1
|
Goswami R, Mishra A. Novel tempo oxidized polyvinyl alcohol/ cellulose nanocrystal-based nanocomposite membrane for malachite green dye removal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1045. [PMID: 39392488 DOI: 10.1007/s10661-024-13196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
In this study, in-situ modification by TEMPO oxidation was performed after nanocomposite synthesis to improve its properties toward dye molecule removal. The unoxidized and oxidized polymeric-based nanocomposite was denoted as PNC6 and PNC6O respectively. The nanocomposites were characterized using FESEM, FTIR, contact angle, XRD and BET analysis. Measurements of swelling ratio and chemical stability were also performed to provide insight into the durability of the nanocomposites. The effects of changing variables included contact duration, pH of aqueous solution, initial pollutant concentration, and temperature were observed. The kinetic study showed that the experimental data is best fitted with pseudo-second-order kinetics (R2 = 0.988 and 0.997 respectively), whereas on observing isotherm data, in both unoxidized and oxidized nanocomposite it fits well with Langmuir isotherm (R2 = 0.951 and 0.993 respectively). In addition, the effects on Gibb's free energy, Enthalpy, and Entropy were measured in terms of thermodynamic characteristics, it was established that dye molecules adsorption mechanism is endothermic and spontaneous in behaviour. To check regeneration tendency of the nanocomposite seven consecutive adsorption desorption cycles were run and about 90% and 80%, regeneration ability could be seen in an unoxidized state (PNC6) and an oxidized state (PNC6O) respectively upto 5th cycle after that the tendency get reduced. This study suggests that this novel polymeric nanocomposite can be employed as an efficient and relatively inexpensive adsorbent for dye removal from aqueous solutions.
Collapse
Affiliation(s)
- Rekha Goswami
- Department of Environmental Science, Graphic Era Hill University, Dehradun, Uttarakhand, India.
| | - Abhilasha Mishra
- Department of Chemistry, Graphic Era (Deemed to Be) University, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Atri A, Dhaouadi F, Mechi N, Sellaoui L, Echabaane M, Ben Chaabane R, Erto A, Badawi M, Ben Lamine A. Removal of textile pollutants from aqueous medium using biosynthesized CuO nanoparticles: Theoretical comparative investigation via analytical model. Heliyon 2024; 10:e26285. [PMID: 38449640 PMCID: PMC10915514 DOI: 10.1016/j.heliyon.2024.e26285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
The work deals with the removal of two dyes, namely methylene blue (MB) and methyl orange (MO), from polluted water by adsorption onto CuO nanoparticles synthesized with a green synthesis procedure, starting from plant resources. Adsorption isotherms are determined at different temperatures aiming at investigating the adsorption mechanisms of the two dyes. The experimental results indicate that, for both MB and MO, the adsorption capacity increases with increasing temperature, with slight differences in the case of MO. Comparatively, the CuO nanoparticles show a higher MB adsorption capacity with respect to MO. A modelling analysis is carried out with a multilayer model derived from statistical physics, selected among a group of models, each hypothesizing a different number of adsorbed molecules layers. The analysis of model parameters allows determining that the adsorbate molecules exhibit a non-parallel orientation on the surface of biosynthesized CuO nanoparticles and each functional group of the adsorbent binds multiple molecules, simultaneously.The model also allows determining the number of dye molecule layers formed on adsorbent surface, in all the cases resulting higher than three, also confirming the effect of temperature on the maximum adsorption capacity.Specifically, the total number of dye layers formed on biosynthesized CuO nanoparticles surface exhibited a range of 4.17-4.55 for MB dye and of 3.01-3.51 for MO dye.Finally, the adsorption energies reveal that adsorption likely involves physical forces (all resulting all below 22 kJ/mol), i.e. hydrogen bonding and van der Waals forces. The adsorption energies for the interactions between dye molecules are lower than those calculated for the interactions between the dye molecules and the adsorbent surface.
