs displayed considerable antibacterial activity against a wide range of multidrug-resistant (MDR) pathogenic bacteria. K2O NPs demonstrated considerable anti-biofilm activity against preformed biofilms produced by MDR bacteria. Combining K2O NPs with conventional antibiotics greatly improved their efficacy in compacting the MDR bacterial strains. Industrially, bulk form of potassium oxides was commonly used in the preparation of various antimicrobial compounds such as detergents, bleach, and oxidising solutions. The synthesis of potassium oxide in nanoform has shown remarkable biological efficacy, making it a promising therapeutic approach for pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Marwa El-Subeyhi
- Chemistry department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Layth L. Hamid
- Biology department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Estabraq W. Gayadh
- Chemistry department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Wahran M. Saod
- Chemistry department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Asmiet Ramizy
- Physics department, College of Science, University Of Anbar, Ramadi, Iraq
| |
Collapse
|
11
|
Bereanu AS, Bereanu R, Mohor C, Vintilă BI, Codru IR, Olteanu C, Sava M. Prevalence of Infections and Antimicrobial Resistance of ESKAPE Group Bacteria Isolated from Patients Admitted to the Intensive Care Unit of a County Emergency Hospital in Romania. Antibiotics (Basel) 2024; 13:400. [PMID: 38786129 PMCID: PMC11117271 DOI: 10.3390/antibiotics13050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella Pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) is a group of bacteria very difficult to treat due to their high ability to acquire resistance to antibiotics and are the main cause of nosocomial infections worldwide, posing a threat to global public health. Nosocomial infections with MDR bacteria are found mainly in Intensive Care Units, due to the multitude of maneuvers and invasive medical devices used, the prolonged antibiotic treatments, the serious general condition of these critical patients, and the prolonged duration of hospitalization. MATERIALS AND METHODS During a period of one year, from January 2023 to December 2023, this cross-sectional study was conducted on patients diagnosed with sepsis admitted to the Intensive Care Unit of the Sibiu County Emergency Clinical Hospital. Samples taken were tracheal aspirate, catheter tip, pharyngeal exudate, wound secretion, urine culture, blood culture, and peritoneal fluid. RESULTS The most common bacteria isolated from patients admitted to our Intensive Care Unit was Klebsiella pneumoniae, followed by Acinetobacter baumanii and Pseudomonas aeruginosa. Gram-positive cocci (Enterococcus faecium and Staphilococcus aureus) were rarely isolated. Most of the bacteria isolated were MDR bacteria. CONCLUSIONS The rise of antibiotic and antimicrobial resistance among strains in the nosocomial environment and especially in Intensive Care Units raises serious concerns about limited treatment options.
Collapse
Affiliation(s)
- Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Rareș Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
| | - Cosmin Mohor
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ciprian Olteanu
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| |
Collapse
|
12
|
Bereanu AS, Vintilă BI, Bereanu R, Codru IR, Hașegan A, Olteanu C, Săceleanu V, Sava M. TiO 2 Nanocomposite Coatings and Inactivation of Carbapenemase-Producing Klebsiella Pneumoniae Biofilm-Opportunities and Challenges. Microorganisms 2024; 12:684. [PMID: 38674628 PMCID: PMC11051735 DOI: 10.3390/microorganisms12040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide increase of multidrug-resistant Gram-negative bacteria is a global threat. The emergence and global spread of Klebsiella pneumoniae carbapenemase- (KPC-) producing Klebsiella pneumoniae represent a particular concern. This pathogen has increased resistance and abilities to persist in human reservoirs, in hospital environments, on medical devices, and to generate biofilms. Mortality related to this microorganism is high among immunosuppressed oncological patients and those with multiple hospitalizations and an extended stay in intensive care. There is a severe threat posed by the ability of biofilms to grow and resist antibiotics. Various nanotechnology-based strategies have been studied and developed to prevent and combat serious health problems caused by biofilm infections. The aim of this review was to evaluate the implications of nanotechnology in eradicating biofilms with KPC-producing Klebsiella pneumoniae, one of the bacteria most frequently associated with nosocomial infections in intensive care units, including in our department, and to highlight studies presenting the potential applicability of TiO2 nanocomposite materials in hospital practice. We also described the frequency of the presence of bacterial biofilms on medical surfaces, devices, and equipment. TiO2 nanocomposite coatings are one of the best long-term options for antimicrobial efficacy due to their biocompatibility, stability, corrosion resistance, and low cost; they find their applicability in hospital practice due to their critical antimicrobial role for surfaces and orthopedic and dental implants. The International Agency for Research on Cancer has recently classified titanium dioxide nanoparticles (TiO2 NPs) as possibly carcinogenic. Currently, there is an interest in the ecological, non-toxic synthesis of TiO2 nanoparticles via biological methods. Biogenic, non-toxic nanoparticles have remarkable properties due to their biocompatibility, stability, and size. Few studies have mentioned the use of nanoparticle-coated surfaces as antibiofilm agents. A literature review was performed to identify publications related to KPC-producing Klebsiella pneumoniae biofilms and antimicrobial TiO2 photocatalytic nanocomposite coatings. There are few reviews on the antibacterial and antibiofilm applications of TiO2 photocatalytic nanocomposite coatings. TiO2 nanoparticles demonstrated marked antibiofilm activity, but being nano in size, these nanoparticles can penetrate cell membranes and may initiate cellular toxicity and genotoxicity. Biogenic TiO2 nanoparticles obtained via green, ecological technology have less applicability but are actively investigated.
Collapse
Affiliation(s)
- Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Rareș Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
| | - Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Adrian Hașegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Ciprian Olteanu
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Vicențiu Săceleanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| |
Collapse
|
13
|
Damyanova T, Dimitrova PD, Borisova D, Topouzova-Hristova T, Haladjova E, Paunova-Krasteva T. An Overview of Biofilm-Associated Infections and the Role of Phytochemicals and Nanomaterials in Their Control and Prevention. Pharmaceutics 2024; 16:162. [PMID: 38399223 PMCID: PMC10892570 DOI: 10.3390/pharmaceutics16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Biofilm formation is considered one of the primary virulence mechanisms in Gram-positive and Gram-negative pathogenic species, particularly those responsible for chronic infections and promoting bacterial survival within the host. In recent years, there has been a growing interest in discovering new compounds capable of inhibiting biofilm formation. This is considered a promising antivirulence strategy that could potentially overcome antibiotic resistance issues. Effective antibiofilm agents should possess distinctive properties. They should be structurally unique, enable easy entry into cells, influence quorum sensing signaling, and synergize with other antibacterial agents. Many of these properties are found in both natural systems that are isolated from plants and in synthetic systems like nanoparticles and nanocomposites. In this review, we discuss the clinical nature of biofilm-associated infections and some of the mechanisms associated with their antibiotic tolerance. We focus on the advantages and efficacy of various natural and synthetic compounds as a new therapeutic approach to control bacterial biofilms and address multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Tsvetozara Damyanova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Petya D. Dimitrova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Dayana Borisova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University “St. K. Ohridski”, 8 D. Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 103-A, 1113 Sofia, Bulgaria;
| | - Tsvetelina Paunova-Krasteva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| |
Collapse
|
14
|
Simsekli O, Bilinmis I, Celik S, Arık G, Baba AY, Karakucuk A. Advancing biofilm management through nanoformulation strategies: a review of dosage forms and administration routes. J Drug Target 2023; 31:931-949. [PMID: 37831630 DOI: 10.1080/1061186x.2023.2270619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Biofilms are complex microbial communities formed by the attachment of bacteria or fungi to surfaces encased in a self-produced polymeric matrix. These biofilms are highly resistant to conventional antimicrobial therapies. The resistance mechanisms exhibited by biofilms include low antibiotic absorption, sluggish replication, adaptive stress response, and the formation of dormant-like phenotypes. The eradication of biofilms requires alternative strategies and approaches. Nanotechnological drug delivery systems allow excellent control over the drug chemistry, surface area, particle size, particle shape, and composition of nanostructures. Nanoformulations can enhance the efficacy of antimicrobial agents by improving their bioavailability, stability, and targeted delivery to the site of infection that helps biofilm eradication more effectively. In addition to nanoformulations, the route of administration and choice of dosage forms play a crucial role in treating biofilm infections. Systemic administration of antibiotics is effective in controlling systemic infection and sepsis associated with biofilms. Alternative routes of administration, such as inhalation, vaginal, ocular, or dermal, have been explored to target biofilm infections in specific organs. This review primarily examines the utilisation of nanoformulations in various administration routes for biofilm management. It also provides an overview of biofilms, current approaches, and the drawbacks associated with conventional methods.
