1
|
Chernokal B, Ferrick BJ, Gleghorn JP. Zonal patterning of extracellular matrix and stromal cell populations along a perfusable cellular microchannel. LAB ON A CHIP 2024. [PMID: 39479925 PMCID: PMC11525951 DOI: 10.1039/d4lc00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024]
Abstract
The spatial organization of biophysical and biochemical cues in the extracellular matrix (ECM) in concert with reciprocal cell-cell signaling is vital to tissue patterning during development. However, elucidating the role an individual microenvironmental factor plays using existing in vivo models is difficult due to their inherent complexity. In this work, we have developed a microphysiological system to spatially pattern the biochemical, biophysical, and stromal cell composition of the ECM along an epithelialized 3D microchannel. This technique is adaptable to multiple hydrogel compositions and scalable to the number of zones patterned. We confirmed that the methodology to create distinct zones resulted in a continuous, annealed hydrogel with regional interfaces that did not hinder the transport of soluble molecules. Further, the interface between hydrogel regions did not disrupt microchannel structure, epithelial lumen formation, or media perfusion through an acellular or cellularized microchannel. Finally, we demonstrated spatially patterned tubulogenic sprouting of a continuous epithelial tube into the surrounding hydrogel confined to local regions with stromal cell populations, illustrating spatial control of cell-cell interactions and signaling gradients. This easy-to-use system has wide utility for modeling three-dimensional epithelial and endothelial tissue interactions with heterogeneous hydrogel compositions and/or stromal cell populations to investigate their mechanistic roles during development, homeostasis, or disease.
Collapse
Affiliation(s)
- Brea Chernokal
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA.
| | - Bryan J Ferrick
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA.
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA.
| |
Collapse
|
2
|
Peak KE, Rajaguru P, Khan A, Gleghorn JP, Obaid G, Ferruzzi J, Varner VD. Photo-induced changes in tissue stiffness alter epithelial budding morphogenesis in the embryonic lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609268. [PMID: 39229009 PMCID: PMC11370601 DOI: 10.1101/2024.08.22.609268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Extracellular matrix (ECM) stiffness has been shown to influence the differentiation of progenitor cells in culture, but a lack of tools to perturb the mechanical properties within intact embryonic organs has made it difficult to determine how changes in tissue stiffness influence organ patterning and morphogenesis. Photocrosslinking of the ECM has been successfully used to stiffen soft tissues, such as the cornea and skin, which are optically accessible, but this technique has not yet been applied to developing embryos. Here, we use photocrosslinking with Rose Bengal (RB) to locally and ectopically stiffen the pulmonary mesenchyme of explanted embryonic lungs cultured ex vivo . This change in mechanical properties was sufficient to suppress FGF-10-mediated budding morphogenesis along the embryonic airway, without negatively impacting patterns of cell proliferation or apoptosis. A computational model of airway branching was used to determine that FGF-10-induced buds form via a growth-induced buckling mechanism and that increased mesenchymal stiffness is sufficient to inhibit epithelial buckling. Taken together, our data demonstrate that photocrosslinking can be used to create regional differences in mechanical properties within intact embryonic organs and that these differences influence epithelial morphogenesis and patterning. Further, this photocrosslinking assay can be readily adapted to other developing tissues and model systems.
Collapse
|
3
|
Chernokal B, Ferrick BJ, Gleghorn JP. Zonal Patterning of Extracellular Matrix and Stromal Cell Populations Along a Perfusable Cellular Microchannel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602744. [PMID: 39026757 PMCID: PMC11257519 DOI: 10.1101/2024.07.09.602744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The spatial organization of biophysical and biochemical cues in the extracellular matrix (ECM) in concert with reciprocal cell-cell signaling is vital to tissue patterning during development. However, elucidating the role an individual microenvironmental factor plays using existing in vivo models is difficult due to their inherent complexity. In this work, we have developed a microphysiological system to spatially pattern the biochemical, biophysical, and stromal cell composition of the ECM along an epithelialized 3D microchannel. This technique is adaptable to multiple hydrogel compositions and scalable to the number of zones patterned. We confirmed that the methodology to create distinct zones resulted in a continuous, annealed hydrogel with regional interfaces that did not hinder the transport of soluble molecules. Further, the interface between hydrogel regions did not disrupt microchannel structure, epithelial lumen formation, or media perfusion through an acellular or cellularized microchannel. Finally, we demonstrated spatially patterned tubulogenic sprouting of a continuous epithelial tube into the surrounding hydrogel confined to local regions with stromal cell populations, illustrating spatial control of cell-cell interactions and signaling gradients. This easy-to-use system has wide utility for modeling three-dimensional epithelial and endothelial tissue interactions with heterogeneous hydrogel compositions and/or stromal cell populations to investigate their mechanistic roles during development, homeostasis, or disease.
