1
|
Khanal P, Dwivedi PSR, Patil VS, Shetty A, S A, Aga A, R A, Javaid A, Bhandare VV. Barosmin against postprandial hyperglycemia: outputs from computational prediction to functional responses in vitro. J Biomol Struct Dyn 2024; 42:4489-4505. [PMID: 37458811 DOI: 10.1080/07391102.2023.2233631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/28/2023] [Indexed: 05/16/2024]
Abstract
Previously, barosmin has been demonstrated to possess anti-diabetic action. However, its effect to inhibit α-amylase and α-glucosidase, including glucose utilization efficacy, has yet to be revealed. Hence, the current study attempted to assess the efficiency of barosmin in inhibiting the α-amylase, α -glucosidase, and dipeptidyl peptidase 4 enzymes, including glucose uptake efficacy. Molecular docking and simulation were performed using AutoDock Vina and Gromacs respectively followed by gene ontology analysis using the database for annotation, visualization, and integrated discovery. Further, in vitro enzyme inhibitory activities and glucose uptake assay were performed in L6 cell lines. Density functional theory analysis detailed mechanistic insights into the crucial interaction sites of barosmin of which the electron-dense region was prone to nucleophilic attack (O-atoms) whereas hydroxyl groups (-OH) showed affinity for electrophilic attacks. Barosmin showed good binding affinity with α-amylase (-9.2 kcal/mol), α-glucosidase (-10.7 kcal/mol), and dipeptidyl peptidase 4 (-10.0 kcal/mol). Barosmin formed stable nonbonded contacts with active site residues of aforementioned enzymes throughout 200 ns molecular dynamics simulation. Further, it regulated pathway concerned with glucose homeostasis i.e. tumor necrosis factor signaling pathway. In addition, barosmin showed α-amylase (IC50= 95.77 ± 23.33 µg/mL), α-glucosidase (IC50= 68.13 ± 2.95 µg/mL), and dipeptidyl peptidase 4 (IC50= 13.27 ± 1.99 µg/mL) inhibitory activities including glucose uptake efficacy in L6 cell lines (EC50= 12.46 ± 0.90 µg/mL) in the presence of insulin. This study presents the efficacy of the barosmin to inhibit α-amylase and α-glucosidase and glucose uptake efficacy in L6 cell lines via the use of multiple system biology tools and in vitro techniques.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pukar Khanal
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Prarambh S R Dwivedi
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Vishal S Patil
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, India
| | - Ankith Shetty
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Adithya S
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Afra Aga
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Akshith R
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Aarif Javaid
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | | |
Collapse
|
2
|
Paul S, Pallavi A, Gandasi NR. Exploring the potential of pheophorbide A, a chlorophyll-derived compound in modulating GLUT for maintaining glucose homeostasis. Front Endocrinol (Lausanne) 2024; 15:1330058. [PMID: 38529398 PMCID: PMC10961331 DOI: 10.3389/fendo.2024.1330058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Pheophorbide A, a chlorophyll-breakdown product, is primarily investigated for its anti-oxidant and anti-inflammatory activity. Recent reports on pheophorbide A have shown its potential in lowering blood glucose levels, thus leading to the exploration of its use in diabetes management. Literature has also shown its effect on enhanced insulin secretion, whereas its mechanism on glucose stimulated insulin secretion (GSIS) in pancreatic β cells remains unexplored. Methods In-silico and in-vitro investigations were used to explore the effect of pheophorbide A on class I glucose transporters (GLUTs). In-silico studies include - Molecular docking studies and stability assessment using GROMACS. In-vitro studies include - MTT assay, Glucose uptake assay, Live-cell imaging and tracking of GLUTs in presence of Pheophorbide A compared to control. Results Molecular docking studies revealed better binding affinity of pheophorbide A with GLUT4 (-11.2 Kcal/mol) and GLUT1 (-10.7 Kcal/mol) when compared with metformin (-5.0 Kcal/mol and -4.9 Kcal/mol, respectively). Glucose levels are largely regulated by GLUTs where GLUT1 is one of the transporters that is ubiquitously present in human β cells. Thus, we confirmed the stability of the complex, that is, pheophorbide A-GLUT1 using GROMACS for 100 ns. We further assessed its effect on a pancreatic β cell line (INS-1) for its viability using an MTT assay. Pheophorbide A (0.1-1 µM) showed a dose-dependent response on cell viability and was comparable to standard metformin. To assess how pheophorbide A mechanistically acts on GLUT1 in pancreatic β cell, we transfected INS-1 cells with GLUT1-enhanced green fluorescent protein and checked how the treatment of pheophorbide A (0.50 µM) modulates GLUT1 trafficking using live-cell imaging. We observed a significant increase in GLUT1 density when treated with pheophorbide A (0.442 ± 0.01 µm-2) at 20 mM glucose concentration when compared to GLUT1 control (0.234 ± 0.01 µm-2) and metformin (0.296 ± 0.02 µm-2). The average speed and distance travelled by GLUT1 puncta were observed to decrease when treated with pheophorbide A. The present study also demonstrated the potential of pheophorbide A to enhance glucose uptake in β cells. Conclusion The current study's findings were validated by in-silico and cellular analyses, suggesting that pheophorbide A may regulate GLUT1 and might be regarded as a potential lead for boosting the GSIS pathway, thus maintaining glucose homeostasis.
Collapse
Affiliation(s)
- Saptadipa Paul
- Cell Metabolism Lab (GA-08), Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, India
| | - Anuma Pallavi
- Cell Metabolism Lab (GA-08), Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, India
| | - Nikhil R. Gandasi
- Cell Metabolism Lab (GA-08), Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, India
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Wang Y, Mao J, Zhang M, Liu L, Zhu Y, Gu M, Zhang J, Bu H, Sun Y, Sun J, Ma Y, Guo L, Zheng Y, Liu Q. An Umbrella Insight into the Phytochemistry Features and Biological Activities of Corn Silk: A Narrative Review. Molecules 2024; 29:891. [PMID: 38398644 PMCID: PMC10891732 DOI: 10.3390/molecules29040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Corn silk (Zea mays L.) is the stigma of an annual gramineous plant named corn, which is distributed in many regions worldwide and has a long history of medicinal use. In recent years, with the sustainable development of traditional Chinese medicine, studies of corn silk based on modern technologies, such as GC-MS, LC-MS, and other analytical means, have offered more comprehensive analyses. Phytochemistry studies have shown that the main bioactive components in corn silk include flavonoids, polyphenols, phenolic acids, fatty acids, and terpenoids. Pharmacological studies have shown that corn silk extract has various pharmacological effects, such as reducing blood lipids, lowering blood pressure, regulating blood sugar levels, anti-inflammatory effects, and anti-oxidation effects. In this paper, the related research on corn silk from the past few years is summarized to provide a theoretical reference for the further development and utilization of corn silk.
Collapse
Affiliation(s)
- Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (Y.W.); (J.M.); (M.Z.); (Y.Z.); (M.G.); (J.Z.); (Y.S.); (J.S.); (Y.M.)
| | - Jialin Mao
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (Y.W.); (J.M.); (M.Z.); (Y.Z.); (M.G.); (J.Z.); (Y.S.); (J.S.); (Y.M.)
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China;
| | - Meng Zhang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (Y.W.); (J.M.); (M.Z.); (Y.Z.); (M.G.); (J.Z.); (Y.S.); (J.S.); (Y.M.)
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China;
| | - Lei Liu
- Graduate School, Qiqihar Medical University, Qiqihar 161006, China;
| | - Yu Zhu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (Y.W.); (J.M.); (M.Z.); (Y.Z.); (M.G.); (J.Z.); (Y.S.); (J.S.); (Y.M.)
| | - Meiling Gu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (Y.W.); (J.M.); (M.Z.); (Y.Z.); (M.G.); (J.Z.); (Y.S.); (J.S.); (Y.M.)