Collapse
Affiliation(s)
- Afrah Atri
- Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5000 Monastir, Tunisia
| | - Fatma Dhaouadi
- Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Nesrine Mechi
- Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Lotfi Sellaoui
- Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
- CRMN, Centre for Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE, LR16CRMN01, Code Postal 4054, Sousse, Tunisia
| | - Mosaab Echabaane
- CRMN, Centre for Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE, LR16CRMN01, Code Postal 4054, Sousse, Tunisia
| | - Rafik Ben Chaabane
- Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5000 Monastir, Tunisia
| | - Alessandro Erto
- Dipartimento di Ingegneria Chimica, deiMaterialie della Produzione Industriale, Universitàdi Napoli Federico II, P.LeTecchio 80, 80125 Napoli, Italy
| | - Michael Badawi
- Université de Lorraine, CNRS, L2CM, F-57000 Metz, France
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| |
Collapse
|
3
|
Ghoohestani E, Samari F, Homaei A, Yosuefinejad S. A facile strategy for preparation of Fe 3O 4 magnetic nanoparticles using Cordia myxa leaf extract and investigating its adsorption activity in dye removal. Sci Rep 2024; 14:84. [PMID: 38168136 PMCID: PMC10762222 DOI: 10.1038/s41598-023-50550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
This study demonstrates the successful, facile, and cost-effective preparation of magnetic Fe3O4 nanoparticles (MNPs) via green procedure using Cordia myxa leaf extracts for efficient adsorption of methylene blue (MB) as a model of organic pollutant. The formation of Fe3O4 NPs was confirmed by a range of spectroscopy and microscopy techniques including FT-IR, XRD, FE-SEM, TEM, EDS, VSM, TGA, and BET-BJH. The synthesized spherical nanoparticles had a high specific surface area of 115.07 m2/g with a mesoporous structure. The formed Fe3O4 MNPs exhibited superparamagnetic behavior with saturation magnetization of 49.48 emu/g. After characterization, the adsorptive performance of the synthesized MNPs toward MB was evaluated. To achieve the maximum removal efficiency, the effect of key parameters such as adsorbent dosage (MNPs), initial adsorbate concentration, pH, and contact time on the adsorption process was evaluated. A maximum adsorption capacity of 17.79 mg/g was obtained, after one-hour incubation at pH 7.5. From the pHPZC of 7.1 of the synthesized adsorbent, the electrostatic attraction between MB and Fe3O4 NPs plays an important role in the adsorption process. The adsorption experimental data showed the closest match with the pseudo-second-order kinetic and Langmuir isotherm. The prepared Fe3O4 NPs were easily recovered by an external magnet and could be reused several times. Therefore, the synthesized MNPs seem to be excellent adsorbents for the removal of MB from aqueous solution.
Collapse
Affiliation(s)
- Elham Ghoohestani
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Fayezeh Samari
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
- Nanoscience, Nanotechnology and Advanced Materials Research Center, University of Hormozgan, Bandar Abbas, Iran.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Saeed Yosuefinejad
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Mounra E, Malloum A, Fifen JJ, Conradie J. Adsorption of some cationic dyes onto two models of graphene oxide. J Mol Model 2023; 29:380. [PMID: 37979000 PMCID: PMC10657294 DOI: 10.1007/s00894-023-05761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
CONTEXT The search for highly efficient adsorbent materials remains a significant requirement in the field of adsorption for wastewater treatment. Computational study can highly contribute to the identification of efficient material. In this work, we propose a computational approach to study the adsorption of four cationic basic dyes, basic blue 26 (BB26), basic green 1 (BG1), basic yellow 2 (BY2), and basic red 1 (BR1), onto two models of graphene oxide as adsorbents. The main objectives of this study are the assessment of the adsorption capacity of the graphene oxide towards basic dyes and the evaluation of the environmental and temperature effects on the adsorption capacity. Quantum theory of atoms in molecules (QTAIM) analysis has been used to understand the interactions between the dyes and graphene oxides. In addition, adsorption free energies of the dyes onto graphene oxides are calculated in gas and solvent phases for temperatures varying from 200 to 400 K. As a result, the adsorption free energy varies linearly depending on the temperature, highlighting the importance of temperature effects in the adsorption processes. Furthermore, the results indicate that the environment (through the solvation) considerably affects the calculated adsorption free energies. Overall, the results show that the two models of graphene oxide used in this work are efficient for removing dyes from wastewater. METHODS We have optimized the complexes formed by the interaction of dyes with graphene oxides at the PW6B95-D3/def2-SVP level of theory. The SMD solvation model realizes the implicit solvation, and water is used as the solvent. Calculations are performed using the Gaussian 16 suite of program. QTAIM analysis is performed using the AIMAll program. Gibbs free energies as function of temperature are calculated using the TEMPO program.
Collapse
Affiliation(s)
- Emma Mounra
- Department of Physics, Faculty of Science, University of Ngaoundere, PO BOX 454, Ngaoundere, Cameroon
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa.
- Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon.
| | - Jean Jules Fifen
- Department of Physics, Faculty of Science, University of Ngaoundere, PO BOX 454, Ngaoundere, Cameroon
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| |
Collapse
|
5
|
Narwal N, Katyal D, Kataria N, Rose PK, Warkar SG, Pugazhendhi A, Ghotekar S, Khoo KS. Emerging micropollutants in aquatic ecosystems and nanotechnology-based removal alternatives: A review. CHEMOSPHERE 2023; 341:139945. [PMID: 37648158 DOI: 10.1016/j.chemosphere.2023.139945] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
There is a significant concern about the accessibility of uncontaminated and safe drinking water, a fundamental necessity for human beings. This concern is attributed to the toxic micropollutants from several emission sources, including industrial toxins, agricultural runoff, wastewater discharges, sewer overflows, landfills, algal blooms and microbiota. Emerging micropollutants (EMs) encompass a broad spectrum of compounds, including pharmaceutically active chemicals, personal care products, pesticides, industrial chemicals, steroid hormones, toxic nanomaterials, microplastics, heavy metals, and microorganisms. The pervasive and enduring nature of EMs has resulted in a detrimental impact on global urban water systems. Of late, these contaminants are receiving more attention due to their inherent potential to generate environmental toxicity and adverse health effects on humans and aquatic life. Although little progress has been made in discovering removal methodologies for EMs, a basic categorization procedure is required to identify and restrict the EMs to tackle the problem of these emerging contaminants. The present review paper provides a crude classification of EMs and their associated negative impact on aquatic life. Furthermore, it delves into various nanotechnology-based approaches as effective solutions to address the challenge of removing EMs from water, thereby ensuring potable drinking water. To conclude, this review paper addresses the challenges associated with the commercialization of nanomaterial, such as toxicity, high cost, inadequate government policies, and incompatibility with the present water purification system and recommends crucial directions for further research that should be pursued.
Collapse
Affiliation(s)
- Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India.
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Sudhir Gopalrao Warkar
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur Village, Rohini, 110042, New Delhi, India
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Suresh Ghotekar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Azeez L, Lateef A, Olabode O. An overview of biogenic metallic nanoparticles for water treatment and purification: the state of the art. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:851-873. [PMID: 37651325 PMCID: wst_2023_255 DOI: 10.2166/wst.2023.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The environment is fundamental to human existence, and protecting it from dangerous contaminants should be a top priority for all stakeholders. Reducing garbage output has helped, but as the world's population grows, more waste will be generated. Tons of waste inadvertently and advertently received by environmental matrixes adversely affect the sustainable environment. The pollution caused by these activities affects the environment and human health. Conventional remediation processes ranging from chemical, physical, and biological procedures use macroaggregated materials and microorganisms to degrade or remove pollutants. Undesirable limitations of expensiveness, disposal challenges, maintenance, and formation of secondary contaminants abound. Additionally, multiple stages of treatments to remove different contaminants are time-consuming. The need to avoid these limitations and shift towards sustainable approaches brought up nanotechnology options. Currently, nanomaterials are being used for environmental rejuvenation that involves the total degradation of pollutants without secondary pollution. As nanoparticles are primed with vast and modifiable reactive sites for adsorption, photocatalysis, and disinfection, they are more useful in remediating pollutants. Review articles on metallic nanoparticles usually focus on chemically synthesized ones, with a particular focus on their adsorption capacity and toxicities. Therefore, this review evaluates the current status of biogenic metallic nanoparticles for water treatment and purification.