Collapse
Affiliation(s)
- Brea Chernokal
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| | - Bryan J. Ferrick
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| |
Collapse
|
4
|
Donzanti MJ, Mhatre O, Chernokal B, Renteria DC, Gleghorn JP. Stochastic to Deterministic: A straightforward approach to create serially perfusable multiscale capillary beds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592474. [PMID: 38766003 PMCID: PMC11100595 DOI: 10.1101/2024.05.03.592474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Generation of in vitro tissue models with serially perfused hierarchical vasculature would allow greater control of fluid perfusion throughout the network and enable direct mechanistic investigation of vasculogenesis, angiogenesis, and vascular remodeling. In this work, we have developed a method to produce a closed, serially perfused, multiscale vessel network embedded within an acellular hydrogel. We confirmed that the acellular and cellular gel-gel interface was functionally annealed without preventing or biasing cell migration and endothelial self-assembly. Multiscale connectivity of the vessel network was validated via high-resolution microscopy techniques to confirm anastomosis between self-assembled and patterned vessels. Lastly, using fluorescently labeled microspheres, the multiscale network was serially perfused to confirm patency and barrier function. Directional flow from inlet to outlet man-dated flow through the capillary bed. This method for producing closed, multiscale vascular networks was developed with the intention of straightforward fabrication and engineering techniques so as to be a low barrier to entry for researchers who wish to investigate mechanistic questions in vascular biology. This ease of use offers a facile extension of these methods for incorporation into organoid culture, organ-on-a-chip (OOC) models, and bioprinted tissues.
Collapse
|
5
|
Gilbert RM, Gleghorn JP. Connecting clinical, environmental, and genetic factors point to an essential role for vitamin A signaling in the pathogenesis of congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L456-L467. [PMID: 36749917 PMCID: PMC10042603 DOI: 10.1152/ajplung.00349.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a developmental disorder that results in incomplete diaphragm formation, pulmonary hypoplasia, and pulmonary hypertension. Although a variety of genes have been linked to its etiology, CDH is not a monogenetic disease, and the cause of the condition is still unclear in the vast majority of clinical cases. By comparing human clinical data and experimental rodent data from the literature, we present clear support demonstrating the importance of vitamin A (vitA) during the early window of pregnancy when the diaphragm and lung are forming. Alteration of vitA signaling via dietary and genetic perturbations can create diaphragmatic defects. Unfortunately, vitA deficiency is chronic among people of child-bearing age, and this early window of diaphragm development occurs before many might be aware of pregnancy. Furthermore, there is an increased demand for vitA during this critical period, which exacerbates the likelihood of deficiency. It would be beneficial for the field to further investigate the connections between maternal vitA and CDH incidence, with the goal of determining vitA status as a CDH risk factor. Regular clinical monitoring of vitA levels in child-bearing years is a tractable method by which CDH outcomes could be prevented or improved.
