1
|
Konings MCJM, Baumgartner S, Mensink RP, Plat J. Investigating microRNAs to Explain the Link between Cholesterol Metabolism and NAFLD in Humans: A Systematic Review. Nutrients 2022; 14:nu14234946. [PMID: 36500981 PMCID: PMC9738374 DOI: 10.3390/nu14234946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by hepatic free cholesterol accumulation. In addition, microRNAs (miRNAs) might be involved in NAFLD development. Therefore, we systematically reviewed the literature to examine the link between miRNAs and cholesterol metabolism in NAFLD. Nineteen studies were retrieved by a systematic search in September 2022. From these papers, we evaluated associations between 13 miRNAs with NAFLD and cholesterol metabolism. Additionally, their diagnostic potential was examined. Four miRNAs (miR122, 34a, 132 and 21) were associated with cholesterol metabolism and markers for NAFLD. MiR122 was upregulated in serum of NAFLD patients, increased with disease severity and correlated with HDL-C, TAG, VLDL-C, AST, ALT, ALP, lobular inflammation, hepatocellular ballooning and NAFLD score. Serum and hepatic levels also correlated. Serum and hepatic miR34a levels were increased in NAFLD, and correlated with VLDL-C and TAG. Serum miR379 was also higher in NAFLD, especially in early stages, while miR21 gave ambiguous results. The diagnostic properties of these miRNAs were comparable to those of existing biomarkers. However, serum miR122 levels appeared to be elevated before increases in ALT and AST were evident. In conclusion, miR122, miR34a, miR21 and miR132 may play a role in the development of NAFLD via effects on cholesterol metabolism. Furthermore, it needs to be explored if miRNAs 122, 34a and 379 could be used as part of a panel in addition to established biomarkers in early detection of NAFLD.
Collapse
|
2
|
Factors influencing circulating microRNAs as biomarkers for liver diseases. Mol Biol Rep 2022; 49:4999-5016. [DOI: 10.1007/s11033-022-07170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022]
|
3
|
Robles-Díaz M, Nezic L, Vujic-Aleksic V, Björnsson ES. Role of Ursodeoxycholic Acid in Treating and Preventing Idiosyncratic Drug-Induced Liver Injury. A Systematic Review. Front Pharmacol 2021; 12:744488. [PMID: 34776963 PMCID: PMC8578816 DOI: 10.3389/fphar.2021.744488] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: Treatment is generally not available for drug-induced liver injury (DILI) patients except in some specific circumstances. The management of DILI is based on the withdrawal of the responsible drug and monitoring the patients and only a few patients need to be referred to a transplant center. Some studies on the role of ursodeoxycholic acid (UDCA) in DILI have been published. The aim of this study was to perform a systematic review of the role of UDCA in the treatment and prevention of DILI. Methods: A search was undertaken in PubMed, with the key words ursodeoxycholic acid, drug-induced liver injury and hepatotoxicity following the PRISMA guidelines. Results: A total of 33 publications were identified: 25 case reports and 8 case series. In 18 of the 25 cases reports (22 patients), authors reported improvement of liver injury associated with UDCA therapy whereas 7 case reports did not show clinical or biochemical improvement after UDCA treatment. There were 4 studies evaluating the role of UDCA in the treatment of DILI, three prospective (one being a clinical trial) and one retrospective studies. Three studies observed liver profile improvements associated with UDCA. In addition, four studies evaluated UDCA in the prevention of DILI: one pilot study, two randomized clinical trials (RCT) and one retrospective study. Three of these studies observed a lower percentage of patients with an increase in transaminases in the groups that used UDCA for DILI prevention. Conclusion: According to available data UDCA seems to have some benefits in the treatment and prevention of DILI. However, the design of the published studies does not allow a firm conclusion to be drawn on the efficacy of UDCA in DILI. A well designed RCT to evaluate the role of UDCA in DILI is needed.