Collapse
Affiliation(s)
- Oyku Simsekli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Irfan Bilinmis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Sumeyye Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Gizem Arık
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Abdullah Yucel Baba
- Vocational School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Alptug Karakucuk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
15
|
Qiao L, Liang Y, Chen J, Huang Y, Alsareii SA, Alamri AM, Harraz FA, Guo B. Antibacterial conductive self-healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing. Bioact Mater 2023; 30:129-141. [PMID: 37554541 PMCID: PMC10404845 DOI: 10.1016/j.bioactmat.2023.07.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
In clinical applications, there is a lack of wound dressings that combine efficient resistance to drug-resistant bacteria with good self-healing properties. In this study, a series of adhesive self-healing conductive antibacterial hydrogel dressings based on oxidized sodium alginate-grafted dopamine/carboxymethyl chitosan/Fe3+ (OSD/CMC/Fe hydrogel)/polydopamine-encapsulated poly(thiophene-3-acetic acid) (OSD/CMC/Fe/PA hydrogel) were prepared for the repair of infected wound. The Schiff base and Fe3+ coordination bonds of the hydrogel structure are dynamic bonds that can be repaired automatically after the hydrogel network is disrupted. Macroscopically, the hydrogel exhibits self-healing properties, allowing the hydrogel dressing to adapt to complex wound surfaces. The OSD/CMC/Fe/PA hydrogel showed good conductivity and photothermal antibacterial properties under near-infrared (NIR) light irradiation. In addition, the hydrogels exhibit tunable rheological properties, suitable mechanical properties, antioxidant properties, tissue adhesion properties and hemostatic properties. Furthermore, all hydrogel dressings improved wound healing in the infected full-thickness defect skin wound repair test in mice. The wound size repaired by OSD/CMC/Fe/PA3 hydrogel + NIR was much smaller (12%) than the control group treated with Tegaderm™ film after 14 days. In conclusion, the hydrogels have high antibacterial efficiency, suitable conductivity, great self-healing properties, good biocompatibility, hemostasis and antioxidant properties, making them promising candidates for wound healing dressings for the treatment of infected skin wounds.
Collapse
Affiliation(s)
- Lipeng Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yongping Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jueying Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Saeed A. Alsareii
- Department of Surgery, College of Medicine, Najran University, Najran, 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran, 11001, Saudi Arabia
| | | | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran, 11001, Saudi Arabia
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
16
|
Zhou X, Dong L, Zhao B, Hu G, Huang C, Liu T, Lu Y, Zheng M, Yu Y, Yang Z, Cheng S, Xiong Y, Luo G, Qian W, Yin R. A photoactivatable and phenylboronic acid-functionalized nanoassembly for combating multidrug-resistant gram-negative bacteria and their biofilms. BURNS & TRAUMA 2023; 11:tkad041. [PMID: 37849944 PMCID: PMC10578387 DOI: 10.1093/burnst/tkad041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 07/19/2023] [Indexed: 10/19/2023]
Abstract
Background Multidrug-resistant (MDR) gram-negative bacteria-related infectious diseases have caused an increase in the public health burden and mortality. Moreover, the formation of biofilms makes these bacteria difficult to control. Therefore, developing novel interventions to combat MDR gram-negative bacteria and their biofilms-related infections are urgently needed. The purpose of this study was to develop a multifunctional nanoassembly (IRNB) based on IR-780 and N, N'-di-sec-butyl-N, N'- dinitroso-1,4-phenylenediamine (BNN6) for synergistic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. Methods The characterization and bacteria-targeting ability of IRNB were investigated. The bactericidal efficacy of IRNB against gram-negative bacteria and their biofilms was demonstrated by crystal violet staining assay, plate counting method and live/dead staining in vitro. The antibacterial efficiency of IRNB was examined on a subcutaneous abscess and cutaneous infected wound model in vivo. A cell counting kit-8 assay, Calcein/PI cytotoxicity assay, hemolysis assay and intravenous injection assay were performed to detect the biocompatibility of IRNB in vitro and in vivo. Results Herein, we successfully developed a multifunctional nanoassembly IRNB based on IR-780 and BNN6 for synergistic photothermal therapy (PTT), photodynamic therapy (PDT) and nitric oxide (NO) effect triggered by an 808 nm laser. This nanoassembly could accumulate specifically at the infected sites of MDR gram-negative bacteria and their biofilms via the covalent coupling effect. Upon irradiation with an 808 nm laser, IRNB was activated and produced both reactive oxygen species (ROS) and hyperthermia. The local hyperthermia could induce NO generation, which further reacted with ROS to generate ONOO-, leading to the enhancement of bactericidal efficacy. Furthermore, NO and ONOO- could disrupt the cell membrane, which converts bacteria to an extremely susceptible state and further enhances the photothermal effect. In this study, IRNB showed a superior photothermal-photodynamic-chemo (NO) synergistic therapeutic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. This resulted in effective control of associated infections, relief of inflammation, promotion of re-epithelization and collagen deposition, and regulation of angiogenesis during wound healing. Moreover, IRNB exhibited excellent biocompatibility, both in vitro and in vivo. Conclusions The present research suggests that IRNB can be considered a promising alternative for treating infections caused by MDR gram-negative bacteria and their biofilms.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Lanlan Dong
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Baohua Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Guangyun Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Can Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Tengfei Liu
- Department of Burn and Plastic Sugery, No. 906 Hospital of Joint Logistic Support Force of PLA, No. 377 Zhongshan East Road, Yinzhou District, Ningbo 315100, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Mengxue Zheng
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Yanlan Yu
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Shaowen Cheng
- Department of Wound Repair, the First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou 570102, China
| | - Yan Xiong
- Department of Orthopaedics, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| |
Collapse
|
17
|
Buder C, Meemken D, Fürstenberg R, Langforth S, Kirse A, Langkabel N. Drinking Pipes and Nipple Drinkers in Pig Abattoir Lairage Pens-A Source of Zoonotic Pathogens as a Hazard to Meat Safety. Microorganisms 2023; 11:2554. [PMID: 37894212 PMCID: PMC10609512 DOI: 10.3390/microorganisms11102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The water distribution system in the lairage pens of abattoirs could act as a route of contamination for produced meat. In this study, biofilm formation and the occurrence of specific pathogens in drinking equipment was investigated in different lairage pens in a German commercial pig abattoir. Samples of the water and the drinkers in different locations were microbiologically cultivated and examined. After new drinking equipment had been installed for one month, three months and five years, biofilm formation was detectable, and retrograde growth from the nipple drinkers was seen up to the connection with the main water distribution system. In particular, Enterobacteriaceae and Pseudomonas spp. were found in all samplings of the nipple drinkers. Zoonotic pathogens, Salmonella, pathogenic Yersinia enterocolitica and methicillin-resistant Staphylococcus aureus, were also isolated from the nipple drinkers, while Listeria monocytogenes was not detected via microbial cultivation methods in any of the samples. Since the pigs take the contaminated nipple drinkers into their mouths to drink, or drink contaminated water containing the pathogens, transmission and even infection of the pigs in the lairage can be assumed. This could consequently lead to contamination or cross-contamination of the meat during slaughter and processing and to a public health risk.
Collapse
Affiliation(s)
- Celine Buder
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (C.B.); (R.F.); (S.L.); (N.L.)
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Diana Meemken
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (C.B.); (R.F.); (S.L.); (N.L.)
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Roland Fürstenberg
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (C.B.); (R.F.); (S.L.); (N.L.)
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Susann Langforth
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (C.B.); (R.F.); (S.L.); (N.L.)
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Alina Kirse
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Nina Langkabel
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (C.B.); (R.F.); (S.L.); (N.L.)
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
18
|
Saha P, Rafe MR. Cyclodextrin: A prospective nanocarrier for the delivery of antibacterial agents against bacteria that are resistant to antibiotics. Heliyon 2023; 9:e19287. [PMID: 37662769 PMCID: PMC10472013 DOI: 10.1016/j.heliyon.2023.e19287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Supramolecular chemistry introduces us to the macrocyclic host cyclodextrin, which has a hydrophobic cavity. The hydrophobic cavity has a higher affinity for hydrophobic guest molecules and forms host-guest complexation with non-covalent interaction. Three significant cyclodextrin kinds are α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. The most often utilized is β-cyclodextrin (β-CD). An effective weapon against bacteria that are resistant to antibiotics is cyclodextrin. Several different kinds of cyclodextrin nanocarriers (β-CD, HP-β-CD, Meth-β-CD, cationic CD, sugar-grafted CD) are utilized to enhance the solubility, stability, dissolution, absorption, bioavailability, and permeability of the antibiotics. Cyclodextrin also improves the effectiveness of antibiotics, antimicrobial peptides, metallic nanoparticles, and photodynamic therapy (PDT). Again, cyclodextrin nanocarriers offer slow-release properties for sustained-release formulations where steady-state plasma antibiotic concentration is needed for an extended time. A novel strategy to combat bacterial resistance is a stimulus (pH, ROS)-responsive antibiotics released from cyclodextrin carrier. Once again, cyclodextrin traps autoinducer (AI), a crucial part of bacterial quorum sensing, and reduces virulence factors, including biofilm formation. Cyclodextrin helps to minimize MIC in particular bacterial strains, keep antibiotic concentrations above MIC in the infection site and minimize the possibility of antibiotic and biofilm resistance. Sessile bacteria trapped in biofilms are more resistant to antibiotic therapy than bacteria in a planktonic form. Cyclodextrin also involves delivering antibiotics to biofilm and resistant bacteria to combat bacterial resistance.
