1
|
Calvert ND, Baxter J, Torrens AA, Thompson J, Kirby A, Walia J, Ntais S, Hemmer E, Berini P, Hibbert B, Ramunno L, Shuhendler AJ. NIR-II scattering gold superclusters for intravascular optical coherence tomography molecular imaging. NATURE NANOTECHNOLOGY 2025; 20:276-285. [PMID: 39468361 DOI: 10.1038/s41565-024-01802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 10/30/2024]
Abstract
Currently, intravascular optical coherence tomography (IV-OCT) is limited to anatomical imaging, providing structural information about atherosclerotic plaque morphology, thrombus and dissection. Earlier detection and risk stratification would be possible through molecular characterization of endothelium but necessitates a purpose-engineered IV-OCT contrast agent. Here we developed gold superclusters (AuSCs) tailored to clinical instrumentation and integrated into clinically relevant workflows. AuSCs are aqueously dispersible clusters of closely packed small gold nanoparticles, affording plasmon hybridization to maximize light scattering at the IV-OCT laser line (~1,350 nm). A polymer coating fosters AuSC uniformity and provides a functionalizable handle, which we targeted to intravascular P-selectin, an early vascular endothelial marker of inflammation. In a rat model of intravascular inflammation, P-selectin-targeted AuSC facilitated IV-OCT molecular imaging, where the strength of the signal correlates with the severity of vascular inflammation.
Collapse
Affiliation(s)
- Nicholas D Calvert
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Joshua Baxter
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Aidan A Torrens
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Jesse Thompson
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexia Kirby
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jaspreet Walia
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Spyridon Ntais
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Pierre Berini
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Lora Ramunno
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Adam J Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Yan S, Lin Z, Ma M, Arasteh A, Yin XM. Cholestatic insult triggers alcohol-associated hepatitis in mice. Hepatol Commun 2024; 8:e0566. [PMID: 39445893 PMCID: PMC11512636 DOI: 10.1097/hc9.0000000000000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Alcohol-associated hepatitis (AH) is a severe, potentially life-threatening form of alcohol-associated liver disease with limited therapeutic options. Existing evidence shows that biliary dysfunction and cholestasis are common in patients with AH and are associated with poorer prognosis. However, the role of cholestasis in the development of AH is largely unknown. We aimed to examine the hypothesis that cholestasis can be an important etiology factor for AH. METHODS To study the interaction of cholestasis and alcohol, chronically ethanol (EtOH)-fed mice were challenged with a subtoxic dose of α-naphthylisothiocyanate (ANIT), a well-studied intrahepatic cholestasis inducer. Liver injury was measured by biochemical and histological methods. RNAseq was performed to determine hepatic transcriptomic changes. The impact of inflammation was assessed using an anti-LY6G antibody to deplete the neutrophils and DNase I to degrade neutrophil extracellular traps. RESULTS ANIT synergistically enhanced liver injury following a 4-week EtOH feeding with typical features of AH, including increased serum levels of ALT, AST, and total bile acids, cholestasis, necrosis, neutrophil infiltration, and accumulation of neutrophil extracellular traps. RNAseq revealed multiple genes uniquely altered in the livers of EtOH/ANIT-treated mice. Analysis of differentially expressed genes suggested an enrichment of genes related to inflammatory response. Anti-LY6G antibody or DNase I treatment significantly inhibited liver damage in EtOH/ANIT-treated mice. CONCLUSIONS Our results support the hypothesis that cholestasis can be a critical contributor to the pathogenesis of AH. A combined treatment of EtOH and ANIT in mice presents biochemical, histological, and molecular features similar to those found in patients with AH, suggesting that this treatment scheme can be a useful model for studying Alcohol-associated Cholestasis and Hepatitis (AlChoHep).