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China;
| | - Jinling Zhang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (Y.W.); (J.M.); (M.Z.); (Y.Z.); (M.G.); (J.Z.); (Y.S.); (J.S.); (Y.M.)
| | - Hongzhou Bu
- Chinese Medicine Detection Laboratory, Drugs Control Center of Qiqihar, Qiqihar 161006, China;
| | - Yu Sun
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (Y.W.); (J.M.); (M.Z.); (Y.Z.); (M.G.); (J.Z.); (Y.S.); (J.S.); (Y.M.)
| | - Jia Sun
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (Y.W.); (J.M.); (M.Z.); (Y.Z.); (M.G.); (J.Z.); (Y.S.); (J.S.); (Y.M.)
| | - Yukun Ma
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (Y.W.); (J.M.); (M.Z.); (Y.Z.); (M.G.); (J.Z.); (Y.S.); (J.S.); (Y.M.)
| | - Lina Guo
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China;
| | - Yan Zheng
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China;
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (Y.W.); (J.M.); (M.Z.); (Y.Z.); (M.G.); (J.Z.); (Y.S.); (J.S.); (Y.M.)
| |
Collapse
|
4
|
Akoonjee A, Lanrewaju AA, Balogun FO, Makunga NP, Sabiu S. Waste to Medicine: Evidence from Computational Studies on the Modulatory Role of Corn Silk on the Therapeutic Targets Implicated in Type 2 Diabetes Mellitus. BIOLOGY 2023; 12:1509. [PMID: 38132335 PMCID: PMC10740667 DOI: 10.3390/biology12121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and/or defective insulin production in the human body. Although the antidiabetic action of corn silk (CS) is well-established, the understanding of the mechanism of action (MoA) behind this potential is lacking. Hence, this study aimed to elucidate the MoA in different samples (raw and three extracts: aqueous, hydro-ethanolic, and ethanolic) as a therapeutic agent for the management of T2DM using metabolomic profiling and computational techniques. Ultra-performance liquid chromatography-mass spectrometry (UP-LCMS), in silico techniques, and density functional theory were used for compound identification and to predict the MoA. A total of 110 out of the 128 identified secondary metabolites passed the Lipinski's rule of five. The Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis revealed the cAMP pathway as the hub signaling pathway, in which ADORA1, HCAR2, and GABBR1 were identified as the key target genes implicated in the pathway. Since gallicynoic acid (-48.74 kcal/mol), dodecanedioc acid (-34.53 kcal/mol), and tetradecanedioc acid (-36.80 kcal/mol) interacted well with ADORA1, HCAR2, and GABBR1, respectively, and are thermodynamically stable in their formed compatible complexes, according to the post-molecular dynamics simulation results, they are suggested as potential drug candidates for T2DM therapy via the maintenance of normal glucose homeostasis and pancreatic β-cell function.