Collapse
Affiliation(s)
- Pranoy Saha
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Rajdoula Rafe
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
19
|
Balasubramanian N, Pounpandi P, Varatharaju G, Shanmugaiah V, Balakrishnan K, Thirunarayan MA. Distribution of virulence genes and biofilm characterization of human isolates of Streptococcus agalactiae: A pilot study. Colloids Surf B Biointerfaces 2023; 223:113151. [PMID: 36738701 DOI: 10.1016/j.colsurfb.2023.113151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
This study included 21 newly isolated clinical samples of Streptococcus agalactiae (Group B Streptococcus) screened in patients (six male, fifteen female) from various states of India with different infections (urinary tract infections, blood, pus and eye infections). All isolates were identified as Group B Streptococcus (GBS) using hemolytic properties, serogrouping and MALDI-TOF-MS analysis. Six virulence genes, cfb (100%), cylE (90.4%), lmp (85.7%), bca (71.4%), rib (38%) and bac (4.7%) were detected via polymerase chain reaction (PCR). Distribution studies of these six genes revealed five isolates containing five virulence genes (23.8%), followed by ten isolates containing four virulence genes (47.6%). The twenty GBS isolates selected on the glass surface included non-biofilm producers (n = 6, 30%), weak (n = 11, 55%) and moderate biofilm producers (n = 3, 15%). On the polystyrene surface, weak (n = 4, 20%), moderate (n = 2, 10%) and strong (n = 14, 70%) biofilm producers were detected. Live-dead cell staining revealed that more viable cells accumulated in the S. ag 7420 isolate than in the AH1 isolate. Scanning electron microscope (SEM) biofilm analysis showed S. ag AH1 cells appeared as chain-like structures, whereas the S. ag 7420 isolate biofilm cells appeared as fork-like structures on the glass surface. Biofilm elements were analyzed using Energy Dispersive X-Ray Analysis (EDAX) for both isolates and 13 elements with different orders of composition were found. Thus, virulence gene detection, distribution and biofilm formation by these new clinical isolates suggested the virulent nature of these pathogens, which might cause different levels of disease severity in humans.
Collapse
Affiliation(s)
- N Balasubramanian
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India.
| | - P Pounpandi
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - G Varatharaju
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - V Shanmugaiah
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - K Balakrishnan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - M A Thirunarayan
- Department of Microbiology, Apollo Hospitals, Greams Road, Chennai 600006, India
| |
Collapse
|
20
|
Sousa A, Phung AN, Škalko-Basnet N, Obuobi S. Smart delivery systems for microbial biofilm therapy: Dissecting design, drug release and toxicological features. J Control Release 2023; 354:394-416. [PMID: 36638844 DOI: 10.1016/j.jconrel.2023.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Bacterial biofilms are highly protected surface attached communities of bacteria that typically cause chronic infections. To address their recalcitrance to antibiotics and minimise side effects of current therapies, smart drug carriers are being explored as promising platforms for antimicrobials. Herein, we briefly summarize recent efforts and considerations that have been applied in the design of these smart carriers. We guide readers on a journey on how they can leverage the inherent biofilm microenvironment, external stimuli, or combine both types of stimuli in a predictable manner. The specific carrier features that are responsible for their 'on-demand' properties are detailed and their impact on antibiofilm property are further discussed. Moreover, an analysis on the impact of such features on drug release profiles is provided. Since nanotechnology represents a significant slice of the drug delivery pie, some insights on the potential toxicity are also depicted. We hope that this review inspires researchers to use their knowledge and creativity to design responsive systems that can eradicate biofilm infections.
Collapse
Affiliation(s)
- A Sousa
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - A Ngoc Phung
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - N Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - S Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
21
|
Aleksandrova YI, Shurpik DN, Nazmutdinova VA, Mostovaya OA, Subakaeva EV, Sokolova EA, Zelenikhin PV, Stoikov II. Toward Pathogenic Biofilm Suppressors: Synthesis of Amino Derivatives of Pillar[5]arene and Supramolecular Assembly with DNA. Pharmaceutics 2023; 15:pharmaceutics15020476. [PMID: 36839796 PMCID: PMC9966598 DOI: 10.3390/pharmaceutics15020476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
New amino derivatives of pillar[5]arene were obtained in three stages with good yields. It was shown that pillar[5]arene containing thiaether and tertiary amino groups formed supramolecular complexes with low molecular weight model DNA. Pillar[5]arene formed complexes with a DNA nucleotide pair at a ratio of 1:2 (macrocycle/DNA base pairs), as demonstrated by UV-visible and fluorescence spectroscopy. The association constants of pillar[5]arene with DNA were lgKass1:1 = 2.38 and lgKass1:2 = 5.07, accordingly. By using dynamic light scattering and transmission electron microscopy, it was established that the interaction of pillar[5]arene containing thiaether and tertiary amino groups (concentration of 10-5 M) with a model nucleic acid led to the formation of stable nanosized macrocycle/DNA associates with an average particle size of 220 nm. It was shown that the obtained compounds did not exhibit a pronounced toxicity toward human adenocarcinoma cells (A549) and bovine lung epithelial cells (LECs). The hypothesis about a possible usage of the synthesized macrocycle for the aggregation of extracellular bacterial DNA in a biofilm matrix was confirmed by the example of St. Aureus. It was found that pillar[5]arene at a concentration of 10-5 M was able to reduce the thickness of the St. Aureus biofilm by 15%.
Collapse
Affiliation(s)
- Yulia I. Aleksandrova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
| | - Dmitriy N. Shurpik
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
- Correspondence: (D.N.S.); (I.I.S.); Tel.: +7-843-233-7241 (I.I.S.)
| | | | - Olga A. Mostovaya
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
| | - Evgenia V. Subakaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
| | - Evgenia A. Sokolova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
| | - Pavel V. Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
| | - Ivan I. Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
- Correspondence: (D.N.S.); (I.I.S.); Tel.: +7-843-233-7241 (I.I.S.)
| |
Collapse
|
22
|
Xiroudaki S, Sabbatini S, Pecoraro C, Cascioferro S, Diana P, Wauthoz N, Antognelli C, Monari C, Giovagnoli S, Schoubben A. Development of a new indole derivative dry powder for inhalation for the treatment of biofilm-associated lung infections. Int J Pharm 2023; 631:122492. [PMID: 36528190 DOI: 10.1016/j.ijpharm.2022.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The aim of this work was to produce an inhalable dry powder formulation of a new anti-biofilm compound (SC38). For this purpose, chitosan was used as a polymeric carrier and l-leucine as a dispersibility enhancer. SC38 was entrapped by spray-drying into previously optimized chitosan microparticles. The final formulation was fully characterized in vitro in terms of particle morphology, particle size and distribution, flowability, aerodynamic properties, anti-biofilm activity and effects on lung cell viability. The SC38-loaded chitosan microparticles exhibited favorable aerodynamic properties with emitted and respirable fractions higher than 80 % and 45 % respectively. The optimized formulation successfully inhibited biofilm formation at microparticle concentrations starting from 20 μg/mL for methicillin-sensitive and 100 μg/mL for methicillin-resistant Staphylococcus aureus and showed a relatively safe profile in lung cells after 72 h exposure. Future in vivo tolerability and efficacy studies are needed to unravel the potential of this novel formulation for the treatment of difficult-to-treat biofilm-mediated lung infections.
Collapse
Affiliation(s)
- Styliani Xiroudaki
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| | - Camilla Pecoraro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Campus Plaine, 1050 Brussels, Belgium.
| | - Cinzia Antognelli
- Department of Medicine and Surgery, Biosciences and Medical Embryology Section, University of Perugia, 06132 Perugia, Italy.
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Aurélie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
23
|
Moreno Ruiz YP, de Almeida Campos LA, Alves Agreles MA, Galembeck A, Macário Ferro Cavalcanti I. Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010104. [PMID: 36671305 PMCID: PMC9855178 DOI: 10.3390/antibiotics12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
The development of multidrug-resistant (MDR) microorganisms has increased dramatically in the last decade as a natural consequence of the misuse and overuse of antimicrobials. The World Health Organization (WHO) recognizes that this is one of the top ten global public health threats facing humanity today, demanding urgent multisectoral action. The UK government foresees that bacterial antimicrobial resistance (AMR) could kill 10 million people per year by 2050 worldwide. In this sense, metallic nanoparticles (NPs) have emerged as promising alternatives due to their outstanding antibacterial and antibiofilm properties. The efficient delivery of the NPs is also a matter of concern, and recent studies have demonstrated that hydrogels present an excellent ability to perform this task. The porous hydrogel structure with a high-water retention capability is a convenient host for the incorporation of the metallic nanoparticles, providing an efficient path to deliver the NPs properly reducing bacterial infections caused by MDR pathogenic microorganisms. This article reviews the most recent investigations on the characteristics, applications, advantages, and limitations of hydrogels combined with metallic NPs for treating MDR bacteria. The mechanisms of action and the antibiofilm activity of the NPs incorporated into hydrogels are also described. Finally, this contribution intends to fill some gaps in nanomedicine and serve as a guide for the development of advanced medical products.