Collapse
Affiliation(s)
- Mercedes Robles-Díaz
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Facultad de Medicina, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Málaga, Spain
| | - Lana Nezic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Vesna Vujic-Aleksic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina.,The Republic of Srpska Agency for Certification, Accreditation and Quality Improvement in Health Care, Banja Luka, Bosnia and Herzegovina
| | - Einar S Björnsson
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
4
|
Ahn J, Lee H, Jung CH, Ha SY, Seo HD, Kim YI, Ha T. 6-Gingerol Ameliorates Hepatic Steatosis via HNF4α/miR-467b-3p/GPAT1 Cascade. Cell Mol Gastroenterol Hepatol 2021; 12:1201-1213. [PMID: 34139323 PMCID: PMC8445893 DOI: 10.1016/j.jcmgh.2021.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS The development of nonalcoholic fatty liver disease (NAFLD) can be modulated by microRNAs (miRNA). Dietary polyphenols modulate the expression of miRNA such as miR-467b-3p in the liver. In addition, 6-gingerol (6-G), the functional polyphenol of ginger, has been reported to ameliorate hepatic steatosis; however, the exact mechanism involved and the role of miRNA remain elusive. In this study, we assessed the role of miR-467b-3p in the pathogenesis of hepatic steatosis and the regulation of miR-467b-3p by 6-G through the hepatocyte nuclear factor 4α (HNF4α). METHODS miR-467b-3p expression was measured in free fatty acid (FFA)-treated hepatocytes or liver from high-fat diet (HFD)-fed mice. Gain- or loss-of-function of miR-467b-3p was induced using miR-467b-3p-specific miRNA mimic or miRNA inhibitor, respectively. 6-G was exposed to FFA-treated cells and HFD-fed mice. The HNF4α/miR-467b-3p/GPAT1 axis was measured in mouse and human fatty liver tissues. RESULTS We found that miR-467b-3p was down-regulated in liver tissues from HFD-fed mice and in FFA-treated Hepa1-6 cells. Overexpression of miR-467b-3p decreased intracellular lipid accumulation in FFA-treated hepatocytes and mitigated hepatic steatosis in HFD-fed mice via negative regulation of glycerol-3-phosphate acyltransferase-1 (GPAT1). In addition, miR-467b-3p up-regulation by 6-G was observed. 6-G inhibited FFA-induced lipid accumulation and mitigated hepatic steatosis. Moreover, it increased the transcriptional activity of HNF4α, resulting in the increase of miR-467b-3p and subsequent decrease of GPAT1. HNF4α/miR-467b-3p/GPAT1 signaling also was observed in human samples with hepatic steatosis. CONCLUSIONS Our findings establish a novel mechanism by which 6-G improves NAFLD. This suggests that targeting of the HNF4α/miR-467b-3p/GPAT1 cascade may be used as a potential therapeutic strategy to control NAFLD.
Collapse
Affiliation(s)
- Jiyun Ahn
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea,Correspondence Address correspondence to: Jiyun Ahn, PhD, DVM, Metabolism and Nutrition Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Hyunjung Lee
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea
| | - Chang Hwa Jung
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Seung Yeon Ha
- Department of Pathology, Gachon University of Medicine and Science, Incheon, Korea
| | - Hyo-Deok Seo
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea
| | - Young In Kim
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Taeyoul Ha
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea,Correspondence Address correspondence to: Jiyun Ahn, PhD, DVM, Metabolism and Nutrition Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| |
Collapse
|
5
|
Schulz M, Tacke F. Identifying High-Risk NASH Patients: What We Know so Far. ACTA ACUST UNITED AC 2020; 12:125-138. [PMID: 32982495 PMCID: PMC7493213 DOI: 10.2147/hmer.s265473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Steatosis is a condition of hepatic fat overload that is associated with overweight and the metabolic syndrome. Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease with a global impact on healthcare. A proportion of NAFLD patients develops nonalcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis or hepatocellular carcinoma (HCC). Identifying patients at risk for potentially life-threatening complications is crucial in their prevention, surveillance and treatment. In addition to hepatic disease progression (cirrhosis, portal hypertension, HCC), NAFLD patients are also at risk of cardiovascular and metabolic diseases as well as extrahepatic malignancies. Liver fibrosis is related to morbidity and mortality in NASH patients, and biomarkers, imaging techniques (ultrasound, elastography, MRI) as well as liver biopsy help in diagnosing fibrosis. In this review, we discuss the tools for identifying patients at risk and their reasonable application in clinical routine in order to stratify prevention and treatment of this emerging disease.