Collapse
Affiliation(s)
- Luqmon Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria E-mail:
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO+), Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Olalekan Olabode
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria; Department of Chemistry, Mississippi State University, MS 39762-9573, USA
| |
Collapse
|
7
|
Akpomie KG, Conradie J. Efficient adsorptive removal of paracetamol and thiazolyl blue from polluted water onto biosynthesized copper oxide nanoparticles. Sci Rep 2023; 13:859. [PMID: 36650260 PMCID: PMC9845337 DOI: 10.1038/s41598-023-28122-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Copper oxide nanoparticles (CuONPs) have received tremendous attention as efficient adsorbents owing to their low cost, desirable surface area, abundant active sites, potent textural characteristics and high adsorption capacities. However, CuONPs have not been employed to decontaminate water laden with increasing environmental contaminants such as thiazolyl blue and paracetamol. Herein, the adsorption of thiazolyl blue and paracetamol onto green synthesized CuONPs prepared from the aqueous leaf extract of Platanus occidentalis was studied. The BET, SEM, FTIR, XRD, EDX and pH point of zero charge showed the successful synthesis of CuONPs having desirable surface properties with a surface area of 58.76 m2/g and an average size of 82.13 nm. The maximum monolayer adsorption capacities of 72.46 mg/g and 64.52 mg/g were obtained for thiazolyl blue and paracetamol, respectively. The Freundlich, pseudo-second-order and intraparticle diffusion models were well fitted to the adsorption of both pollutants. The pH studies suggested the predominance of electrostatic and weaker intermolecular interactions in the adsorption of the thiazolyl blue and paracetamol, respectively. Spontaneous, physical, endothermic and random adsorption of the pollutants on CuONPs was obtained from the thermodynamic consideration. The biosynthesized CuONPs were found to be highly reusable and efficient for the adsorption of thiazolyl blue and paracetamol from water.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Physical Chemistry Unit, Department of Chemistry, University of the Free State, Bloemfontein, South Africa. .,Industrial/Physical Chemistry Unit, Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Jeanet Conradie
- Physical Chemistry Unit, Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
8
|
Saruchi, Kumar V, Bhatt D, El-Serehy HA, Pandey S. Gum katira-silver nanoparticle-based bionanocomposite for the removal of methyl red dye. Front Chem 2023; 10:959104. [PMID: 36688053 PMCID: PMC9856520 DOI: 10.3389/fchem.2022.959104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
The present study aimed to synthesize gum katira-silver nanoparticle-based bionanocomposite. Different characterization techniques were used to analyze the synthesized bionanocomposite, such as Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), thermo-gravimetric analysis (TGA), and transmission electronic microscopy (TEM). AgNPs were formed and were 6-20 nm in size. Thermo-gravimetric analysis showed that synthesized nanocomposites are more thermally stable than gum katira. All the reaction conditions, such as time, temperature, pH, solvent, amount of nanoparticles, the concentration of the initiator, crosslinker, and monomer were optimized with respect to swelling. The results showed that the highest percentage swelling (Ps) of Gk-cl-poly(AA) was 796%, and 867% of AgNPs were imbibed by Gk-cl-poly(acrylic acid)-AgNPs. Synthesized bionanocomposite was used as an adsorbent material for the adsorption of methyl red (MR) dye. The effects of different reaction conditions were also optimized to attain maximum adsorption of MR dye. The maximum dye adsorption through Gk-cl-poly(AA)-AgNPs bionanocomposite was 95.7%. Diverse kinetic and isotherm models were used to study the adsorption data. The R 2 value was established as 0.987 and k2 was .02671. The greater R 2 value of second-order kinetics over first-order kinetics suggested that MR adsorption by nanocomposite is best explained by pseudo-second-order kinetics, indicating that dye adsorption occurred through chemisorption. The R 2 value was determined to be .9954. The correlation coefficient values of Gk-cl-poly(AA)-AgNPs were best fitted by the Freundlich adsorption isotherm. Overall, synthesized bionanocomposite is a proficient material for removing of MR dye from wastewater.
Collapse
Affiliation(s)
- Saruchi
- Department of Biotechnology, CT Group of Institutions, CT Institute of Pharmaceutical Sciences (CTIPS), Jalandhar, Punjab, India
| | - Vaneet Kumar
- School of Natural Science, CT University, Ludhiana, Punjab, India
| | - Diksha Bhatt
- School of Natural Science, CT University, Ludhiana, Punjab, India
| | - Hamed A. El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
9
|
Kaur H, Singh J, Rani P, Kaur N, Kumar S, Rawat M. A novel and one-pot synthesis of Punica granatum mediated copper oxide having flower-like morphology as an efficient visible-light driven photocatalyst for degradation of textile dyes in waste water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Sharma S, Kaur B, Gautam SK, Kumar V. Evaluation of nanoherbal gel for anti-warts activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Synthesis and characterization of Aloe-vera-poly(acrylic acid)-Cu-Ni-bionanocomposite: its evaluation as removal of carcinogenic dye malachite green. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Pavithra N, Manukumar K, Viswanatha R, Nagaraju G. Combustion-derived CuO nanoparticles: Application studies on lithium-ion battery and photocatalytic activities. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Wang H, Zhao B, Wang L. Adsorption/desorption performance of Pb 2+ and Cd 2+ with super adsorption capacity of PASP/CMS hydrogel. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:43-54. [PMID: 34280153 DOI: 10.2166/wst.2021.205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Super-absorbent polyaspartic acid/carboxymethyl Salix psammophila powder (PASP/CMS) hydrogel was prepared by aqueous solution polymerization. PASP/CMS hydrogel was characterized by Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results showed that PASP/CMS hydrogel is prepared by graft copolymerization of the -COOH of polyaspartic acid (PASP) and the -CH2OH of CMS. The surface of the hydrogel became dense from loose porosity, and Pb2+ and Cd2+ were adsorbed onto the surface of hydrogel. The crystallinity of CMS was destroyed by the addition of PASP. The initial concentration of Pb2+ and Cd2+, pH, adsorption time and adsorption temperature on the adsorption effect were studied through experiments. Results showed that hydrogel has a good removal effect on Pb(II) and Cd(II) ions. Pseudo-second-order kinetics and Langmuir isotherm models are represented in the process, which are spontaneous, exothermic and decreased in randomness, and it is a single layer chemical adsorption. At the same time, the effect of desorption experimental parameters (HNO3 initial concentration, desorption time, and desorption temperature) on the experiment was studied and optimized.