Collapse
Affiliation(s)
- Yolice Patricia Moreno Ruiz
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Luís André de Almeida Campos
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - Maria Andressa Alves Agreles
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
- Correspondence: ; Tel.: +55-81-98648-2081
| |
Collapse
|
24
|
Mohamad F, Alzahrani RR, Alsaadi A, Alrfaei BM, Yassin AEB, Alkhulaifi MM, Halwani M. An Explorative Review on Advanced Approaches to Overcome Bacterial Resistance by Curbing Bacterial Biofilm Formation. Infect Drug Resist 2023; 16:19-49. [PMID: 36636380 PMCID: PMC9830422 DOI: 10.2147/idr.s380883] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
The continuous emergence of multidrug-resistant pathogens evoked the development of innovative approaches targeting virulence factors unique to their pathogenic cascade. These approaches aimed to explore anti-virulence or anti-infective therapies. There are evident concerns regarding the bacterial ability to create a superstructure, the biofilm. Biofilm formation is a crucial virulence factor causing difficult-to-treat, localized, and systemic infections. The microenvironments of bacterial biofilm reduce the efficacy of antibiotics and evade the host's immunity. Producing a biofilm is not limited to a specific group of bacteria; however, Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus biofilms are exemplary models. This review discusses biofilm formation as a virulence factor and the link to antimicrobial resistance. In addition, it explores insights into innovative multi-targeted approaches and their physiological mechanisms to combat biofilms, including natural compounds, phages, antimicrobial photodynamic therapy (aPDT), CRISPR-Cas gene editing, and nano-mediated techniques.
Collapse
Affiliation(s)
- F Mohamad
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Raghad R Alzahrani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahlam Alsaadi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bahauddeen M Alrfaei
- Stem Cells and Regenerative Medicine, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Eldeen B Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia,Manal M Alkhulaifi, P.O. Box 55670, Riyadh, 11544, Tel +966 (11) 805-1685, Email
| | - Majed Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Correspondence: Majed Halwani, P.O. Box 3660, Mail Code 1515 (KAIMRC), Riyadh, 11481, Tel +966 (11) 429-4433, Fax +966 (11) 429-4440, Email ;
| |
Collapse
|
25
|
Armbruster CE, França Â, Kushugulova A, Mauch RM, Martín-Rodríguez AJ. Editorial: Rising stars in biofilms 2022. Front Cell Infect Microbiol 2023; 13:1169998. [PMID: 36936771 PMCID: PMC10020171 DOI: 10.3389/fcimb.2023.1169998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Affiliation(s)
- Chelsie E. Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Ângela França
- Biofilm Research Laboratory Rosario de Oliveira, Center of Biological Engineering, University of Minho, Braga, Portugal
| | - Almagul Kushugulova
- Microbiome Laboratory, Center for Life Sciences. National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Renan M. Mauch
- Unit of Airway Inflammation, Biomedical Centre, Faculty of Medicine, Lund University, Lund, Sweden
- *Correspondence: Renan M. Mauch,
| | | |
Collapse
|
26
|
De Silva LADS, Heo GJ. Biofilm formation of pathogenic bacteria isolated from aquatic animals. Arch Microbiol 2022; 205:36. [PMID: 36565346 DOI: 10.1007/s00203-022-03332-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 12/25/2022]
Abstract
Bacterial biofilm formation is one of the dynamic processes, which facilitates bacteria cells to attach to a surface and accumulate as a colony. With the help of biofilm formation, pathogenic bacteria can survive by adapting to their external environment. These bacterial colonies have several resistance properties with a higher survival rate in the environment. Especially, pathogenic bacteria can grow as biofilms and can be protected from antimicrobial compounds and other substances. In aquaculture, biofilm formation by pathogenic bacteria has emerged with an increased infection rate in aquatic animals. Studies show that Vibrio anguillarum, V. parahaemolyticus, V. alginolyticus, V. harveyi, V. campbellii, V. fischeri, Aeromonas hydrophila, A. salmonicida, Yersinia ruckeri, Flavobacterium columnare, F. psychrophilum, Piscirickettsia salmonis, Edwardsiella tarda, E. ictaluri, E. piscicida, Streptococcus parauberis, and S. iniae can survive in the environment by transforming their planktonic form to biofilm form. Therefore, the present review was intended to highlight the principles behind biofilm formation, major biofilm-forming pathogenic bacteria found in aquaculture systems, gene expression of those bacterial biofilms and possible controlling methods. In addition, the possibility of these pathogenic bacteria can be a serious threat to aquaculture systems.
Collapse
Affiliation(s)
- L A D S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
27
|
SurA-like and Skp-like Proteins as Important Virulence Determinants of the Gram Negative Bacterial Pathogens. Int J Mol Sci 2022; 24:ijms24010295. [PMID: 36613738 PMCID: PMC9820271 DOI: 10.3390/ijms24010295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
In the Gram-negative bacteria, many important virulence factors reach their destination via two-step export systems, and they must traverse the periplasmic space before reaching the outer membrane. Since these proteins must be maintained in a structure competent for transport into or across the membrane, they frequently require the assistance of chaperones. Based on the results obtained for the model bacterium Escherichia coli and related species, it is assumed that in the biogenesis of the outer membrane proteins and the periplasmic transit of secretory proteins, the SurA peptidyl-prolyl isomerase/chaperone plays a leading role, while the Skp chaperone is rather of secondary importance. However, detailed studies carried out on several other Gram-negative pathogens indicate that the importance of individual chaperones in the folding and transport processes depends on the properties of client proteins and is species-specific. Taking into account the importance of SurA functions in bacterial virulence and severity of phenotypes due to surA mutations, this folding factor is considered as a putative therapeutic target to combat microbial infections. In this review, we present recent findings regarding SurA and Skp proteins: their mechanisms of action, involvement in processes related to virulence, and perspectives to use them as therapeutic targets.
Collapse
|
28
|
Marji SM, Bayan MF, Jaradat A. Facile Fabrication of Methyl Gallate Encapsulated Folate ZIF-L Nanoframeworks as a pH Responsive Drug Delivery System for Anti-Biofilm and Anticancer Therapy. Biomimetics (Basel) 2022; 7:biomimetics7040242. [PMID: 36546942 PMCID: PMC9775553 DOI: 10.3390/biomimetics7040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Zeolitic imidazole frameworks are emerging materials and have been considered an efficient platform for biomedical applications. The present study highlights the simple fabrication of methyl gallate encapsulated folate-ZIF-L nanoframeworks (MG@Folate ZIF-L) by a simple synthesis. The nanoframeworks were characterized by different sophisticated instruments. In addition, the drug-releasing mechanism was evidenced by in vitro releasing kinetics at various pH conditions. The anti-biofilm potential confirmed by the biofilm architectural deformations against human infectious pathogens MRSA and N7 clinical strains. Furthermore, anticancer efficacy assessed against A549 lung cancer cells. The result reveals that the MG@Folate ZIF-L exposed a superior cytotoxic effect due to the pH-responsive and receptor-based drug-releasing mechanism. Based on the unique physicochemical and biological characteristics of nanoframeworks, it has overcome the problems of undesired side effects and uncontrolled drug release of existing drug delivery systems. Finally, the in vitro toxicity effect of MG@Folate ZIF-L was tested against the Artemia salina (A. salina) model organism, and the results show enhanced biocompatibility. Overall, the study suggested that the novel MG@Folate ZIF-L nanoframeworks is a suitable material for biomedical applications. It will be very helpful to the future design for targeted drug delivery systems.
Collapse
Affiliation(s)
- Saeed M. Marji
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
- Correspondence: (S.M.M.); (M.F.B.)
| | - Mohammad F. Bayan
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
- Correspondence: (S.M.M.); (M.F.B.)
| | - Abdolelah Jaradat
- Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 11622, Jordan
| |
Collapse
|
29
|
Chifor E, Bordeianu I, Anastasescu C, Calderon-Moreno JM, Bratan V, Eftemie DI, Anastasescu M, Preda S, Plavan G, Pelinescu D, Ionescu R, Stoica I, Zaharescu M, Balint I. Bioactive Coatings Based on Nanostructured TiO 2 Modified with Noble Metal Nanoparticles and Lysozyme for Ti Dental Implants. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3186. [PMID: 36144974 PMCID: PMC9502567 DOI: 10.3390/nano12183186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
This work presents the synthesis of nanostructured TiO2 modified with noble metal nanoparticles (Au, Ag) and lysozyme and coated on titanium foil. Moreover, the specific structural and functional properties of the resulting inorganic and hybrid materials were explored. The purpose of this study was to identify the key parameters for developing engineered coatings on titanium foil appropriate for efficient dental implants with intrinsic antibacterial activity. TiO2 nanoparticles obtained using the sol-gel method were deposited on Ti foil and modified with Au/Ag nanoparticles. Morphological and structural investigations (scanning electron and atomic force microscopies, X-ray diffraction, photoluminescence, and UV-Vis spectroscopies) were carried out for the characterization of the resulting inorganic coatings. In order to modify their antibacterial activity, which is essential for safe dental implants, the following aspects were investigated: (a) singlet oxygen (1O2) generation by inorganic coatings exposed to visible light irradiation; (b) the antibacterial behavior emphasized by titania-based coatings deposited on titanium foil (TiO2/Ti foil; Au-TiO2/Ti foil, Ag-TiO2/Ti foil); (c) the lysozyme bioactivity on the microbial substrate (Micrococcus lysodeicticus) after its adsorption on inorganic surfaces (Lys/TiO2/Ti foil; Lys/Au-TiO2/Ti foil, Lys/Ag-TiO2/Ti foil); (d) the enzymatic activity of the above-mentioned hybrids materials for the hydrolysis reaction of a synthetic organic substrate usually used for monitoring the lysozyme biocatalytic activity, namely, 4-Methylumbelliferyl β-D-N,N',N″-triacetylchitotrioside [4-MU-β- (GlcNAc)3]. This was evaluated by identifying the presence of a fluorescent reaction product, 7-hydroxy-4-metyl coumarin (4-methylumbelliferone).