Collapse
Affiliation(s)
- Marten Schulz
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) Und Campus Charité Mitte (CCM), Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) Und Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
6
|
Albhaisi S, Sanyal AJ. Applying Non-Invasive Fibrosis Measurements in NAFLD/NASH: Progress to Date. Pharmaceut Med 2020; 33:451-463. [PMID: 31933238 DOI: 10.1007/s40290-019-00305-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has now become a worldwide health issue due to the obesity epidemic, affecting approximately 90% of the obese population and 15-40% of the general population. It is the most common form of chronic liver disease in the United States. NAFLD constitutes a spectrum of diseases ranging in severity from mild, such as fatty liver, progressing into nonalcoholic steatohepatitis (NASH), then fibrosis, and ending with cirrhosis. NASH and increasing fibrosis stage are associated with increased morbidity and mortality; the fibrosis stage is therefore a critical element of risk stratification needed to determine therapeutic approach and also the response to treatment. Liver biopsy is considered the 'gold standard' in the diagnosis of NAFLD. However, it is not practical for widespread clinical use because it is invasive, costly, and associated with complications including occasional death. These limitations have driven the development of noninvasive tests that can accurately predict the fibrosis stage in those with NAFLD. In this review, we provide a concise overview of different non-invasive measurements used for NAFLD/NASH.
Collapse
Affiliation(s)
- Somaya Albhaisi
- Department of Internal Medicine, Virginia Commonwealth University, Box 980102, Richmond, VA, 23298, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Box 980341, Richmond, VA, 23298, USA.
| |
Collapse
|
7
|
Zhou C, Wang P, Lei L, Huang Y, Wu Y. Overexpression of miR-142-5p inhibits the progression of nonalcoholic steatohepatitis by targeting TSLP and inhibiting JAK-STAT signaling pathway. Aging (Albany NY) 2020; 12:9066-9084. [PMID: 32413869 PMCID: PMC7288945 DOI: 10.18632/aging.103172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Abstract
This study aimed to figure out the underlying mechanism of miR-142-5p in the non-alcoholic steatohepatitis (NASH). Bioinformatics, luciferase assay and Western blot were performed. The NASH mouse model was established through feeding a high fat diet (HFD). Relative expressions of miR-142-5p, thymic stromal lymphopoietin (TSLP), inflammatory factors were detected by qRT-PCR. The injury level of liver was assessed via measurement of serum alanine aminotransferase (ALT) and serum aspartate aminotransferase (AST). H&E staining and Masson's trichrome staining examine the liver fatty degeneration and fibrosis. MiR-142-5p and TSLP were differentially expressed and JAK-STAT signaling pathway was activated in the NASH group. Luciferase assay identified that TSLP was the downstream target of miR-142-5p. Through overexpression of miR-142-5p, ALT and AST in serum were inhibited, pro-inflammatory factors, liver fatty degeneration and fibrosis in liver tissues were decreased, while anti-inflammatory factors were increased. Overexpression of TSLP and JAK-STAT signaling pathway activation could reverse the effects of miR-142-5p on NASH. Taken together, overexpression of miR-142-5p could attenuate NASH progression via inhibiting TSLP and JAK-STAT pathway. MiR-142-5p might be a novel latent target for NASH therapy.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| | - Pu Wang
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| | - Lei Lei
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| | - Yi Huang
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| | - Yue Wu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| |
Collapse
|
8
|
