1
|
Baiocco GG, Greiner S, Rosa MB, Flores CD, Barros HMT. Impact of implementing a vancomycin protocol to reduce kidney toxicity: A comparative study. Front Pharmacol 2023; 14:1154573. [PMID: 37841919 PMCID: PMC10569023 DOI: 10.3389/fphar.2023.1154573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Vancomycin is a frequently used antibiotic for treating severe infections caused by multidrug-resistant, Gram-positive pathogens. To ensure its effectiveness and minimize the risk of nephrotoxicity, safe administration and dose monitoring are crucial. Understanding the impact of vancomycin serum levels on clinical outcomes is of paramount importance, necessitating improved knowledge on its use, dose monitoring, nephrotoxicity, and safe administration. Objective: This study aimed to evaluate the incidence of acute kidney injury (AKI) in patients receiving vancomycin before and after the implementation of an institutional protocol for vancomycin administration in a public tertiary hospital in southern Brazil. Materials and methods: A cross-sectional study design was employed, analyzing data from the electronic medical records of 422 patients who received vancomycin. The patient population was divided into two independent cohorts: those treated in 2016 (pre-protocol) and those treated in 2018 (post-protocol), following the implementation of the institutional vancomycin administration protocol. Results: The study included 211 patients in each year of assessment. Patients from both cohorts had a Charlson Comorbidity Index (CCI) score of 4. The post-protocol cohort consisted of older individuals, with a mean age of 62.8 years. In addition, patients in the post-protocol year had higher baseline creatinine levels, higher rates of intensive care unit (ICU) hospitalization, and increased use of vasopressors. In the pre-protocol year, patients received vancomycin therapy for a longer duration. When comparing the incidence of AKI between the two groups, an intervention study revealed rates of 38.4% in group 1 and 20.9% in group 2, indicating a significant reduction (p < 0.001) in the post-protocol group. A logistic regression model was developed to predict AKI, incorporating variables that demonstrated significance (p ≤ 0.250) in bivariate analysis and those recognized in the literature as important factors for AKI, such as the duration of therapy, vancomycin serum level, and ICU hospitalization. The logistic regression classification performance was assessed using a receiver operating characteristic (ROC) curve, yielding an area under the curve of 0.764, signifying acceptable discrimination of the regression model. Conclusion: Implementation of the institutional protocol for vancomycin administration resulted in a significant and cost-effective impact, ensuring appropriate therapeutic dosing, reducing adverse events (e.g., nephrotoxicity), and improving clinical outcomes for patients in the study population.
Collapse
Affiliation(s)
- Graziella Gasparotto Baiocco
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Stephanie Greiner
- Gestão de Risco Assistencial do Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil
| | - Mário Borges Rosa
- Presidente do Instituto para Práticas Seguras no Uso de Medicamentos, ISMP, Belo Horizonte, Brazil
| | - Cecília Dias Flores
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Helena M. T. Barros
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
2
|
Effectiveness of a vancomycin dosing protocol guided by area under the concentration-time curve to minimal inhibitory concentration (AUC/MIC) with multidisciplinary team support to improve hospital-wide adherence to a vancomycin dosing protocol: A pilot study. Infect Control Hosp Epidemiol 2021; 43:1043-1048. [PMID: 34247663 DOI: 10.1017/ice.2021.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Limited data are available on the implementation of an area under the concentration-time curve (AUC)-based dosing protocol with multidisciplinary team (MT) support to improve adherence with vancomycin dosing protocol. OBJECTIVE To evaluate the effectiveness of an AUC-based dosing protocol with MT support intervention with adherence to a hospital-wide vancomycin dosing protocol at Thammasat University Hospital. METHOD We conducted a quasi-experimental study in patients who were prescribed intravenous vancomycin. The study was divided into 2 periods; (1) the preintervention period when the vancomycin dosing protocol was already applied in routine practice and (2) the post-intervention period when the implementation of an AUC-based dosing protocol with MT support was added to the existing vancomycin dosing protocol. The primary outcome was the rate of adherence, and the secondary outcomes included acute kidney injury events, vancomycin-related adverse events, and 30-day mortality rate. RESULTS In total, 240 patients were enrolled. The most common infections were skin and soft-tissue infections (24.6%) and bacteremia (24.6%). The most common pathogens were coagulase-negative staphylococci (19.6%) and Enterococcus spp (15.4%). Adherence with the vancomycin dosing protocol was significantly higher in the postintervention period (90.8% vs 55%; P ≤ .001). By multivariate analysis, an AUC-based dosing protocol with MT support was the sole predictor for adherence with the vancomycin dosing protocol (adjusted odds ratio, 10.31; 95% confidence interval, 4.54-23.45; P ≤ .001). The 30-day mortality rate was significantly lower during the postintervention period (8.3% vs 20%; P = .015). CONCLUSIONS AUC-based dosing protocol with MT support significantly improved adherence with vancomycin dosing protocol and was associated with a lower 30-day mortality rate.