Collapse
Affiliation(s)
- Emilian Chifor
- Faculty of Medicine of the Ovidius University, Aleea Universitatii nr.1, 900470 Constanţa, Romania
- “Strungareata” SRL, Strada Garii nr. 24, 800217 Galati, Romania
| | - Ion Bordeianu
- Faculty of Medicine of the Ovidius University, Aleea Universitatii nr.1, 900470 Constanţa, Romania
| | - Crina Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Jose Maria Calderon-Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Veronica Bratan
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Diana-Ioana Eftemie
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Silviu Preda
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Gabriel Plavan
- Faculty of Biology, “Alexandru Ioan Cuza” University, 700505 Iasi, Romania
| | - Diana Pelinescu
- Faculty of Biology, Intrarea Portocalilor 1-3, Sector 5, 060101 Bucharest, Romania
| | - Robertina Ionescu
- Faculty of Biology, Intrarea Portocalilor 1-3, Sector 5, 060101 Bucharest, Romania
| | - Ileana Stoica
- Faculty of Biology, Intrarea Portocalilor 1-3, Sector 5, 060101 Bucharest, Romania
| | - Maria Zaharescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Ioan Balint
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
30
|
Ngoepe MP, Battison A, Mufamadi S. Nano-Enabled Chronic Wound Healing Strategies: Burn and Diabetic Ulcer Wounds. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human skin serves as the body’s first line of defense against the environment. Diabetes mellitus (DM) and 2nd–4th degree burns, on the other hand, affect the skin’s protective barrier features. Burn wounds, hypermetabolic state, and hyperglycemia compromise the
immune system leading to chronic wound healing. Unlike acute wound healing processes, chronic wounds are affected by reinfections which can lead to limb amputation or death. The conventional wound dressing techniques used to protect the wound and provide an optimal environment for repair have
their limitations. Various nanomaterials have been produced that exhibit distinct features to tackle issues affecting wound repair mechanisms. This review discusses the emerging technologies that have been designed to improve wound care upon skin injury. To ensure rapid healing and possibly
prevent scarring, different nanomaterials can be applied at different stages of healing (hemostasis, inflammation, proliferation, remodeling).
Collapse
Affiliation(s)
- Mpho Phehello Ngoepe
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Aidan Battison
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Steven Mufamadi
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| |
Collapse
|
31
|
Xia Y, Jayathilake PG, Li B, Zuliani P, Deehan D, Longyear J, Stoodley P, Chen J. Coupled CFD-DEM modelling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions. Biotechnol Bioeng 2022; 119:2551-2563. [PMID: 35610631 PMCID: PMC9544383 DOI: 10.1002/bit.28146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 11/21/2022]
Abstract
The deformation and detachment of bacterial biofilm are related to the structural and mechanical properties of the biofilm itself. Extracellular polymeric substances (EPS) play an important role on keeping the mechanical stability of biofilms. The understanding of biofilm mechanics and detachment can help to reveal biofilm survival mechanisms under fluid shear and provide insight about what flows might be needed to remove biofilm in a cleaning cycle or for a ship to remove biofilms. However, how the EPS may affect biofilm mechanics and its deformation in flow conditions remains elusive. To address this, a coupled computational fluid dynamic– discrete element method (CFD‐DEM) model was developed. The mechanisms of biofilm detachment, such as erosion and sloughing have been revealed by imposing hydrodynamic fluid flow at different velocities and loading rates. The model, which also allows adjustment of the proportion of different functional groups of microorganisms in the biofilm, enables the study of the contribution of EPS toward biofilm resistance to fluid shear stress. Furthermore, the stress–strain curves during biofilm deformation have been captured by loading and unloading fluid shear stress to study the viscoelastic properties of the biofilm. Our predicted emergent viscoelastic properties of biofilms were consistent with relevant experimental measurements.
Collapse
Affiliation(s)
- Yuqing Xia
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | | | - Bowen Li
- School of Computing, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Paolo Zuliani
- School of Computing, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - David Deehan
- The Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K.,Freeman Hospital, Newcastle upon Tyne, NE7 7DN, U.K
| | - Jennifer Longyear
- Marin, Protective, and Yacht Coatings, AkzoNobel, Gateshead, NE10 0JY, U.K
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, The Ohio State University, Columbus, OH, 43210, USA.,National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, S017 1BJ, U.K
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
32
|
Trubenová B, Roizman D, Moter A, Rolff J, Regoes RR. Population genetics, biofilm recalcitrance, and antibiotic resistance evolution. Trends Microbiol 2022; 30:841-852. [PMID: 35337697 DOI: 10.1016/j.tim.2022.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Biofilms are communities of bacteria forming high-density sessile colonies. Such a lifestyle comes associated with costs and benefits: while the growth rate of biofilms is often lower than that of their free-living counterparts, this cost is readily repaid once the colony is subjected to antibiotics. Biofilms can grow in antibiotic concentrations a thousand times higher than planktonic bacteria. While numerous mechanisms have been proposed to explain biofilm recalcitrance towards antibiotics, little is yet known about their effect on the evolution of resistance. We synthesize the current understanding of biofilm recalcitrance from a pharmacodynamic and a population genetics perspective. Using the pharmacodynamic framework, we discuss the effects of various mechanisms and show that biofilms can either promote or impede resistance evolution.
Collapse
Affiliation(s)
| | - Dan Roizman
- Institute of Biology, Evolutionary Biology, Freie Universität Berlin, Germany
| | - Annette Moter
- Charité, Universitätsmedizin Berlin Biofilmcenter, Berlin, Germany
| | - Jens Rolff
- Institute of Biology, Evolutionary Biology, Freie Universität Berlin, Germany
| | | |
Collapse
|
33
|
Zhang Z, Wang L, Chan TKF, Chen Z, Ip M, Chan PKS, Sung JJY, Zhang L. Micro-/Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities. Adv Healthc Mater 2022; 11:e2101991. [PMID: 34907671 DOI: 10.1002/adhm.202101991] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/24/2021] [Indexed: 12/13/2022]
Abstract
The evolution of drug-resistant pathogenic bacteria remains one of the most urgent threats to public health worldwide. Even worse, the bacterial cells commonly form biofilms through aggregation and adhesion, preventing antibiotic penetration and resisting environmental stress. Moreover, biofilms tend to grow in some hard-to-reach regions, bringing difficulty for antibiotic delivery at the infected site. The drug-resistant pathogenic bacteria and intractable biofilm give rise to chronic and recurrent infections, exacerbating the challenge in combating bacterial infections. Micro/nanorobots (MNRs) are capable of active cargo delivery, targeted treatment with high precision, and motion-assisted mechanical force, which enable transport and enhance penetration of antibacterial agents into the targeted site, thus showing great promise in emerging as an attractive alternative to conventional antibacterial therapies. This review summarizes the recent advances in micro-/nanorobots for antibacterial applications, with emphasis on those novel strategies for drug-resistance bacterium and stubborn biofilm infections. Insights on the future development of MNRs with good functionality and biosafety offer promising approaches to address infections in the clinic setting.
Collapse
Affiliation(s)
- Zifeng Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Lu Wang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Tony K. F. Chan
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Zigui Chen
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Margaret Ip
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Paul K. S. Chan
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Stanley Ho Centre for Emerging Infectious Diseases Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 636921 Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
- CUHK T Stone Robotics Institute The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Department of Surgery The Chinese University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
34
|
Yin M, Yang M, Yan D, Yang L, Wan X, Xiao J, Yao Y, Luo J. Surface-Charge-Switchable and Size-Transformable Thermosensitive Nanocomposites for Chemo-Photothermal Eradication of Bacterial Biofilms in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8847-8864. [PMID: 35138798 DOI: 10.1021/acsami.1c24229] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The appearance of multidrug-resistant bacteria and their biofilms presents a serious threat to modern medical systems. Herein, we fabricated a novel gold-nanorod-based chemo-photothermal-integrated antimicrobial platform with surface-charge-switchable and near-infrared (NIR)-induced size-transformable activities that show an enhanced killing efficiency against methicillin-resistant Staphylococcus aureus (MRSA) in both planktonic and biofilm phenotypes. The nanocomposites are prepared by in situ copolymerization using N-isopropyl acrylamide (NIPAM), acrylic acid (AA), and N-allylmethylamine (MAA) as monomers on the surfaces of gold nanorods (GNRs). Ciprofloxacin (CIP) is loaded onto polymer shells of nanocomposites with a loading content of 9.8%. The negatively charged nanocomposites switch to positive upon passive accumulation at the infectious sites, which promotes deep biofilm penetration and bacterial adhesion of the nanoparticles. Subsequently, NIR irradiation triggers the nanocomposites to rapidly shrink in volume, further increasing the depth of biofilm penetration. The NIR-triggered, ultrafast volume shrinkage causes an instant release of CIP on the bacterial surface, realizing the synergistic benefits of chemo-photothermal therapy. Both in vitro and in vivo evidence demonstrate that drug-loaded nanocomposites could eradicate clinical MRSA biofilms. Taken together, the multifunctional chemo-photothermal-integrated antimicrobial platform, as designed, is a promising antimicrobial agent against MRSA infections.