Collapse
|
3
|
Mol BA, Wasinda JJ, Xu YF, Gentle NL, Meyer V. 1,25-dihydroxyvitamin D 3 augments low-dose PMA-based monocyte-to-macrophage differentiation in THP-1 cells. J Immunol Methods 2024; 532:113716. [PMID: 38960065 DOI: 10.1016/j.jim.2024.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The human monocytic THP-1 cell line is the most routinely employed in vitro model for studying monocyte-to-macrophage differentiation. Despite the wide use of this model, differentiation protocols using phorbol 12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D3 (1,25D3) vary drastically between studies. Given that differences in differentiation protocols have the potential to impact the characteristics of the macrophages produced, we aimed to assess the efficacy of three different THP-1 differentiation protocols by assessing changes in morphology and gene- and cell surface macrophage marker expression. THP-1 cells were differentiated with either 5 nM PMA, 10 nM 1,25D3, or a combination thereof, followed by a rest period. The results indicated that all three protocols significantly increased the expression of the macrophage markers, CD11b (p < 0.001) and CD14 (p < 0.010). Despite this, THP-1 cells exposed to 1,25D3 alone did not adopt the morphological and expression characteristics associated with macrophages. PMA was required to produce these characteristics, which were found to be more pronounced in the presence of 1,25D3. Both PMA- and PMA with 1,25D3-differentiated THP-1 cells were capable of M1 and M2 macrophage polarization, though the gene expression of polarization-associated markers was most pronounced in PMA with 1,25D3-differentiated THP-1 cells. Moreover, the combination of PMA with 1,25D3 appeared to support the process of commitment to a particular polarization state.
Collapse
Affiliation(s)
- Bronwyn A Mol
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa
| | - Janet J Wasinda
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa
| | - Yi F Xu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa
| | - Nikki L Gentle
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa.
| | - Vanessa Meyer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa.
| |
Collapse
|
4
|
de Seixas JRPC, Ribeiro KA, de Souza AA, da Silva CE, Pedra-Fixe MG, Lima-Ribeiro MHM, Silva Neto JDC, Barros W, Martins RD, Coelho LCBB, Correia MTS, Soares PAG, Carneiro-da-Cunha MG. Hydrogels based on galactomannan and κ-carrageenan containing immobilized biomolecules for in vivo thermal-burn wound treatment. Int J Biol Macromol 2024; 270:132379. [PMID: 38754680 DOI: 10.1016/j.ijbiomac.2024.132379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Hydrogels based on natural polysaccharides have demonstrated efficacy in epithelial recovery from cutaneous burn wounds. Here, we prepared a double-network hydrogel consisting of galactomannan (from Cassia grandis seeds) and κ-carrageenan (commercially sourced), cross-linked with CaCl2, as a matrix for immobilizing lactoferrin and/or Cramoll, aiming at its applicability as dressings for second-degree burn wounds. The formulations obtained [H - hydrogel, HL - hydrogel + lactoferrin, HC - hydrogel + Cramoll and HLC - hydrogel + lactoferrin + Cramoll] were analyzed rheologically as well as in terms of their stability (pH, color, microbial contamination) for 90 days. The burn was created with an aluminum bar (97 ± 3 °C) in the dorsal region of Wistar rats and subsequently treated with hydrogels (H, HL, HC, HLC) and control saline solution (S). The burn was monitored for 3, 7 and 14 days to evaluate the efficacy of the hydrogels in promoting wound healing. The hydrogels did not reveal significant pH or microbiological changes; there was an increase in brightness and a reduction in opacity for H. The rheological analysis confirmed the gel-like viscoelastic signature of the systems without substantial modification of the basic rheological characteristics, however HLC proved to be more rigid, due to rheological synergy when combining protein biomolecules. Macroscopic analyses confirmed centripetal healing with wound contraction: S < H < HC < HL < HLC. Histopathological analyses showed that hydrogel-treated groups reduced inflammation, tissue necrosis and fibrosis, while promoting re-epithelialization with focal acanthosis, especially in HLC due to a positive synergistic effect, indicating its potential as a promising therapy in the repair of burns.
Collapse
Affiliation(s)
- José R P C de Seixas
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Kátia A Ribeiro
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Andrea A de Souza
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil; Keizo Asami Institute (iLIKA), UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901 Recife, Pernambuco, Brazil
| | - Cecília E da Silva
- Department of Histology and Embryology, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Maxwelinne G Pedra-Fixe
- Department of Histology and Embryology, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Maria H M Lima-Ribeiro
- Keizo Asami Institute (iLIKA), UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901 Recife, Pernambuco, Brazil
| | - Jacinto da C Silva Neto
- Department of Histology and Embryology, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Wilson Barros
- Department of Physics, Universidade Federal de Pernambuco (UFPE), Av. Prof. Luiz Freire s/n, Cidade Universitária, CEP 50670-901 Recife, Pernambuco, Brazil
| | - René D Martins
- Department of Pharmacy, Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Rua do Alto do Reservatorio, S/N Bela Vista, CEP 55600-000 Vitória de Santo Antão, Pernambuco, Brazil
| | - Luana C B B Coelho
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Maria T S Correia
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Paulo A G Soares
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil; Keizo Asami Institute (iLIKA), UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901 Recife, Pernambuco, Brazil.