Collapse
Affiliation(s)
- Hao Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Baiyun Zhao
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Li Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, Hohhot 010018, China
| |
Collapse
|
14
|
Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021. [PMID: 34046779 DOI: 10.1007/s11274-021-03070-x/tables/5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Resistance to antimicrobial agents has been alarming in recent years and poses a huge public health threat globally according to the WHO. The increase in morbidity and mortality resulting from microbial infections has been attributed to the emergence of multidrug-resistant microbes. Associated with the increase in multidrug resistance is the lack of new and effective antimicrobials. This has led to global initiatives to identify novel and more effective antimicrobial agents in addition to discovering novel and effective drug delivery and targeting methods. The use of nanoparticles as novel biomaterials to fully achieve this feat is currently gaining global attention. Nanoparticles could become an indispensable viable therapeutic option for treating drug-resistant infections. Of all the nanoparticles, the metals and metal oxide nanoparticles appear to offer the most promise and have attracted tremendous interest from many researchers. Moreover, the use of nanomaterials in photothermal therapy has received considerable attention over the years. This review provides current insight on antimicrobial resistance as well as the mechanisms of nanoparticle antibacterial activity. It offers an in-depth review of all the recent findings in the use of nanomaterials as agents against multi-resistant pathogenic bacteria. Also, nanomaterials that can respond to light stimuli (photothermal therapy) to kill microbes and facilitate enhanced drug delivery and release are discussed. Moreover, the synergistic interactions of nanoparticles with antibiotics and other nanomaterials, microbial adaptation strategies to nanoparticles, current challenges, and future prospects were extensively discussed.
Collapse
Affiliation(s)
- Ifeanyi E Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Emeka I Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
15
|
Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021; 37:108. [PMID: 34046779 PMCID: PMC8159659 DOI: 10.1007/s11274-021-03070-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
Resistance to antimicrobial agents has been alarming in recent years and poses a huge public health threat globally according to the WHO. The increase in morbidity and mortality resulting from microbial infections has been attributed to the emergence of multidrug-resistant microbes. Associated with the increase in multidrug resistance is the lack of new and effective antimicrobials. This has led to global initiatives to identify novel and more effective antimicrobial agents in addition to discovering novel and effective drug delivery and targeting methods. The use of nanoparticles as novel biomaterials to fully achieve this feat is currently gaining global attention. Nanoparticles could become an indispensable viable therapeutic option for treating drug-resistant infections. Of all the nanoparticles, the metals and metal oxide nanoparticles appear to offer the most promise and have attracted tremendous interest from many researchers. Moreover, the use of nanomaterials in photothermal therapy has received considerable attention over the years. This review provides current insight on antimicrobial resistance as well as the mechanisms of nanoparticle antibacterial activity. It offers an in-depth review of all the recent findings in the use of nanomaterials as agents against multi-resistant pathogenic bacteria. Also, nanomaterials that can respond to light stimuli (photothermal therapy) to kill microbes and facilitate enhanced drug delivery and release are discussed. Moreover, the synergistic interactions of nanoparticles with antibiotics and other nanomaterials, microbial adaptation strategies to nanoparticles, current challenges, and future prospects were extensively discussed.