Collapse
Affiliation(s)
- Meihui Yin
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Min Yang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Daoping Yan
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Lijiao Yang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohui Wan
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jipeng Xiao
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yongchao Yao
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jianbin Luo
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
35
|
Singh A, Amod A, Pandey P, Bose P, Pingali MS, Shivalkar S, Varadwaj P, Sahoo A, Samanta S. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed Mater 2022; 17. [PMID: 35105823 DOI: 10.1088/1748-605x/ac50f6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
Nearly 80% of human chronic infections are caused due to bacterial biofilm formation. This is the most leading cause for failure of medical implants resulting in high morbidity and mortality. In addition, biofilms are also known to cause serious problems in food industry. Biofilm impart enhanced antibiotic resistance and become recalcitrant to host immune responses leading to persistent and recurrent infections. It makes the clinical treatment for biofilm infections very difficult. Reduced penetration of antibiotic molecules through EPS, mutation of the target site, accumulation of antibiotic degrading enzymes, enhanced expression of efflux pump genes are the probable causes for antibiotics resistance. Accordingly, strategies like administration of topical antibiotics and combined therapy of antibiotics with antimicrobial peptides are considered for alternate options to overcome the antibiotics resistance. A number of other remediation strategies for both biofilm inhibition and dispersion of established biofilm have been developed. The metallic nanoparticles and their oxides have recently gained a tremendous thrust as antibiofilm therapy for their unique features. This present comprehensive review gives the understanding of antibiotic resistance mechanisms of biofilm and provides an overview of various currently available biofilm remediation strategies, focusing primarily on the applications of metallic nanoparticles and their oxides.
Collapse
Affiliation(s)
- Anirudh Singh
- Indian Institute of Information Technology Allahabad, Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Ayush Amod
- Indian Institute of Information Technology Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | | | - Pranay Bose
- KIIT University, Bhubaneswar, Odisha, India, Bhubaneswar, Orissa, 751024, INDIA
| | - M Shivapriya Pingali
- Indian Institute of Information Technology Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Saurabh Shivalkar
- Applied Sciences, IIIT Allahabad, UP, India, Allahabad, 211012, INDIA
| | - Pritish Varadwaj
- Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Amaresh Sahoo
- Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Sintu Samanta
- Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India, Allahabad, Uttar Pradesh, 211012, INDIA
| |
Collapse
|
36
|
The Untargeted Phytochemical Profile of Three Meliaceae Species Related to In Vitro Cytotoxicity and Anti-Virulence Activity against MRSA Isolates. Molecules 2022; 27:molecules27020435. [PMID: 35056761 PMCID: PMC8777635 DOI: 10.3390/molecules27020435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A high mortality rate is associated with about 80% of all infections worldwide, mainly due to antimicrobial resistance. Various antimicrobial and cytotoxic activities have been proposed for Meliaceae species. This study aimed to evaluate the in vitro anti-virulence and cytotoxic effect of the leaf extracts of Aphanamixis polystachya, Toona ciliata and Melia azedarach against five MRSA strains and on three cancer cell lines, followed by biological correlation to their encompassed phytoconstituents. MATERIAL AND METHODS We explored three plants of this family against a panel of Methicillin-resistant Staphylococcus aureus (MRSA) strains and several cancer cell lines to select the most promising candidates for further in vivo and preclinical studies. The phytochemical composition was evaluated by UHPLC-QTOF-MS untargeted profiling. Cell viability was assessed by SRB assay. Minimum Inhibitory Concentration was carried out by using the agar micro-dilution technique. Inhibition of biofilm formation and preformed biofilm disruption were assessed spectrophotomertically, according to the Sultan and Nabil method (2019). RESULTS A total of 279 compounds were putatively annotated to include different phytochemical classes, such as flavonoids (108), limonoids/terpenoids (59), phenolic acids (49) and lower-molecular-weight phenolics (39). A. polystachya extract showed the most potent cytotoxic activity against Huh-7, DU-145 and MCF-7 cell lines (IC50 = 3, 3.5 and 13.4 µg mL-1, respectively), followed by M. azedarach, with no effect recorded for T. ciliata extract. Furthermore, both A. polystachya and M. azedarach extracts showed promising anti-virulence and antimicrobial activities, with A. polystachya being particularly active against MRSA. These two latter extracts could inhibit and disrupt the biofilm, formed by MRSA, at sub-lethal concentrations. Interestingly, the extracts inhibited hemolysin-α enzyme, thus protecting rabbit RBCs from lysis. A. polystachya extract reduced the pigmentation and catalase enzyme activity of tested pigmented strains better than M. azedarach at both tested sub-MICs. Consequently, susceptibility of the extract-treated cells to oxidant killing by 200 mM H2O2 increased, leading to faster killing of the cells within 120 min as compared to the extract-non-treated cells, likely due to the lower antioxidant-scavenging activity of cells exhibiting less staphyloxanthin production. CONCLUSION These findings suggested that both A. polystachya and M. azedarach natural extracts are rich in bioactive compounds, mainly limonoids, phenolics and oxygenated triterpenoids, which can combat MRSA biofilm infections and could be considered as promising sources of therapeutic cytotoxic, antibiofilm and anti-virulence agents.
Collapse
|
37
|
Biofilms in Surgical Site Infections: Recent Advances and Novel Prevention and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11010069. [PMID: 35052946 PMCID: PMC8773207 DOI: 10.3390/antibiotics11010069] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Surgical site infections (SSIs) are common postoperative occurrences due to contamination of the surgical wound or implanted medical devices with community or hospital-acquired microorganisms, as well as other endogenous opportunistic microbes. Despite numerous rules and guidelines applied to prevent these infections, SSI rates are considerably high, constituting a threat to the healthcare system in terms of morbidity, prolonged hospitalization, and death. Approximately 80% of human SSIs, including chronic wound infections, are related to biofilm-forming bacteria. Biofilm-associated SSIs are extremely difficult to treat with conventional antibiotics due to several tolerance mechanisms provided by the multidrug-resistant bacteria, usually arranged as polymicrobial communities. In this review, novel strategies to control, i.e., prevent and eradicate, biofilms in SSIs are presented and discussed, focusing mainly on two attractive approaches: the use of nanotechnology-based composites and natural plant-based products. An overview of new therapeutic agents and strategic approaches to control epidemic multidrug-resistant pathogenic microorganisms, particularly when biofilms are present, is provided alongside other combinatorial approaches as attempts to obtain synergistic effects with conventional antibiotics and restore their efficacy to treat biofilm-mediated SSIs. Some detection and real-time monitoring systems to improve biofilm control strategies and diagnosis of human infections are also discussed.
Collapse
|
38
|
Singh A, Rani K, Tandon V, Sahoo AK, Samanta SK. Ag NCs as a potent antibiofilm agent against pathogenic Pseudomonas aeruginosa and Acinetobacter baumannii and drug-resistant Bacillus subtilis by affecting chemotaxis and flagellar assembly pathway genes. Biomater Sci 2022; 10:6778-6790. [DOI: 10.1039/d2bm01399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ag NCs can mediate biofilm degradation through the regulation of bacterial chemotaxis and flagellar assembly pathway genes.
Collapse
Affiliation(s)
- Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad-211012, India
| | - Komal Rani
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad-211012, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad-211012, India
| |
Collapse
|
39
|
Mordovina EA, Plastun VO, Abdurashitov AS, Proshin PI, Raikova SV, Bratashov DN, Inozemtseva OA, Goryacheva IY, Sukhorukov GB, Sindeeva OA. "Smart" Polylactic Acid Films with Ceftriaxone Loaded Microchamber Arrays for Personalized Antibiotic Therapy. Pharmaceutics 2021; 14:pharmaceutics14010042. [PMID: 35056938 PMCID: PMC8781070 DOI: 10.3390/pharmaceutics14010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial infections are a severe medical problem, especially in traumatology, orthopedics, and surgery. The local use of antibiotics-elution materials has made it possible to increase the effectiveness of acute infections treatment. However, the infection prevention problem remains unresolved. Here, we demonstrate the fabrication of polylactic acid (PLA) “smart” films with microchamber arrays. These microchambers contain ceftriaxone as a payload in concentrations ranging from 12 ± 1 μg/cm2 to 38 ± 8 μg/cm2, depending on the patterned film thickness formed by the different PLA concentrations in chloroform. In addition, the release profile of the antibiotic can be prolonged up to 72 h in saline. At the same time, on the surface of agar plates, the antibiotic release time increases up to 96 h, which has been confirmed by the growth suppression of the Staphylococcus aureus bacteria. The efficient loading and optimal release rate are obtained for patterned films formed by the 1.5 wt % PLA in chloroform. The films produced from 1.5 and 2 wt % PLA solutions (thickness—0.42 ± 0.12 and 0.68 ± 0.16 µm, respectively) show an accelerated ceftriaxone release upon the trigger of the therapeutic ultrasound, which impacted as an expansion of the bacterial growth inhibition zone around the samples. Combining prolonged drug elution with the on-demand release ability of large cargo amount opens up new approaches for personalized and custom-tunable antibacterial therapy.