Collapse
Affiliation(s)
- Ayesha Akoonjee
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| | - Adedayo Ayodeji Lanrewaju
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| | - Fatai Oladunni Balogun
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| | - Nokwanda Pearl Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| |
Collapse
|
5
|
Song Z, Xiong X, Huang G. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. ULTRASONICS SONOCHEMISTRY 2023; 95:106416. [PMID: 37094477 PMCID: PMC10160789 DOI: 10.1016/j.ultsonch.2023.106416] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Antitumor, antioxidant, hypoglycemic, and immunomodulatory properties are all exhibited by maize polysaccharides. With the increasing sophistication of maize polysaccharide extraction methods, enzymatic method is no longer limited to a single enzyme to extract polysaccharides, and is more often used in combination with ultrasound or microwave, or combination with different enzymes. Ultrasound has a good cell wall-breaking effect, making it easier to dislodge lignin and hemicellulose from the cellulose surface of the maize husk. The "water extraction and alcohol precipitation" method is the simplest but most resource- and time-consuming process. However, the "ultrasound-assisted extraction" and "microwave-assisted extraction" methods not only compensate for the shortcoming, but also increase the extraction rate. Herein, the preparation, structural analysis, and activities of maize polysaccharides were analyzed and discussed.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
6
|
Li P, Huang Y, Zhu H, Chen J, Ren G, Jiang D, Liu C. Authentication, chemical profiles analysis, and quality evaluation of corn silk via DNA barcoding and UPLC-LTQ/Orbitrap MS chemical profiling. Food Res Int 2023; 167:112667. [PMID: 37087254 DOI: 10.1016/j.foodres.2023.112667] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023]
Abstract
Corn silk is commonly consumed in teas, food ingredients, and herbal medicines. Several varieties of corn silk are grown in different habitats in China. However, as information regarding their phytochemistry and genetic diversity is limited, their medicinal potential has not been utilized thoroughly. Thus, we aimed to use a combination of DNA barcoding based on specific primer ITSC sequences and ultra-performance liquid chromatography coupled with linear trap quadrupole-Orbitrap mass spectrometry (UPLC-LTQ/Orbitrap MS) approach for identifying and evaluating corn silk. ITSC barcoding helped us to identify that 52 samples could be classified into 7 groups of corn silk varieties, but the widely used nrITS and psbA-trnH barcodes failed to identify these varieties. UPLC-LTQ/Orbitrap MS was used to study the components in alcohol extracts derived from different corn silk varieties, and the detected chemical components were analyzed via bioinformatics techniques. We proposed 199 components using untargeted UPLC-LTQ/Orbitrap MS-based metabolomics analysis and identified 67 components. PCA and OPLS-DA analysis revealed two distinct chemotypes by selecting 27 components that could act as difference indicators. KEGG analysis showed that the 199 components were enriched in 12 metabolic pathways. The results showed that corn silk is rich in many types of chemicals and DNA barcoding is better than UPLC-LTQ/Orbitrap MS in distinguishing the differences between different varieties of corn silk. Our findings provide new insights into the chemical and molecular characteristics of different varieties of corn silk, which play a crucial role in the utilization of corn silk resources.
Collapse
|
7
|
Ranilla LG, Zolla G, Afaray-Carazas A, Vera-Vega M, Huanuqueño H, Begazo-Gutiérrez H, Chirinos R, Pedreschi R, Shetty K. Integrated metabolite analysis and health-relevant in vitro functionality of white, red, and orange maize ( Zea mays L.) from the Peruvian Andean race Cabanita at different maturity stages. Front Nutr 2023; 10:1132228. [PMID: 36925963 PMCID: PMC10011086 DOI: 10.3389/fnut.2023.1132228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
The high maize (Zea mays L.) diversity in Peru has been recognized worldwide, but the investigation focused on its integral health-relevant and bioactive characterization is limited. Therefore, this research aimed at studying the variability of the primary and the secondary (free and dietary fiber-bound phenolic, and carotenoid compounds) metabolites of three maize types (white, red, and orange) from the Peruvian Andean race Cabanita at different maturity stages (milk-S1, dough-S2, and mature-S3) using targeted and untargeted methods. In addition, their antioxidant potential, and α-amylase and α-glucosidase inhibitory activities relevant for hyperglycemia management were investigated using in vitro models. Results revealed a high effect of the maize type and the maturity stage. All maize types had hydroxybenzoic and hydroxycinnamic acids in their free phenolic fractions, whereas major bound phenolic compounds were ferulic acid, ferulic acid derivatives, and p-coumaric acid. Flavonoids such as luteolin derivatives and anthocyanins were specific in the orange and red maize, respectively. The orange and red groups showed higher phenolic ranges (free + bound) (223.9-274.4 mg/100 g DW, 193.4- 229.8 mg/100 g DW for the orange and red maize, respectively) than the white maize (162.2-225.0 mg/100 g DW). Xanthophylls (lutein, zeaxanthin, neoxanthin, and a lutein isomer) were detected in all maize types. However, the orange maize showed the highest total carotenoid contents (3.19-5.87 μg/g DW). Most phenolic and carotenoid compounds decreased with kernel maturity in all cases. In relation to the primary metabolites, all maize types had similar fatty acid contents (linoleic acid > oleic acid > palmitic acid > α-linolenic acid > stearic acid) which increased with kernel development. Simple sugars, alcohols, amino acids, free fatty acids, organic acids, amines, and phytosterols declined along with grain maturity and were overall more abundant in white maize at S1. The in vitro functionality was similar among Cabanita maize types, but it decreased with the grain development, and showed a high correlation with the hydrophilic free phenolic fraction. Current results suggest that the nutraceutical characteristics of orange and white Cabanita maize are better at S1 and S2 stages while the red maize would be more beneficial at S3.