Collapse
|
4
|
Vu DH, Nguyen DA, Delattre IK, Ho TT, Do HG, Pham HN, Dao XC, Tran NT, Nguyen GB, Van Bambeke F, Tulkens PM, Nguyen HA. Determination of optimal loading and maintenance doses for continuous infusion of vancomycin in critically ill patients: Population pharmacokinetic modelling and simulations for improved dosing schemes. Int J Antimicrob Agents 2019; 54:702-708. [PMID: 31600554 DOI: 10.1016/j.ijantimicag.2019.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Despite extensive clinical use, limited data are available on optimal loading and maintenance doses of vancomycin in critically ill patients. This study aimed to develop a rational approach for optimised dosage of vancomycin given in a continuous infusion in critically ill patients. METHODS Vancomycin pharmacokinetic (PK) data (total serum concentrations) were obtained from 55 intensive care unit (ICU) patients (Bach Mai Hospital, Hanoi, Vietnam) receiving a 20 mg/kg loading dose followed by continuous infusion stratified by creatinine clearance (CLCr). Population PK modelling and Monte Carlo simulations were performed using a nonlinear mixed-effects modelling (NONMEM) program for a target of 20-30 mg/L to optimise efficacy and minimise nephrotoxicity. RESULTS A two-compartment model with first-order elimination best fitted the PK data with central and peripheral volumes of distribution of 1.01 and 2.39 L/kg, respectively (allometric scaling to a 70 kg standard subject). The population total clearance of 3.63 L/h was only explained by renal function in the covariate and final model. The simulations showed that a 25-mg/kg loading dose infused over 90 minutes was optimal to reach the target range. The optimal maintenance dose for low renal function (CLCr < 45 mL/min) was 1000-1500 mg/day. For augmented renal clearance (CLCr > 130 mL/min) the dose should be up to 3500 mg/day or even 4500 mg/day to achieve adequate exposure. These simulated maintenance doses were larger than previously proposed for non-ICU patients. CONCLUSION Large loading and maintenance doses of vancomycin are generally needed in critically ill patients. Because of high interindividual variability in vancomycin PK, drug monitoring may still be necessary.
Collapse
Affiliation(s)
- Dinh H Vu
- National Drug Information and Adverse Drug Reaction Monitoring Center, Hanoi University of Pharmacy, Hanoi, Vietnam.
| | - Duy A Nguyen
- National Drug Information and Adverse Drug Reaction Monitoring Center, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Isabelle K Delattre
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Trong T Ho
- National Drug Information and Adverse Drug Reaction Monitoring Center, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Hong G Do
- Department of Pharmacy, Bach Mai Hospital, Hanoi, Vietnam
| | - Hong N Pham
- Department of Microbiology, Bạch Mai Hospital, Hanoi, Vietnam
| | - Xuan C Dao
- Intensive Care Unit, Bạch Mai Hospital, Hanoi, Vietnam
| | - Nhan T Tran
- Department of Pharmacy, Bach Mai Hospital, Hanoi, Vietnam
| | - Gia B Nguyen
- Intensive Care Unit, Bạch Mai Hospital, Hanoi, Vietnam
| | - Françoise Van Bambeke
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Paul M Tulkens
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Hoang A Nguyen
- National Drug Information and Adverse Drug Reaction Monitoring Center, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
5
|
Prevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, Number 782. Obstet Gynecol 2019; 134:1. [PMID: 31241599 DOI: 10.1097/aog.0000000000003334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Group B streptococcus (GBS) is the leading cause of newborn infection. The primary risk factor for neonatal GBS early-onset disease (EOD) is maternal colonization of the genitourinary and gastrointestinal tracts. Approximately 50% of women who are colonized with GBS will transmit the bacteria to their newborns. Vertical transmission usually occurs during labor or after rupture of membranes. In the absence of intrapartum antibiotic prophylaxis, 1-2% of those newborns will develop GBS EOD. Other risk factors include gestational age of less than 37 weeks, very low birth weight, prolonged rupture of membranes, intraamniotic infection, young maternal age, and maternal black race. The key obstetric measures necessary for effective prevention of GBS EOD continue to include universal prenatal screening by vaginal-rectal culture, correct specimen collection and processing, appropriate implementation of intrapartum antibiotic prophylaxis, and coordination with pediatric