Collapse
Affiliation(s)
- Ekaterina A. Mordovina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.O.P.); (D.N.B.); (O.A.I.); (I.Y.G.)
- Correspondence: (E.A.M.); (O.A.S.)
| | - Valentina O. Plastun
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.O.P.); (D.N.B.); (O.A.I.); (I.Y.G.)
| | - Arkady S. Abdurashitov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (P.I.P.); (G.B.S.)
| | - Pavel I. Proshin
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (P.I.P.); (G.B.S.)
| | - Svetlana V. Raikova
- Saratov Hygiene Medical Research Center of the FBSI «FSC Medical and Preventive Health Risk Management Technologies», 1A Zarechnaya Str., 410022 Saratov, Russia;
- Department of Microbiology, Virology, and Immunology, Saratov State Medical University, 112 Bolshaya Kazachia Str., 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.O.P.); (D.N.B.); (O.A.I.); (I.Y.G.)
| | - Olga A. Inozemtseva
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.O.P.); (D.N.B.); (O.A.I.); (I.Y.G.)
| | - Irina Yu. Goryacheva
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.O.P.); (D.N.B.); (O.A.I.); (I.Y.G.)
| | - Gleb B. Sukhorukov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (P.I.P.); (G.B.S.)
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olga A. Sindeeva
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (P.I.P.); (G.B.S.)
- Correspondence: (E.A.M.); (O.A.S.)
| |
Collapse
|
40
|
Das S, Paul P, Chatterjee S, Chakraborty P, Sarker RK, Das A, Maiti D, Tribedi P. Piperine exhibits promising antibiofilm activity against Staphylococcus aureus by accumulating reactive oxygen species (ROS). Arch Microbiol 2021; 204:59. [DOI: 10.1007/s00203-021-02642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022]
|
41
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
42
|
Balasubramanian S, Yu K, Cardenas DV, Aubin-Tam ME, Meyer AS. Emergent Biological Endurance Depends on Extracellular Matrix Composition of Three-Dimensionally Printed Escherichia coli Biofilms. ACS Synth Biol 2021; 10:2997-3008. [PMID: 34652130 PMCID: PMC8609572 DOI: 10.1021/acssynbio.1c00290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Biofilms are three-dimensional
(3D) bacterial communities that
exhibit a highly self-organized nature in terms of their composition
and complex architecture. Bacteria in biofilms display emergent biological
properties, such as resistance to antimicrobials and disinfectants
that the individual planktonic cells lack. Bacterial biofilms possess
specialized architectural features including unique extracellular
matrix compositions and a distinct spatially patterned arrangement
of cells and matrix components within the biofilm. It is unclear which
of these architectural elements of bacterial biofilms lead to the
development of their emergent biological properties. Here, we report
a 3D printing-based technique for studying the emergent resistance
behaviors of Escherichia coli biofilms
as a function of their architecture. Cellulose and curli are the major
extracellular-matrix components in E. coli biofilms. We show that 3D-printed biofilms expressing either curli
alone or both curli and cellulose in their extracellular matrices
show higher resistance to exposure against disinfectants than 3D prints
expressing either cellulose alone or no biofilm-matrix components.
The 3D-printed biofilms expressing cellulose and/or curli also show
thicker anaerobic zones than nonbiofilm-forming E.
coli 3D prints. Thus, the matrix composition plays
a crucial role in the emergent spatial patterning and biological endurance
of 3D-printed biofilms. In contrast, initial spatial distribution
of bacterial density or curli-producing cells does not have an effect
on biofilm resistance phenotypes. Further, these 3D-printed biofilms
could be reversibly attached to different surfaces (bacterial cellulose,
glass, and polystyrene) and display resistance to physical distortions
by retaining their shape and structure. This physical robustness highlights
their potential in applications including bioremediation, protective
coatings against pathogens on medical devices, or wastewater treatment,
among many others. This new understanding of the emergent behavior
of bacterial biofilms could aid in the development of novel engineered
living materials using synthetic biology and materials science approaches.
Collapse
Affiliation(s)
- Srikkanth Balasubramanian
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, 2628 CE Delft, The Netherlands
| | - Kui Yu
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Diana Vasquez Cardenas
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Anne S. Meyer
- Department of Biology, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
43
|
Current strategies in inhibiting biofilm formation for combating urinary tract infections: Special focus on peptides, nano-particles and phytochemicals. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Das P, Ghosh S, Nayak B. Phyto-fabricated Nanoparticles and Their Anti-biofilm Activity: Progress and Current Status. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.739286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilm is the self-synthesized, mucus-like extracellular polymeric matrix that acts as a key virulence factor in various pathogenic microorganisms, thereby posing a serious threat to human health. It has been estimated that around 80% of hospital-acquired infections are associated with biofilms which are found to be present on both biotic and abiotic surfaces. Antibiotics, the current mainstream treatment strategy for biofilms are often found to be futile in the eradication of these complex structures, and to date, there is no effective therapeutic strategy established against biofilm infections. In this regard, nanotechnology can provide a potential platform for the alleviation of this problem owing to its unique size-dependent properties. Accordingly, various novel strategies are being developed for the synthesis of different types of nanoparticles. Bio-nanotechnology is a division of nanotechnology which is gaining significant attention due to its ability to synthesize nanoparticles of various compositions and sizes using biotic sources. It utilizes the rich biodiversity of various biological components which are biocompatible for the synthesis of nanoparticles. Additionally, the biogenic nanoparticles are eco-friendly, cost-effective, and relatively less toxic when compared to chemically or physically synthesized alternatives. Biogenic synthesis of nanoparticles is a bottom-top methodology in which the nanoparticles are formed due to the presence of biological components (plant extract and microbial enzymes) which act as stabilizing and reducing agents. These biosynthesized nanoparticles exhibit anti-biofilm activity via various mechanisms such as ROS production, inhibiting quorum sensing, inhibiting EPS production, etc. This review will provide an insight into the application of various biogenic sources for nanoparticle synthesis. Furthermore, we have highlighted the potential of phytosynthesized nanoparticles as a promising antibiofilm agent as well as elucidated their antibacterial and antibiofilm mechanism.
Collapse
|
45
|
Gursu BY, Dag İ, Dikmen G. Antifungal and antibiofilm efficacy of cinnamaldehyde-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against Candida albicans. Int Microbiol 2021; 25:245-258. [PMID: 34528147 DOI: 10.1007/s10123-021-00210-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Biofilm-associated Candida infections threaten public health and show high mortality. The drugs used in treatment are very limited due to reasons such as toxicity, low efficacy, and drug resistance, and new alternatives are needed. The use of natural products of plant origin in the biofilm management draws attention. CA (cinnamaldehyde, cinnamic aldehyde, or 3-phenyl-2-propenal) is an essential oil component that can also inhibit mold growth and mycotoxin production. However, there are some limitations in its use due to its poor solubility and volatility in water. Recently, the combination of natural components and nanoparticle-based drug delivery systems shows positive results. In this study, the effects of PLGA (poly(DL-lactide-co-glycolide)) nanoparticles arrested with CA (CA-PLGA NPs) on C. albicans planktonic and biofilm forms (prebiofilm and postbiofilm) were investigated. According to the results, the amount of active ingredient loaded in CA-PLGA NPs is much lower than the free CA and a strong antifungal effect was obtained even at this rate. Also, the postbiofilm application is more effective than prebiofilm application. PLGA NPs can also be a useful carrier for other essential oils, and their potential in various antifungal, antibiofilm, and biomedical applications should be investigated.