Collapse
Affiliation(s)
- Lena Gálvez Ranilla
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú.,Escuela Profesional de Ingeniería de Industria Alimentaria, Departamento de Ciencias e Ingenierías Biológicas y Químicas, Facultad de Ciencias e Ingenierías Biológicas y Químicas, Universidad Catolica de Santa Maria, Arequipa, Perú
| | - Gastón Zolla
- Laboratorio de Fisiología Molecular de Plantas, PIPS de Cereales y Granos Nativos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Ana Afaray-Carazas
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú
| | - Miguel Vera-Vega
- Laboratorio de Fisiología Molecular de Plantas, PIPS de Cereales y Granos Nativos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Hugo Huanuqueño
- Programa de Investigación y Proyección Social en Maíz, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Huber Begazo-Gutiérrez
- Estación Experimental Agraria Arequipa, Instituto Nacional de Innovación Agraria (INIA), Arequipa, Perú
| | - Rosana Chirinos
- Instituto de Biotecnología, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
8
|
Boeira CP, Flores DCB, Alves JDS, Moura MRD, Melo PTS, Rolim CMB, Nogueira-Librelotto DR, Rosa CSD. Effect of corn stigma extract on physical and antioxidant properties of biodegradable and edible gelatin and corn starch films. Int J Biol Macromol 2022; 208:698-706. [PMID: 35351551 DOI: 10.1016/j.ijbiomac.2022.03.164] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/05/2022]
Abstract
The development of bio-based food packaging with antioxidant properties is an important research topic and has gained prominence these days. In this study, bioactive films were developed based gelatin-corn starch (GCS) incorporated with corn stigma extract (CSE) at different concentrations (15% and 25%; w/v). In preliminary tests, the extract maintained cell viability above 90% indicating that it is safe for application as an active ingredient. Insertion of the extract did not influence the thickness of the films but caused a slight change in optical properties. Scanning electron microscopy (SEM) analysis revealed interactions between the extract's bioactive compounds with gelatin and corn starch compounds, which may have improved the mechanical properties (elongation at break, Young's modulus). The addition of 25% corn stigma extract increased the contact angle, giving the film a hydrophobic character. Furthermore, at this concentration, a 15% reduction in water vapor permeability was observed. The elaborated films showed complete biodegradability before the tenth day of the study. It can be inferred that the films with corn stigma extract have good antioxidant properties, indicating that they can be used as an ingredient for food packaging.
Collapse
Affiliation(s)
- Caroline Pagnossim Boeira
- Department of Food Science and Technology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | | | - Jamila Dos Santos Alves
- Department of Food Science and Technology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Márcia Regina de Moura
- Hybrid Composites and Nanocomposites Group, Department of Physics and Chemistry, Universidade Estadual Paulista (UNESP), Ilha Solteira, SP, Brazil
| | - Pamela Thais Sousa Melo
- Hybrid Composites and Nanocomposites Group, Department of Physics and Chemistry, Universidade Estadual Paulista (UNESP), Ilha Solteira, SP, Brazil
| | - Clarice Madalena Bueno Rolim
- Department of Industrial Pharmacy, Health Sciences Center, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Claudia Severo da Rosa
- Department of Food Science and Technology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| |
Collapse
|