Kim DJ, Chung H, Ji SC, Lee S, Yu KS, Jang IJ, Cho JY. Ursodeoxycholic acid exerts hepatoprotective effects by regulating amino acid, flavonoid, and fatty acid metabolic pathways. Metabolomics 2019; 15:30. [PMID: 30830474 DOI: 10.1007/s11306-019-1494-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/20/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Ursodeoxycholic acid (UDCA) is an intestinal bacterial metabolite with hepatoprotective effects. However, molecular mechanisms underlying its effects remain unclear. OBJECTIVES The aim of this study was to investigate the mechanisms underlying the therapeutic effects of UDCA by using global metabolomics analyses in healthy subjects. METHODS Healthy Korean men were administered UDCA at dosage of 400, 800, or 1200 mg daily for 2 weeks. Serum samples were collected and used for liver function tests and to determine miR-122 expression levels. Urinary and plasma global metabolomics analyses were conducted using a liquid chromatography system coupled with quadrupole-time-of-flight mass spectrometry (LC/QTOFMS) and gas chromatography-TOFMS (GC/TOFMS). Unsupervised multivariate analysis (principal component analysis) was performed to identify discriminative markers before and after treatment. RESULTS Alanine transaminase score and serum miR-122 levels decreased significantly after 2 weeks of treatment. Through LC- and GC-based metabolomic profiling, we identified 40 differential metabolites in plasma and urine samples. CONCLUSIONS Regulation of liver function scores and metabolic alternations highlight the potential hepatoprotective action of UDCA, which were primarily associated with amino acid, flavonoid, and fatty acid metabolism in healthy men.
Collapse
Affiliation(s)
- Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hyewon Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Department of Clinical Pharmacology and Toxicology, Korea University Guro Hospital, Seoul, South Korea
| | - Sang Chun Ji
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
9
|
Karimi-Sales E, Jeddi S, Ebrahimi-Kalan A, Alipour MR. trans-Chalcone prevents insulin resistance and hepatic inflammation and also promotes hepatic cholesterol efflux in high-fat diet-fed rats: modulation of miR-34a-, miR-451-, and miR-33a-related pathways. Food Funct 2018; 9:4292-4298. [PMID: 30039136 DOI: 10.1039/c8fo00923f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Insulin resistance and inflammation are strongly linked to non-alcoholic fatty liver disease (NAFLD) as a feature of the metabolic syndrome. Furthermore, the role of dysregulation of miR-34a, miR-451, and miR-33a in pathogenesis and progression of NAFLD has been identified. trans-Chalcone is a simple chalcone with anti-diabetic and anti-inflammatory activities. However, to the best of our knowledge, miRNA-dependent mechanisms of these protective effects under pathologic conditions are not understood. Thus, this study, for the first time, aimed to evaluate the effects of trans-Chalcone on miR-34a, miR-451, and miR-33a signaling pathways in the liver of high-fat (HF) emulsion-fed rats. To this aim, twenty-one rats were randomly and equally divided into three groups: control, which was gavaged with 10% tween 80; HF, which was gavaged with HF emulsion and 10% tween 80; and HF + trans-Chalcone (HF + TC), which was gavaged with HF emulsion and trans-Chalcone. Then, circulating levels of glucose and insulin were measured and used for the calculation of HOMA-IR. Hepatic expression levels of miR-34a, miR-451, miR-33a, SIRT1, and ABCA1 and also protein levels of ABCA1 and IL-8 were assayed. In this study, trans-chalcone increased hepatic cholesterol efflux and prevented insulin resistance and liver inflammation in HF emulsion-fed rats. These protective effects were modulated through the down-regulation of miR-34a and its associated elevation of SIRT1, the up-regulation of miR-451 which was associated with a reduction in IL-8, and the inhibition of miR-33a which was related to the elevation of ABCA1 in the liver of HF emulsion-fed rats. Therefore, trans-Chalcone exerts its beneficial effects by targeting hepatic miR-34a-, miR-451-, and miR-33a-related pathways.