Collapse
Affiliation(s)
- Bükay Yenice Gursu
- Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - İlknur Dag
- Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey.,Vocational Health Services High School, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gökhan Dikmen
- Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
46
|
Sharma A, Kumar D, Dahiya K, Hawthorne S, Jha SK, Jha NK, Nand P, Girgis S, Raj S, Srivastava R, Goswami VK, Gregoriou Y, El-Zahaby SA, Ojha S, Dureja H, Gupta G, Singh S, Chellappan DK, Dua K. Advances in pulmonary drug delivery targeting microbial biofilms in respiratory diseases. Nanomedicine (Lond) 2021; 16:1905-1923. [PMID: 34348474 DOI: 10.2217/nnm-2021-0057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The increasing burden of respiratory diseases caused by microbial infections poses an immense threat to global health. This review focuses on the various types of biofilms that affect the respiratory system and cause pulmonary infections, specifically bacterial biofilms. The article also sheds light on the current strategies employed for the treatment of such pulmonary infection-causing biofilms. The potential of nanocarriers as an effective treatment modality for pulmonary infections is discussed, along with the challenges faced during treatment and the measures that may be implemented to overcome these. Understanding the primary approaches of treatment against biofilm infection and applications of drug-delivery systems that employ nanoparticle-based approaches in the disruption of biofilms are of utmost interest which may guide scientists to explore the vistas of biofilm research while determining suitable treatment modalities for pulmonary respiratory infections.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Kajal Dahiya
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Susan Hawthorne
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Samuel Girgis
- School of Pharmacy, University of Sunderland, Chester Road, Sunderland, SR1 3SD, UK
| | - Sibi Raj
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Rashi Srivastava
- Institute of Engineering & Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Vineet Kumar Goswami
- Department of Biological Sciences, School of Basic & Applied Sciences, G.D. Goenka University, Education City, Sohna Road, Gurugram, Haryana, 122103, India
| | - Yiota Gregoriou
- Department of Biological Sciences, Faculty of Pure & Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sally A El-Zahaby
- Department of Pharmaceutics & Pharmaceutical Technology, Pharos University in Alexandria, Egypt
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, PO Box-17666, United Arab Emirates University, Al Ain, UAE
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
47
|
Sharma A, Kumar D, Dahiya K, Hawthorne S, Jha SK, Jha NK, Nand P, Girgis S, Raj S, Srivastava R, Goswami VK, Gregoriou Y, El-Zahaby SA, Ojha S, Dureja H, Gupta G, Singh S, Chellappan DK, Dua K. Advances in pulmonary drug delivery targeting microbial biofilms in respiratory diseases. Nanomedicine (Lond) 2021. [DOI: https://doi.org/10.2217/nnm-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing burden of respiratory diseases caused by microbial infections poses an immense threat to global health. This review focuses on the various types of biofilms that affect the respiratory system and cause pulmonary infections, specifically bacterial biofilms. The article also sheds light on the current strategies employed for the treatment of such pulmonary infection-causing biofilms. The potential of nanocarriers as an effective treatment modality for pulmonary infections is discussed, along with the challenges faced during treatment and the measures that may be implemented to overcome these. Understanding the primary approaches of treatment against biofilm infection and applications of drug-delivery systems that employ nanoparticle-based approaches in the disruption of biofilms are of utmost interest which may guide scientists to explore the vistas of biofilm research while determining suitable treatment modalities for pulmonary respiratory infections.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Kajal Dahiya
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, 201310, India
| | - Susan Hawthorne
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India
| | - Samuel Girgis
- School of Pharmacy, University of Sunderland, Chester Road, Sunderland, SR1 3SD, UK
| | - Sibi Raj
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sec-125, Noida, 201313, India
| | - Rashi Srivastava
- Institute of Engineering & Technology, Lucknow, Uttar Pradesh, 226021, India
| | - Vineet Kumar Goswami
- Department of Biological Sciences, School of Basic & Applied Sciences, G.D. Goenka University, Education City, Sohna Road, Gurugram, Haryana, 122103, India
| | - Yiota Gregoriou
- Department of Biological Sciences, Faculty of Pure & Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sally A El-Zahaby
- Department of Pharmaceutics & Pharmaceutical Technology, Pharos University in Alexandria, Egypt
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, PO Box-17666, United Arab Emirates University, Al Ain, UAE
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
48
|
Paes Leme RC, da Silva RB. Antimicrobial Activity of Non-steroidal Anti-inflammatory Drugs on Biofilm: Current Evidence and Potential for Drug Repurposing. Front Microbiol 2021; 12:707629. [PMID: 34385992 PMCID: PMC8353384 DOI: 10.3389/fmicb.2021.707629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
It has been demonstrated that some non-steroidal anti-inflammatory drugs (NSAIDs), like acetylsalicylic acid, diclofenac, and ibuprofen, have anti-biofilm activity in concentrations found in human pharmacokinetic studies, which could fuel an interest in repurposing these well tolerated drugs as adjunctive therapies for biofilm-related infections. Here we sought to review the currently available data on the anti-biofilm activity of NSAIDs and its relevance in a clinical context. We performed a systematic literature review to identify the most commonly tested NSAIDs drugs in the last 5 years, the bacterial species that have demonstrated to be responsive to their actions, and the emergence of resistance to these molecules. We found that most studies investigating NSAIDs' activity against biofilms were in vitro, and frequently tested non-clinical bacterial isolates, which may not adequately represent the bacterial populations that cause clinically-relevant biofilm-related infections. Furthermore, studies concerning NSAIDs and antibiotic resistance are scarce, with divergent outcomes. Although the potential to use NSAIDs to control biofilm-related infections seems to be an exciting avenue, there is a paucity of studies that tested these drugs using appropriate in vivo models of biofilm infections or in controlled human clinical trials to support their repurposing as anti-biofilm agents.
Collapse
Affiliation(s)
- Rodrigo Cuiabano Paes Leme
- Laboratório Especial de Microbiologia Clínica (LEMC), Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Department of Infectious Diseases, Centro Universitário de Volta Redonda, Volta Redonda, Brazil
| | | |
Collapse
|
49
|
Kumaravel V, Nair KM, Mathew S, Bartlett J, Kennedy JE, Manning HG, Whelan BJ, Leyland NS, Pillai SC. Antimicrobial TiO 2 nanocomposite coatings for surfaces, dental and orthopaedic implants. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 416:129071. [PMID: 33642937 PMCID: PMC7899925 DOI: 10.1016/j.cej.2021.129071] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
Engineering of self-disinfecting surfaces to constrain the spread of SARS-CoV-2 is a challenging task for the scientific community because the human coronavirus spreads through respiratory droplets. Titania (TiO2) nanocomposite antimicrobial coatings is one of the ideal remedies to disinfect pathogens (virus, bacteria, fungi) from common surfaces under light illumination. The photocatalytic disinfection efficiency of recent TiO2 nanocomposite antimicrobial coatings for surfaces, dental and orthopaedic implants are emphasized in this review. Mostly, inorganic metals (e.g. copper (Cu), silver (Ag), manganese (Mn), etc), non-metals (e.g. fluorine (F), calcium (Ca), phosphorus (P)) and two-dimensional materials (e.g. MXenes, MOF, graphdiyne) were incorporated with TiO2 to regulate the charge transfer mechanism, surface porosity, crystallinity, and the microbial disinfection efficiency. The antimicrobial activity of TiO2 coatings was evaluated against the most crucial pathogenic microbes such as Escherichia coli, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Legionella pneumophila, Staphylococcus aureus, Streptococcus mutans, T2 bacteriophage, H1N1, HCoV-NL63, vesicular stomatitis virus, bovine coronavirus. Silane functionalizing agents and polymers were used to coat the titanium (Ti) metal implants to introduce superhydrophobic features to avoid microbial adhesion. TiO2 nanocomposite coatings in dental and orthopaedic metal implants disclosed exceptional bio-corrosion resistance, durability, biocompatibility, bone-formation capability, and long-term antimicrobial efficiency. Moreover, the commercial trend, techno-economics, challenges, and prospects of antimicrobial nanocomposite coatings are also discussed briefly.
Collapse
Affiliation(s)
- Vignesh Kumaravel
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - Keerthi M Nair
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - Snehamol Mathew
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - John Bartlett
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | | | | | | | | | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| |
Collapse
|
50
|
Goel N, Fatima SW, Kumar S, Sinha R, Khare SK. Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00613. [PMID: 33996521 PMCID: PMC8105627 DOI: 10.1016/j.btre.2021.e00613] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance (AMR) is one of the serious global public health threats that require immediate action. With the emergence of new resistance mechanisms in infection-causing microorganisms such as bacteria, fungi, and viruses, AMR threatens the effective prevention and treatment of diseases caused by them. This has resulted in prolonged illness, disability, and death. It has been predicted that AMR will lead to over ten million deaths by 2050. The rapid spread of multidrug-resistant bacteria is also causing old antibiotics to become ineffective. Among the diverse factors contributing to AMR, intrinsic biofilm development has been highlighted as an essential contributing facet. Moreover, biofilm-derived antibiotic tolerance leads to serious recurrent chronic infections. Therefore, the discovery of novel bioactive molecules is a potential solution that can help combat AMR. To achieve this, sustained mining of novel antimicrobial leads from actinobacteria, particularly marine actinobacteria, can be a promising strategy. Given their vast diversity and different habitats, the extraordinary capacity of actinobacteria can be tapped to synthesize new antibiotics or bioactive molecules for biofilm inhibition. Advanced screening strategies and novel approaches in the field of modern biochemical and molecular biology can be used to detect such new compounds. In view of this, the present review focuses on understanding some of the recent strategies to inhibit biofilm formation and explores the potential role of marine actinobacteria as sources of novel antibiotics and biofilm inhibitor molecules.
Collapse
Affiliation(s)
- Nikky Goel
- Department of Chemistry, Indian Institute of Technology Delhi, India
| | | | - Sumit Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, India
| | | | - Sunil K. Khare
- Department of Chemistry, Indian Institute of Technology Delhi, India
| |
Collapse
|