Collapse
Affiliation(s)
- Rachel M Gilbert
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
6
|
Hayward-Piatkovskyi B, Gonyea CR, Pyle SC, Lingappan K, Gleghorn JP. Sex-related external factors influence pulmonary vascular angiogenesis in a sex-dependent manner. Am J Physiol Heart Circ Physiol 2023; 324:H26-H32. [PMID: 36367696 PMCID: PMC9762957 DOI: 10.1152/ajpheart.00552.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a disease with a significant sexual dimorphism where males have a disadvantage compared with their female counterparts. Although mechanisms behind this sexual dimorphism are poorly understood, sex differences in angiogenesis have been identified as one possible source of the male disadvantage in BPD. Pulmonary angiogenesis was assessed in vitro using a bead sprouting assay with pooled male or female human pulmonary microvascular endothelial cells (HPMECs, 18-19 wk gestation, canalicular stage of human lung development) in standard (sex-hormone containing) and hormone-stripped medium. We identified sex-specific phenotypes in angiogenesis where male HPMECs produce fewer but longer sprouts compared with female HPMECs. The presence of sex hormones from standard culture medium modifies the male HPMEC phenotype with shorter and fewer sprouts but does not influence the female phenotype. Using a conditioned medium model, we further characterized the influence of the sex-specific secretome. Male and female HPMECs secrete factors that increase the maximum length of sprouts in female, but not male HPMECs. The presence of sex hormones abolishes this response. The male HPMEC secretome inhibits angiogenic sprouting in male HPMECs in the absence of sex hormones. Taken together, these results demonstrate that the pulmonary endothelial cell phenotypes are influenced by sex hormones and sex-specific secreted factors in a sex-dependent manner.NEW & NOTEWORTHY We identified a sex-specific phenotype wherein male HPMECs produce fewer but longer sprouts than females. Surprisingly, the presence of sex hormones only modifies the male phenotype, resulting in shorter and even fewer sprouts. Furthermore, we found the sex-specific secretome has a sex-dependent influence on angiogenesis that is also sex-hormone sensitive. These new and surprising findings point to the unappreciated role of sex and sex-related exogenous factors in early developmental angiogenesis.
Collapse
Affiliation(s)
| | - Cailin R Gonyea
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Sienna C Pyle
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Krithika Lingappan
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason P Gleghorn
- Department of Biological Sciences, University of Delaware, Newark, Delaware
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
7
|
Chernokal B, Gonyea CR, Gleghorn JP. Lung Development in a Dish: Models to Interrogate the Cellular Niche and the Role of Mechanical Forces in Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:29-48. [PMID: 37195525 DOI: 10.1007/978-3-031-26625-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past decade, emphasis has been placed on recapitulating in vitro the architecture and multicellular interactions found in organs in vivo [1, 2]. Whereas traditional reductionist approaches to in vitro models enable teasing apart the precise signaling pathways, cellular interactions, and response to biochemical and biophysical cues, model systems that incorporate higher complexity are needed to ask questions about physiology and morphogenesis at the tissue scale. Significant advancements have been made in establishing in vitro models of lung development to understand cell-fate specification, gene regulatory networks, sexual dimorphism, three-dimensional organization, and how mechanical forces interact to drive lung organogenesis [3-5]. In this chapter, we highlight recent advances in the rapid development of various lung organoids, organ-on-a-chip models, and whole lung ex vivo explant models currently used to dissect the roles of these cellular signals and mechanical cues in lung development and potential avenues for future investigation (Fig. 3.1).
Collapse
Affiliation(s)
- Brea Chernokal
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Cailin R Gonyea
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
8
|
Olutoye Ii OO, Short WD, Gilley J, Hammond Ii JD, Belfort MA, Lee TC, King A, Espinoza J, Joyeux L, Lingappan K, Gleghorn JP, Keswani SG. The Cellular and Molecular Effects of Fetoscopic Endoluminal Tracheal Occlusion in Congenital Diaphragmatic Hernia. Front Pediatr 2022; 10:925106. [PMID: 35865706 PMCID: PMC9294219 DOI: 10.3389/fped.2022.925106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a complex disease associated with pulmonary hypoplasia and pulmonary hypertension. Great strides have been made in our ability to care for CDH patients, specifically in the prenatal improvement of lung volume and morphology with fetoscopic endoluminal tracheal occlusion (FETO). While the anatomic effects of FETO have been described in-depth, the changes it induces at the cellular and molecular level remain a budding area of CDH research. This review will delve into the cellular and molecular effects of FETO in the developing lung, emphasize areas in which further research may improve our understanding of CDH, and highlight opportunities to optimize the FETO procedure for improved postnatal outcomes.