Collapse
Affiliation(s)
- Elham Karimi-Sales
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | |
Collapse
|
10
|
Ashraf NU, Altaf M. Epigenetics: An emerging field in the pathogenesis of nonalcoholic fatty liver disease. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:1-12. [PMID: 30454678 DOI: 10.1016/j.mrrev.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health concern associated with increased mortality due to cardiovascular disease, type II diabetes, insulin resistance, liver disease, and malignancy. The molecular mechanism underlying these processes is not fully understood but involves hepatic fat accumulation and alteration of energy metabolism and inflammatory signals derived from various cell types including immune cells. During the last two decades, epigenetic mechanisms have emerged as important regulators of chromatin alteration and the reprogramming of gene expression. Recently, epigenetic mechanisms have been implicated in the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) genesis. Epigenetic mechanisms could be used as potential therapeutic targets and as noninvasive diagnostic biomarkers for NAFLD. These mechanisms can determine disease progression and prognosis in NAFLD. In this review, we discuss the role of epigenetic mechanisms in the progression of NAFLD and potential therapeutic targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Nissar U Ashraf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
11
|
Kim DJ, Yoon S, Ji SC, Yang J, Kim YK, Lee S, Yu KS, Jang IJ, Chung JY, Cho JY. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci Rep 2018; 8:11874. [PMID: 30089798 PMCID: PMC6082879 DOI: 10.1038/s41598-018-30349-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is a metabolic by-product of intestinal bacteria, showing hepatoprotective effects. However, its underlying molecular mechanisms remain unclear. The purpose of this study was to elucidate the action mechanisms underlying the protective effects of UDCA and vitamin E against liver dysfunction using metabolomics and metagenomic analysis. In this study, we analysed blood and urine samples from patients with obesity and liver dysfunction. Nine patients were randomly assigned to receive UDCA (300 mg twice daily), and 10 subjects received vitamin E (400 IU twice daily) for 8 weeks. UDCA significantly improved the liver function scores after 4 weeks of treatment and effectively reduced hepatic deoxycholic acid and serum microRNA-122 levels. To better understand its protective mechanism, a global metabolomics study was conducted, and we found that UDCA regulated uremic toxins (hippuric acid, p-cresol sulphate, and indole-derived metabolites), antioxidants (ascorbate sulphate and N-acetyl-L-cysteine), and the phenylalanine/tyrosine pathway. Furthermore, microbiome involvement, particularly of Lactobacillus and Bifidobacterium, was demonstrated through metagenomic analysis of bacteria-derived extracellular vesicles. Meanwhile, vitamin E treatment did not result in such alterations, except that it reduced uremic toxins and liver dysfunction. Our findings suggested that both treatments were effective in improving liver function, albeit via different mechanisms.
Collapse
Affiliation(s)
- Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Seonghae Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Korea
| | - Sang Chun Ji
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | | | | | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea. .,Metabolomics Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Iravani F, Hosseini N, Mojarrad M. Role of MicroRNAs in Pathophysiology of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. Middle East J Dig Dis 2018; 10:213-219. [PMID: 31049168 PMCID: PMC6488503 DOI: 10.15171/mejdd.2018.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/14/2018] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder worldwide. It
includes wide range of diseases from different subtypes of simple steatosis to non-alcoholic steatohepatitis
(NASH), which may be complicated by liver fibrosis, cirrhosis, or hepatocellular carcinoma.
Of the epigenetic factors that play a key role in the progression of it, is microRNAs (miRNAs).