care providers. The American College of Obstetricians and Gynecologists now recommends performing universal GBS screening between 36 0/7 and 37 6/7 weeks of gestation. All women whose vaginal-rectal cultures at 36 0/7-37 6/7 weeks of gestation are positive for GBS should receive appropriate intrapartum antibiotic prophylaxis unless a prelabor cesarean birth is performed in the setting of intact membranes. Although a shorter duration of recommended intrapartum antibiotics is less effective than 4 or more hours of prophylaxis, 2 hours of antibiotic exposure has been shown to reduce GBS vaginal colony counts and decrease the frequency of a clinical neonatal sepsis diagnosis. Obstetric interventions, when necessary, should not be delayed solely to provide 4 hours of antibiotic administration before birth. This Committee Opinion, including , , and , updates and replaces the obstetric components of the CDC 2010 guidelines, "Prevention of Perinatal Group B Streptococcal Disease: Revised Guidelines From CDC, 2010."
Collapse
|
6
|
Phillips CJ, Wisdom AJ, McKinnon RA, Woodman RJ, Gordon DL. Interventions targeting the prescribing and monitoring of vancomycin for hospitalized patients: a systematic review with meta-analysis. Infect Drug Resist 2018; 11:2081-2094. [PMID: 30464551 PMCID: PMC6219104 DOI: 10.2147/idr.s176519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Vancomycin prescribing requires individualized dosing and monitoring to ensure efficacy, limit toxicity, and minimize resistance. Although there are nationally endorsed guidelines from several countries addressing the complexities of vancomycin dosing and monitoring, there is limited consideration of how to implement these recommendations effectively. Methods We conducted a systematic search of multiple databases to identify relevant comparative studies describing the impact of interventions of educational meetings, implementation of guidelines, and dissemination of educational material on vancomycin dosing, monitoring, and nephrotoxicity. Effect size was assessed using ORs and pooled data analyzed using forest plots to provide overall effect measures. Results Six studies were included. All studies included educational meetings. Two studies used implementation of guidance, educational meetings, and dissemination of educational materials, one used guidance and educational meetings, one educational meetings and dissemination of educational materials, and two used educational meetings solely. Effect sizes for individual studies were more likely to be significant for multifaceted interventions. In meta-analysis, the overall effect of interventions on outcome measures of vancomycin dosing was OR 2.50 (95% CI 1.29–4.84); P< 0.01. A higher proportion of sampling at steady-state concentration was seen following intervention (OR 1.95, 95% CI 1.26–3.02; P<0.01). Interventions had no effect on appropriate timing of trough sample (OR 2.02, 95% CI 0.72–5.72; P=0.18), attaining target concentration in patients (OR 1.50, 95% CI 0.49–4.63; P=0.48, or nephrotoxicity (OR 0.75, 95% CI 0.42–1.34; P=0.33). Conclusion Multifaceted interventions are effective overall in improving the complex task of dosing vancomycin, as well as some vancomycin-monitoring outcome measures. However, the resulting impact of these interventions on efficacy and toxicity requires further investigation. These findings may be helpful to those charged with designing implementation strategies for vancomycin guidelines or complex prescribing processes in hospitals.
Collapse
Affiliation(s)
- Cameron J Phillips
- SA Pharmacy, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia, .,College of Medicine and Public Health, Flinders University, Adelaide, SA 5000, Australia, .,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia, .,Infectious Diseases and Immunity, Department of Medicine, Imperial College, London W12 0NN, UK,
| | - Alice J Wisdom
- SA Pharmacy, Lyell McEwin Hospital, Elizabeth Vale, Adelaide, SA 5112, Australia
| | - Ross A McKinnon
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5000, Australia, .,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia, .,Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5000, Australia
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, SA 5000, Australia
| | - David L Gordon
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5000, Australia, .,SA Pathology, Department of Microbiology and Infectious Diseases, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia.,Division of Medicine, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|