Collapse
Affiliation(s)
- Ifeanyi E Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Emeka I Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
16
|
Jose LM, Raj RSA, Sajan D, Aravind A. Adsorption and photocatalytic activity of biosynthesised ZnO nanoparticles using Aloe Vera leaf extract. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abeec6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
In this article, we demonstrates the growth of phase pure ZnO nanostructures from Aloe-Vera leaf extract and degradation of an organic dye-Malachite Green (MG)- from aqueous medium using the same as catalyst. Adsorption mechanisms were evaluated using Lagergren’s pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. X-Ray diffraction data showed that the synthesised ZnO is crystalline with hexagonal wurtzite phase. Average crystallite size and lattice strain was estimated from Scherrer equation and Williamson-Hall analysis with the help of Rietveld refinement data. Crystallite size obtained from Scherrer method is 12.62 nm while that from Williamson-Hall analysis is 19.27 nm. Uniform growth of ZnO nano-sheets were confirmed by FE-SEM analysis. Optical characterisation was carried by UV-Visible spectroscopy and the band gap ZnO nanoparticles was found to be 3.19 eV. Zn-O stretching vibrations were recorded at 550 cm−1 using FTIR spectrophotometer. Results showed that biosynthesised ZnO nanosheets are particularly effective for the degradation of MG dye.
Collapse
|
17
|
Saruchi, Verma R, Kumar V, ALOthman AA. Comparison between removal of Ethidium bromide and eosin by synthesized manganese (II) doped zinc (II) sulphide nanoparticles: kinetic, isotherms and thermodynamic studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1175-1187. [PMID: 33312633 PMCID: PMC7721835 DOI: 10.1007/s40201-020-00536-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/07/2020] [Indexed: 05/16/2023]
Abstract
The present work seeks to investigate the kinetics and thermodynamic studies of ethidium bromide (EtBr) and eosin adsorption onto the synthesized Manganese (II) doped Zinc (II) Sulphide nanoparticles. A convenient scheme of co-precipitation was used for the synthesis of Manganese (II) doped Zinc (II) Sulphide nanoparticles. The Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and X-ray diffractogram (XRD) techniques were used for the characterization of synthesized nanoparticles. The adsorption study was undertaken in a systematic manner. Effects of different experimental parameters were studied using batch adsorption method. It was evident from the results that EtBr and eosin removal was inversely proportional to the concentration of initial dye and directly proportional to contact time and adsorbent used. To study the adsorption equilibrium three different isotherm models like Langmuir, Freundlich and Flory-Huggins were used. It was observed that adsorption data synced most successfully with Langmuir isotherm model as compared to Freundlich and Flory-Huggins isotherm model. To fit the investigational statistics, the kinetic models pseudo 1st order, pseudo 2nd order and intra particle diffusion were taken onto consideration. The maximum dye removal of 98.19% and 97.16% for EtBr and eosin, was observed during the synthesis of nanoparticles.
Collapse
Affiliation(s)
- Saruchi
- Department of Biotechnology, CT Group of Institutions, Shahpur Campus, Jalandhar, Punjab India
| | - Rashim Verma
- Department of Biotechnology, DAV University, Jalandhar, India
| | - Vaneet Kumar
- Department of Biotechnology, CT Group of Institutions, Shahpur Campus, Jalandhar, Punjab India
| | - Asma A. ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
18
|
Khataei MM, Yamini Y, Asiabi H, Shamsayei M. Covalent organic framework and montomorillonite nanocomposite as advanced adsorbent: synthesis, characterization, and application in simultaneous adsorption of cationic and anionic dyes. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1555-1567. [PMID: 33312661 PMCID: PMC7721761 DOI: 10.1007/s40201-020-00572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
In this work, Schiff base network-1 (SNW-1), as a new generation of covalent organic frameworks (COFs), was synthesized and modified by fabrication of a composite with clay mineral montomorillonite (Mt). It was used for simultaneous removal of anionic and cationic dyes from aqueous solutions. The fabricated composite was characterized successfully with various techniques. Tartrazine (TT) and methylene blue (MB) were selected as model anionic and cationic dyes, respectively. The effects of the percentage of each component in the composite, initial pH, and initial dye concentration were evaluated on the adsorption capacity. Adsorption reaction models and adsorption diffusion models were used to study the kinetic process of adsorption. Adsorption of both dyes reached equilibrium after 40 min. The obtained results were fitted to Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) models to predict the isotherms of adsorption. Under optimum conditions for removal of each dye with the composite, the maximum adsorption capacity of 519.2 and 602.7 mg g-1 were obtained for TT and MB, respectively. The used SNW-1/Mt composite could be regenerated by salty methanol. The high adsorption capacity and excellent reusability make SNW-1/Mt composite attractive for the simultaneous removal of anionic and cationic dyes from aqueous solutions.