MiRNAs are short non-coding RNAs of 22-23 nucleotides in length, which regulate a large
number of genes that have a critical role in regulation of lipid and cholesterol biosynthesis in
hepatocytes. MiRNAs can be used as a very powerful biomarker to diagnosis and follow-up any
disorder, such as NAFLD and NASH with a high specificity and sensitivity. The aim of this study
was to review the role of different miRNAs in the pathophysiology of NASH and NAFLD
Collapse
Affiliation(s)
- Farzaneh Iravani
- MSc of human genetics, Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Hosseini
- MSc of Molecular and Cellular biology, Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Assistant Professor of Medical Genetics, Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
de Conti A, Ortega JF, Tryndyak V, Dreval K, Moreno FS, Rusyn I, Beland FA, Pogribny IP. MicroRNA deregulation in nonalcoholic steatohepatitis-associated liver carcinogenesis. Oncotarget 2017; 8:88517-88528. [PMID: 29179453 PMCID: PMC5687623 DOI: 10.18632/oncotarget.19774] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fastest-rising cause of cancer-related death in the United States. Recent epidemiological studies have identified nonalcoholic steatohepatitis (NASH), a progressive form of nonalcoholic fatty liver disease (NAFLD), as a major risk factor for HCC. Elucidating the underlying mechanisms associated with the development of NASH-derived HCC is critical for identifying early biomarkers for the progression of the disease and for treatment and prevention. In the present study, using liver samples from C57BL/6J mice submitted to the Stelic Animal Model (STAM) of NASH-associated liver carcinogenesis, we investigated the role of microRNA (miRNA) alterations in the pathogenesis of NASH-derived HCC. We found substantial alterations in the expression of miRNAs, with the greatest number occurring in full-fledged HCC. Mechanistically, altered miRNA expression was associated with activation of major hepatocarcinogenesis-related pathways, including the TGF-β, Wnt/β-catenin, ERK1/2, mTOR, and EGF signaling. In addition, the over-expression of the miR-221-3p and miR-222-3p and oncogenic miR-106b∼25 cluster was accompanied by the reduced protein levels of their targets, including E2F transcription factor 1 (E2F1), phosphatase and tensin homolog (PTEN), and cyclin-dependent kinase inhibitor 1 (CDKN1A). Importantly, miR-93-5p, miR-221-3p, and miR-222-3p were also significantly over-expressed in human HCC. These findings suggest that aberrant expression of miRNAs may have mechanistic significance in NASH-associated liver carcinogenesis and may serve as an indicator for the development of NASH-derived HCC.
Collapse
Affiliation(s)
- Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Juliana Festa Ortega
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA.,Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Fernando Salvador Moreno
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
14
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a dominant cause of chronic liver disease, but the exact mechanism of progression from simple steatosis to nonalcoholic steatohepatitis (NASH) remains unknown. Here, we investigated the role of exosomes in NAFLD progression. Exosomes were isolated from a human hepatoma cell line treated with palmitic acid (PA) and their miRNA profiles examined by microarray. The human hepatic stellate cell (HSC) line (LX-2) was then treated with exosome isolated from hepatocytes. Compared with controls, PA-treated hepatocytes displayed significantly increased CD36 and exosome production. The microarray analysis showed there to be distinctive miRNA expression patterns between exosomes from vehicle- and PA-treated hepatocytes. When LX-2 cells were cultured with exosomes from PA-treated hepatocytes, the expression of genes related to the development of fibrosis were significantly amplified compared to those treated with exosomes from vehicle-treated hepatocytes. In conclusion, PA treatment enhanced the production of exosomes in these hepatocytes and changed their exosomal miRNA profile. Moreover, exosomes derived from PA-treated hepatocytes caused an increase in the expression levels of fibrotic genes in HSCs. Therefore, exosomes may have important roles in the crosstalk between hepatocytes and HSCs in the progression from simple steatosis to NASH.