Collapse
Affiliation(s)
- Oluyinka O Olutoye Ii
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Walker D Short
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jamie Gilley
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | - J D Hammond Ii
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | - Michael A Belfort
- Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - Timothy C Lee
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Alice King
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Jimmy Espinoza
- Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - Luc Joyeux
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Krithika Lingappan
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture. Proc Natl Acad Sci U S A 2020; 117:32251-32259. [PMID: 33288694 PMCID: PMC7768754 DOI: 10.1073/pnas.2011504117] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The explanation of how bone senses and adapts to mechanical stimulation still relies on hypotheses. The fluid flow hypothesis claims that a load-induced fluid flow through the lacunocanalicular network can be sensed by osteocytes, which reside within the network structure. We show that considering the network architecture results in a better prediction of bone remodeling than mechanical strain alone. This was done by calculating the fluid flow through the lacunocanalicular network in bone volumes covering the complete cross-sections of mouse tibiae, which underwent controlled in vivo loading. The established relationship between mechanosensitivity and network architecture in individual animals implies possibilities for patient-specific therapies. A new connectomics approach to analyze lacunocanalicular network properties is necessary to understand skeletal mechanobiology. Organisms rely on mechanosensing mechanisms to adapt to changes in their mechanical environment. Fluid-filled network structures not only ensure efficient transport but can also be employed for mechanosensation. The lacunocanalicular network (LCN) is a fluid-filled network structure, which pervades our bones and accommodates a cell network of osteocytes. For the mechanism of mechanosensation, it was hypothesized that load-induced fluid flow results in forces that can be sensed by the cells. We use a controlled in vivo loading experiment on murine tibiae to test this hypothesis, whereby the mechanoresponse was quantified experimentally by in vivo micro-computed tomography (µCT) in terms of formed and resorbed bone volume. By imaging the LCN using confocal microscopy in bone volumes covering the entire cross-section of mouse tibiae and by calculating the fluid flow in the three-dimensional (3D) network, we could perform a direct comparison between predictions based on fluid flow velocity and the experimentally measured mechanoresponse. While local strain distributions estimated by finite-element analysis incorrectly predicts preferred bone formation on the periosteal surface, we demonstrate that additional consideration of the LCN architecture not only corrects this erroneous bias in the prediction but also explains observed differences in the mechanosensitivity between the three investigated mice. We also identified the presence of vascular channels as an important mechanism to locally reduce fluid flow. Flow velocities increased for a convergent network structure where all of the flow is channeled into fewer canaliculi. We conclude that, besides mechanical loading, LCN architecture should be considered as a key determinant of bone adaptation.
Collapse
|
10
|
Shirazi J, Donzanti MJ, Nelson KM, Zurakowski R, Fromen CA, Gleghorn JP. Significant Unresolved Questions and Opportunities for Bioengineering in Understanding and Treating COVID-19 Disease Progression. Cell Mol Bioeng 2020; 13:259-284. [PMID: 32837585 PMCID: PMC7384395 DOI: 10.1007/s12195-020-00637-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
COVID-19 is a disease that manifests itself in a multitude of ways across a wide range of tissues. Many factors are involved, and though impressive strides have been made in studying this novel disease in a very short time, there is still a great deal that is unknown about how the virus functions. Clinical data has been crucial for providing information on COVID-19 progression and determining risk factors. However, the mechanisms leading to the multi-tissue pathology are yet to be fully established. Although insights from SARS-CoV-1 and MERS-CoV have been valuable, it is clear that SARS-CoV-2 is different and merits its own extensive studies. In this review, we highlight unresolved questions surrounding this virus including the temporal immune dynamics, infection of non-pulmonary tissue, early life exposure, and the role of circadian rhythms. Risk factors such as sex and exposure to pollutants are also explored followed by a discussion of ways in which bioengineering approaches can be employed to help understand COVID-19. The use of sophisticated in vitro models can be employed to interrogate intercellular interactions and also to tease apart effects of the virus itself from the resulting immune response. Additionally, spatiotemporal information can be gleaned from these models to learn more about the dynamics of the virus and COVID-19 progression. Application of advanced tissue and organ system models into COVID-19 research can result in more nuanced insight into the mechanisms underlying this condition and elucidate strategies to combat its effects.
Collapse
Affiliation(s)
- Jasmine Shirazi
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Michael J. Donzanti
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Katherine M. Nelson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| |
Collapse
|