1
|
Dawood HZ, Ara C, Asmatullah, Jabeen S, Islam A, Ghauri ZH. Chitosan/Fibroin Biopolymer-Based Hydrogels for Potential Angiogenesis in Developing Chicks and Accelerated Wound Healing in Mice. Biopolymers 2025; 116:e23633. [PMID: 39382323 DOI: 10.1002/bip.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
Potential therapies for wound management remain one of the most challenging affairs to date. Biopolymer hydrogels possess inherent properties that facilitate the healing of damaged tissue by creating a supportive and hydrated environment. Chitosan/fibroin hydrogels were formulated with poly (vinyl pyrrolidone) and cross-linked using 3-aminopropyl (diethoxy) methylsilane (APDEMS) for the aforementioned function. The hydrogels were characterized through Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, and their swelling response was observed using a variety of solvents. Additionally, hydrogels were investigated for biomedical applications. As the amount of fibroin added to the hydrogels increased, the swelling ratio decreased. The analysis of chorioallantoic membrane (CAM) assay revealed that higher concentrations of fibroin in the hydrogel were directly correlated with increased angiogenesis. The intragroup comparison showed that the vascular number in the CPF5 group was significantly increased (p ≤ 0.05) compared to other hydrogel groups. The wound healing efficiency of the prepared hydrogels showed that the rate of wound reduction (99.06%) was remarkably (p ≤ 0.05) high in the hydrogel group with a greater fibroin content against control (67.03%). Histological findings of wounded tissues corroborate the abovementioned results, showing dense fibrous connective tissues in the fibroin group compared to the control. The results of this work provide thorough preclinical evidence that chitosan-fibroin biopolymers are involved in enhanced angiogenesis in growing chicks and speed up wound healing in mice without any obvious toxicity.
Collapse
Affiliation(s)
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Asmatullah
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Sehrish Jabeen
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Pakistan
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
2
|
Murugaiyan K, Murali VP, Tamura H, Furuike T, Rangasamy J. Overview of chitin dissolution, hydrogel formation and its biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-32. [PMID: 39704399 DOI: 10.1080/09205063.2024.2442181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Chitin hydrogel and hydrogel-based products are some of the frequently reported biomaterials for biomedical applications. Yet there is a void in understanding chitin's dissolution mechanism and its most suitable solvent system(s). Chitin is a natural polysaccharide polymer which can be dissolved in solvents such as calcium chloride- methanol, sodium hydroxide/urea (NaOH/urea), lithium chloride diacetamide (LiCl/DMAc), ionic liquids and deep eutectic solvents. Among the alkali/urea dissolution systems such as NaOH/urea, KOH/urea, LiOH/urea for dissolution of chitin we will be focussing on NaOH-based system here for ease of comparison with the other systems. Chitin has been used for decades in the biomedical field; however, new solvent systems are still being explored even to this day to identify the most suitable chemical(s) for dissolving it. Chitin, due to its biocompatibility, allows us to use it for multifaceted purposes. Hence, it is important to consolidate the available studies for better understanding about the most sought-after biomaterial. This overview deeply delves into the mechanism of action of the existing solvent systems and highlights its merits and demerits. It discusses the rheological properties of the chitin gel from different solvent systems and puts forth the current biomedical applications of chitin gel in areas such as tissue engineering, drug delivery, biosensing, hemostasis and wound healing. It also outlines recent advances and highlights the potential gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
- Kavipriya Murugaiyan
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Hiroshi Tamura
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Tetsuya Furuike
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
3
|
Del Río-Sancho S, Christen-Zaech S, Martinez DA, Pünchera J, Guerrier S, Laubach HJ. Line-field confocal optical coherence tomography coupled with artificial intelligence algorithms as tool to investigate wound healing: A prospective, randomized, single-blinded pilot study. J Eur Acad Dermatol Venereol 2024. [PMID: 39688344 DOI: 10.1111/jdv.20478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Ablative fractional photothermolysis serves as an excellent in vivo model for studying wound healing. The advent of non-invasive imaging devices, such as line-field confocal optical coherence tomography (LC-OCT), enhances this model by enabling detailed monitoring of skin wound healing over time. Additionally, artificial intelligence (AI)-based algorithms are revolutionizing the evaluation of clinical images by providing detailed analyses that are unfeasible manually. OBJECTIVES This study aims to assess the value of combining LC-OCT and AI for evaluating the acute wound healing process in the skin. METHODS The forearms of participating volunteers were ablated with a CO2 laser in a fractional pattern (7.5 mJ/MTZ) (ClinicalTrials.gov identifier: NCT05614557). To induce observable wound healing differences, two different approved silicone-based formulations were randomly assigned to two test sites, with a third site left untreated. In vivo LC-OCT images were obtained at predefined intervals post-laser treatment, ranging from 1 to 7 days. These images were further analysed using AI algorithms. RESULTS LC-OCT visualization allows for the characterization of the structural reorganization of the skin during wound healing. The additional integration of AI algorithms significantly enhances the evaluation of the efficacy of wound care interventions by providing a deeper understanding of how these interventions improve wound healing. This is particularly valuable for primary care providers and dermatologists, as AI algorithms have proven useful in observing, characterizing and understanding keratinocyte behaviour. CONCLUSIONS The combination of AI and high-resolution imaging represents a promising tool for better understanding wound healing, evaluating the efficacy of current wound care interventions and analysing keratinocyte behaviour in detail during the wound healing process. CLINICALTRIALS GOV IDENTIFIER NCT05614557.