Collapse
|
15
|
Jin X, Liu J, Chen YP, Xiang Z, Ding JX, Li YM. Effect of miR-146 targeted HDMCP up-regulation in the pathogenesis of nonalcoholic steatohepatitis. PLoS One 2017; 12:e0174218. [PMID: 28346483 PMCID: PMC5367781 DOI: 10.1371/journal.pone.0174218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUNDS/AIMS Mitochondrial dysfunction plays an important role inthe pathogenesis of nonalcoholic steatohepatitis (NASH), where uncoupling protein (UCP) is actively involved. We previously reported the uncoupling activity of HDMCP and its role in liver steatosis. We now aim to investigate the degree and therapeutic effect of HDMCP in NASH and the regulatory role of miR-146 on HDMCP. METHODS NASH animal model was established by feeding BALB/c mice with MCD diet while L02 cell was cultured with high concentration of fatty acid (HFFA) for 72h to mimic the steatosis and inflammation of NASH in-vitro appearance. The steatosis level was assessed by H-E/oil-red staining and serum/supernatant marker detection. The inflammation activity was evaluated by levels of Hepatic activity index, transwell, apoptosis degree (TUNEL/flow cytometry) and serum/supernatant marker. HDMCP level was detected by western blot and miRNA expression was tested by qRT-PCR. NASH severity change was recorded after RNA interference while the regulatory role of miR-146 on HDMCP was confirmed by dual luciferase report system. The H2O2 and ATP levels were measured for mechanism exploration. RESULTS Increased HDMCP expression was identified in NASH animal model and HFFA-72h cultured L02 cell. Moreover, under regulation of miR-146, NASH alleviation was achieved after HDMCP downregulation in both in vivo and in vitro, according to the declination of steatosis and inflammation related markers. Though H2O2 and ATP levels were increased and decreased in NASH models, HDMCP down regulation both increased their levels. CONCLUSIONS The miR-146-HDMCP-ATP/H2O2 pathway may provide novel mechanism and treatment option for NASH.
Collapse
Affiliation(s)
- Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- * E-mail:
| | - Jiang Liu
- Department of Gastroenterology, Huzhou Central Hospital, Huzhou, China
| | - Yi-peng Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zun Xiang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie-xia Ding
- Department of infectious disease, Hangzhou first people's hospital, Hangzhou, China
| | - You-ming Li
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Vega-Badillo J. ALTERACIONES EN LA HOMEOSTASIS DEL COLESTEROL HEPÁTICO Y SUS IMPLICACIONES EN LA ESTEATOHEPATITIS NO ALCOHÓLICA. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2017. [DOI: 10.1016/j.recqb.2016.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
17
|
Abstract
MicroRNAs (miRNAs) are highly conserved, small, 18-25 nucleotide, non-coding RNAs that regulate gene expression at the post-transcriptional level. Each miRNA can regulate hundreds of target genes, and vice versa each target gene can be regulated by numerous miRNAs, suggesting a very complex network and explaining how miRNAs play pivotal roles in fine-tuning essentially all biological processes in all cell types in the liver. Here, we summarize the current knowledge on the role of miRNAs in the pathogenesis and diagnosis of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) with an outlook to the broader aspects of metabolic syndrome. Furthermore, we discuss the role of miRNAs as potential biomarkers and therapeutic targets in NAFLD/NASH.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB215, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Timea Csak
- Department of Medicine, University of Massachusetts Medical School, LRB215, 364 Plantation Street, Worcester, MA, 01605, USA
- Brookdale University Hospital and Medical Center, 1 Brookdale Plaza, Brooklyn, NY, 11212, USA
| |
Collapse
|
18
|
MicroRNAs as Signaling Mediators and Biomarkers of Drug- and Chemical-Induced Liver Injury. J Clin Med 2015; 4:1063-1078. [PMID: 26167291 PMCID: PMC4470217 DOI: 10.3390/jcm4051063] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023] Open
Abstract
Drug-induced liver injury (DILI) is major problem for both the drug industry and for clinicians. There are two basic categories of DILI: intrinsic and idiosyncratic. The former is the chief cause of acute liver failure in several developed countries, while the latter is the most common reason for post-marketing drug withdrawal and a major reason for failure to approve new drugs in the U.S. Although considerably more progress has been made in the study of intrinsic DILI, our understanding of both forms of drug hepatotoxicity remains incomplete. Recent work involving microRNAs (miRNAs) has advanced our knowledge of DILI in two ways: (1) possible roles of miRNAs in the pathophysiological mechanisms of DILI have been identified, and (2) circulating miRNA profiles have shown promise for the detection and diagnosis of DILI in clinical settings. The purpose of this review is to summarize major findings in these two areas of research. Taken together, exciting progress has been made in the study of miRNAs in DILI. Possible mechanisms through which miRNA species contribute to the basic mechanisms of DILI are beginning to emerge, and new miRNA-based biomarkers have the potential to greatly improve diagnosis of liver injury and prediction of patient outcomes.
Collapse
|