Collapse
Affiliation(s)
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Hamid Asiabi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
19
|
A Systematic Review of Metal Oxide Applications for Energy and Environmental Sustainability. METALS 2020. [DOI: 10.3390/met10121604] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Energy is the fundamental requirement of all physical, chemical, and biological processes which are utilized for better living standards. The toll that the process of development takes on the environment and economic activity is evident from the arising concerns about sustaining the industrialization that has happened in the last centuries. The increase in carbon footprint and the large-scale pollution caused by industrialization has led researchers to think of new ways to sustain the developmental activities, whilst simultaneously minimizing the harming effects on the enviroment. Therefore, decarbonization strategies have become an important factor in industrial expansion, along with the invention of new catalytic methods for carrying out non-thermal reactions, energy storage methods and environmental remediation through the removal or breakdown of harmful chemicals released during manufacturing processes. The present article discusses the structural features and photocatalytic applications of a variety of metal oxide-based materials. Moreover, the practical applicability of these materials is also discussed, as well as the transition of production to an industrial scale. Consequently, this study deals with a concise framework to link metal oxide application options within energy, environmental and economic sustainability, exploring the footprint analysis as well.
Collapse
|
20
|
Mba IE, Nweze EI. The use of nanoparticles as alternative therapeutic agents against Candida infections: an up-to-date overview and future perspectives. World J Microbiol Biotechnol 2020; 36:163. [PMID: 32990838 DOI: 10.1007/s11274-020-02940-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Candida spp. are opportunistic fungi that can cause severe infections especially in immunocompromised patients. Candidiasis is currently the most frequent fungal disease affecting humans globally. This rise is attributed to the vast increase in resistance to antifungal agents. In recent years, the epidemiological and clinical relevance of fungal infections caused by Candida species have attracted a lot of interest with increasing reports of intrinsic and acquired resistance among Candida species. Thus, the formulation of novel, and efficient therapy for Candida infection persists as a critical challenge in modern medicine. The use of nanoparticle as a potential biomaterial to achieve this feat has gained global attention. Nanoparticles have shown promising antifungal activity, and thus, could be seen as the next generation antifungal agents. This review concisely discussed Candida infection with emphasis on anti-candida resistance mechanisms and the use of nanoparticles as potential therapeutic agents against Candida species. Moreover, the mechanisms of activity of nanoparticles against Candida species, recent findings on the anti-candida potentials of nanoparticles and future perspectives are also presented.
Collapse
|
21
|
Akintelu SA, Folorunso AS, Folorunso FA, Oyebamiji AK. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 2020; 6:e04508. [PMID: 32715145 PMCID: PMC7378697 DOI: 10.1016/j.heliyon.2020.e04508] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Recent development in nanoscience and nanotechnology has contributed to the wide applications of metal and metal oxides nanoparticles in several field of sciences, research institutes and industries. Among all metal oxides, copper oxide nanoparticles (CuONPs) has gained more attention due to its distinctive properties and applications. The high cost of reagents, equipment and environmental hazards associated with the physical and chemical methods of synthesizing CuONPs has been a major setback. In order to puffer solution to the aforementioned challenges by reducing environmental pollution and production of cheaper nanoparticles with good properties and efficiency, this review focus on collection of comprehensive information from recent developments in the synthesis, characterization and applications from previous scientific findings on biological method of synthesizing CuONPs due to the acclaimed advantages of been cheap, environmentally friendly, convenient and possibility of been scale up in into large scale production reported by numerous researchers. Our finding also support the synthesis of CuONPs from plant sources due to relative abundance of plants for the production of reducing and stabilizing agents required for CuONPs synthesis, potential efficiency of plant biomolecules in enhancing the toxicity effect of CuONPs against microbes, prevention of environmental pollution due of nontoxic chemicals and degradation effectiveness of CuONPs synthesized from plant sources. Furthermore, this study provide useful information on the rapid synthesis of CuONPs with desired properties from plant extracts.