| | - Maria G Carneiro-da-Cunha
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil; Keizo Asami Institute (iLIKA), UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901 Recife, Pernambuco, Brazil.
| |
Collapse
|
5
|
Souchak J, Mohammed NBB, Lau LS, Dimitroff CJ. The role of galectins in mediating the adhesion of circulating cells to vascular endothelium. Front Immunol 2024; 15:1395714. [PMID: 38840921 PMCID: PMC11150550 DOI: 10.3389/fimmu.2024.1395714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Vascular cell adhesion is a complex orchestration of events that commonly feature lectin-ligand interactions between circulating cells, such as immune, stem, and tumor cells, and endothelial cells (ECs) lining post-capillary venules. Characteristically, circulating cell adherence to the vasculature endothelium is initiated through interactions between surface sialo-fucosylated glycoprotein ligands and lectins, specifically platelet (P)- or endothelial (E)-selectin on ECs or between leukocyte (L)-selectin on circulating leukocytes and L-selectin ligands on ECs, culminating in circulating cell extravasation. This lectin-ligand interplay enables the migration of immune cells into specific tissue sites to help maintain effective immunosurveillance and inflammation control, the homing of stem cells to bone marrow or tissues in need of repair, and, unfortunately, in some cases, the dissemination of circulating tumor cells (CTCs) to distant metastatic sites. Interestingly, there is a growing body of evidence showing that the family of β-galactoside-binding lectins, known as galectins, can also play pivotal roles in the adhesion of circulating cells to the vascular endothelium. In this review, we present contemporary knowledge on the significant roles of host- and/or tumor-derived galectin (Gal)-3, -8, and -9 in facilitating the adhesion of circulating cells to the vascular endothelium either directly by acting as bridging molecules or indirectly by triggering signaling pathways to express adhesion molecules on ECs. We also explore strategies for interfering with galectin-mediated adhesion to attenuate inflammation or hinder the metastatic seeding of CTCs, which are often rich in galectins and/or their glycan ligands.
Collapse
Affiliation(s)
- Joseph Souchak
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Lee Seng Lau
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
6
|
Kunnathattil M, Rahul P, Skaria T. Soluble vascular endothelial glycocalyx proteoglycans as potential therapeutic targets in inflammatory diseases. Immunol Cell Biol 2024; 102:97-116. [PMID: 37982607 DOI: 10.1111/imcb.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.
Collapse
Affiliation(s)
- Maneesha Kunnathattil
- Department of Zoology, Government College Madappally, University of Calicut, Calicut, Kerala, India
| | - Pedapudi Rahul
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
7
|
Blythe EN, Weaver LC, Brown A, Dekaban GA. β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration. Front Immunol 2021; 12:775447. [PMID: 34858434 PMCID: PMC8630586 DOI: 10.3389/fimmu.2021.775447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
CD11d/CD18 is the most recently discovered and least understood β2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration – two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response.
Collapse
Affiliation(s)
- Eoin N Blythe
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Lynne C Weaver
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
Pezhman L, Tahrani A, Chimen M. Dysregulation of Leukocyte Trafficking in Type 2 Diabetes: Mechanisms and Potential Therapeutic Avenues. Front Cell Dev Biol 2021; 9:624184. [PMID: 33692997 PMCID: PMC7937619 DOI: 10.3389/fcell.2021.624184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic inflammatory disorder that is characterized by chronic hyperglycemia and impaired insulin signaling which in addition to be caused by common metabolic dysregulations, have also been associated to changes in various immune cell number, function and activation phenotype. Obesity plays a central role in the development of T2DM. The inflammation originating from obese adipose tissue develops systemically and contributes to insulin resistance, beta cell dysfunction and hyperglycemia. Hyperglycemia can also contribute to chronic, low-grade inflammation resulting in compromised immune function. In this review, we explore how the trafficking of innate and adaptive immune cells under inflammatory condition is dysregulated in T2DM. We particularly highlight the obesity-related accumulation of leukocytes in the adipose tissue leading to insulin resistance and beta-cell dysfunction and resulting in hyperglycemia and consequent changes of adhesion and migratory behavior of leukocytes in different vascular beds. Thus, here we discuss how potential therapeutic targeting of leukocyte trafficking could be an efficient way to control inflammation as well as diabetes and its vascular complications.
Collapse
Affiliation(s)
- Laleh Pezhman
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Abd Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|