Collapse
Affiliation(s)
- Sunday Adewale Akintelu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.,Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | | | - Abel Kolawole Oyebamiji
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.,Department of Basic Sciences, Adeleke University, P.M.B. 250, Ede, Osun State, Nigeria
| |
Collapse
|
22
|
Bastami TR, Khaknahad S, Malekshahi M. Sonochemical versus reverse-precipitation synthesis of Cu xO/Fe 2O 3/MoC nano-hybrid: removal of reactive dyes and evaluation of smartphone for colorimetric detection of organic dyes in water media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9364-9381. [PMID: 31916163 DOI: 10.1007/s11356-019-07368-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
In the present work, an ultrasound-assisted reverse-precipitation method was applied as a new approach for the synthesis of CuxO/Fe2O3/MoC. In the sonication method, a bath type sonicator as a simple, cost-effective, and low intensity sonicator was used. To determine the influence of ultrasonic waves on the morphology and application of nano-hybrid as nano-sorbent, it was also synthesized using the reverse precipitation method. The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), Zeta-potential measurement, and vibrating sample magnetometer (VSM) techniques. The XRD analysis confirmed that the sono-synthesized sample has higher crystallinity than the conventional one and CuO/Cu2O/MoC/Fe2O3 phase was obtained under ultrasound. According to the TEM and FESEM, sono-synthesized nanoparticles were rod-like with a width and length of 3 nm and 40 nm, respectively. Also, a well-dispersed shape and uniform morphology of nanoparticles were obtained using sonication. In comparison with the conventional nano-hybrid, this structure results in more void and accessible sites for adsorption of pollutants. The efficiency of resulting nanoparticles in adsorption of reactive dyes as a model of the pollutant was evaluated by sorption and sono-sorption processes. The sono-synthesized sample removed the pollutants more efficient than the conventional sample. The removal efficiencies were about 99% for the removal of reactive dyes using the sono-synthesized sample and sono-sorption method. Besides, determining factors including pH, pollutant concentration, temperature, and contact time were optimized in the sono-sorption and sorption processes. A colorimetric method based on RGB value was used to determine dye concentration in aqueous media. The images were taken by a smartphone and analyzed by ImageJ software. The accuracy of RGB results was confirmed by a UV-Vis spectrophotometer. Graphical abstract The figures on the left side show the FESEM images of nano-sorbent synthesized in the presence of ultrasonic irradiation (US method) and the absence of it (MS method). A well-dispersed shape and uniform morphology of nanoparticles were obtained using sonication. The scheme on the right side illustrates the process of sono-sorption for the removal of dyes and determination of their concentration using the colorimetric method. A colorimetric method based on RGB value was used to determine dye concentration in aqueous media. The graph shows the removal efficiencies of RY84 onto nanosorbent. The removal efficiencies were about 99% for the removal of reactive dye using the sono-synthesized sample and sono-sorption method.
Collapse
Affiliation(s)
- Tahereh Rohani Bastami
- Chemical Engineering, Faculty of Engineering, Quchan University of Technology, Quchan, 94771-67335, Iran.
| | - Sina Khaknahad
- Chemical Engineering, Faculty of Engineering, Quchan University of Technology, Quchan, 94771-67335, Iran
| | - Mehrdad Malekshahi
- Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran
| |
Collapse
|
23
|
Yang J, Yu S, Chen W, Chen Y. Rhodamine B removal from aqueous solution by CT269DR resin: Static and dynamic study. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617419887238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The adsorption of Rhodamine B onto CT269DR resin has been studied through static and dynamic experiments. The effects of shaking speed, resin dosage, and pH on adsorption were investigated by static experiments. The external mass transfer rate remains substantially unchanged when the shaking speed exceeds 160 r min−1. The optimal pH range is 5–8, and an increase of resin dosage can directly improve the percentage of removal of Rhodamine B. The equilibrium isotherm data of Rhodamine B on CT269DR resin fit the Langmuir adsorption isotherm well. The thermodynamics parameters, Δ H = 69.93 kJ mol−1, Δ S = 326.73 J mol−1 K−1, and Δ G < 0, demonstrate that the adsorption of Rhodamine B onto CT269DR resin is spontaneous and endothermic. The pseudo first-order kinetic model can be successfully used to represent the adsorption process and the activation energy is 25.7 kJ mol−1. The dynamic experiments show that the breakthrough point is advanced when the flow rate increases and the bed adsorption capacity increases with increasing temperature. Furthermore, the desorption using the solution of 2% NaOH is suitable for desorption and reusing process, and scanning electron microscope (SEM) and fourier transform infrared spectroscopy (FT-IR) analysis reveals that used resin has good wear resistance and chemical stability. The results confirm that CT269DR resin can be employed as an efficient adsorbent for the removal of Rhodamine B from wastewater.
Collapse
Affiliation(s)
- Jinbei Yang
- Fuqing Branch of Fujian Normal University, China
| | - Shuyue Yu
- Fuqing Branch of Fujian Normal University, China
| | - Wentao Chen
- Fuqing Branch of Fujian Normal University, China
| | - Yibing Chen
- Fuqing Branch of Fujian Normal University, China
| |
Collapse
|
24
|
Effective degradation of rhodamine B and Congo red dyes over biosynthesized silver nanoparticles-imbibed carboxymethyl cellulose hydrogel. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02920-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|