Collapse
Affiliation(s)
- Sergio Del Río-Sancho
- Laser Dermatology Consultation, Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
- Pediatric Dermatology Unit, Department of Dermatology & Venereology, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Stephanie Christen-Zaech
- Pediatric Dermatology Unit, Department of Dermatology & Venereology, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - David Alvarez Martinez
- Laser Dermatology Consultation, Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| | - Jöri Pünchera
- Laser Dermatology Consultation, Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| | - Stéphane Guerrier
- GSEM & Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Hans J Laubach
- Laser Dermatology Consultation, Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
4
|
Zhou L, Zhang Y, Yi X, Chen Y, Li Y. Advances in proteins, polysaccharides, and composite biomaterials for enhanced wound healing via microenvironment management: A review. Int J Biol Macromol 2024; 282:136788. [PMID: 39490870 DOI: 10.1016/j.ijbiomac.2024.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Wound management is crucial yet imposes substantial social and economic burdens on patients and healthcare systems. The recent rapid advancements in biomaterials and manufacturing technology have created favorable conditions for expediting wound healing. This review examines the latest developments in biomacromolecule-based wound dressings, with a particular focus on proteins and polysaccharides, and their role in modulating the wound microenvironment. The importance of extracellular matrix (ECM)-inspired materials, such as hydrogels and biomimetic dressings, is emphasized. Additionally, this review explores the functionalization of wound dressings, emphasizing properties such as hemostatic capabilities, pain relief, antimicrobial activity, and innovative smart functions like electroceuticals and wound condition monitoring. The study integrates discussions on both the macroscopic healing outcomes and the microscopic pathophysiological mechanisms, highlighting recent advances in managing wound environments to expedite healing. Finally, the review critically assesses the challenges associated with the clinical translation of these wound-healing materials in the future.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Lam M, Baudoin M, Mougin B, Falentin-Daudré C. Melt-Blown Polypropylene Membrane Modification for Enhanced Hydrophilicity. J Biomed Mater Res B Appl Biomater 2024; 112:e35509. [PMID: 39578097 DOI: 10.1002/jbm.b.35509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/31/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
Melt-blown, an environmentally friendly technique, is widely used to create high-quality non-woven fabrics by extruding molten polymer resins into interlaced fibers. In the realm of biomedical textiles, its unique microstructure makes it ideal for filtration and wound dressings. Our study focuses on modifying the surfaces of polypropylene melt-blown membranes. An effective, one-step, suitable, and reliable method to graft a bioactive polymer, sodium polystyrene sulfonate-PolyNaSS, onto the membranes has been developed. The process involves UV irradiation to initiate direct and progressive growth of NaSS over the surface through radical polymerization. To assess the efficiency of the grafting, techniques like colorimetry, water contact angle measurements, Fourier-transformed infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used. Outcomes related to the grafting were demonstrated by a change in wettability and quantitatively calculated sulfonate groups. Subsequently, grafted PolyNaSS promoted cell adhesion, as evidenced by improved cell morphology. On grafted membranes, fibroblasts exhibited a stretched shape, while non-grafted ones showed inactive round shapes. These findings underscore the chemical and biological reactivity of polypropylene materials, opening exciting possibilities for various applications of melt-blown materials.
Collapse
Affiliation(s)
- M Lam
- BEST/CB3S, Université Sorbonne Paris Nord, Villetaneuse, France
| | - M Baudoin
- MeltBio, Saint-Didier-de-la-Tour, France
| | - B Mougin
- MeltBio, Saint-Didier-de-la-Tour, France
| | | |
Collapse
|
6
|
El-Aassar MR, Ibrahim OM, Albogmi RG, Hussein MF, Alsirhani AM, Rafea MA, Zaki MEA, Hassan HMA, Agwa MM. Capsaicin/silica-infused polygalacturonic acid/polyvinyl alcohol nano-matrix for enhanced wound healing in skin injuries. Int J Biol Macromol 2024; 282:137319. [PMID: 39515720 DOI: 10.1016/j.ijbiomac.2024.137319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Wound healing is a complex physiological process, demanding advanced strategies for efficient tissue regeneration. To address this, we developed a novel nanofibrous matrix composed of polygalacturonic acid (PGA), polyvinyl alcohol (PVA), capsaicin, and zinc-doped mesoporous silica (Zn/MCM-41). This copolymeric matrix offers enhanced mechanical stability, controlled drug release, and improved cellular adhesion and proliferation, leading to effective tissue regeneration. Infusing capsaicin/Zn-MCM-41 confers synergistic advantages, including accelerated wound closure, diminished inflammation, and enhanced tissue regeneration, culminating in superior wound healing outcomes. Comprehensive physicochemical characterization of the nanofiber was conducted, employing techniques such as EDS, EDX, XRD, FESEM, HRTEM, FTIR, BET, TGA, DSC and Zeta potential, confirming the successful synthesis of Zn/MCM-41 at the nanoscale, exhibiting uniform porosity, colloidal stability, and thermal resilience. In vivo quantitative assessment demonstrates a significant acceleration in wound healing facilitated by the composite nanofibers. Furthermore, the incorporation of capsaicin into Zn/MCM-41 augments the wound healing process, as corroborated by histological evaluations. In summary, our investigation introduces an advanced composite nanofiber formulation that promotes accelerated wound healing quantitatively through the synergistic amalgamation of PVA, PGA, capsaicin, and Zn/MCM-41. The demonstrated efficacy of the nanofibers underscores their potential in translational regenerative medicine and wound healing applications.
Collapse
Affiliation(s)
- Mohamed R El-Aassar
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia.
| | - Omar M Ibrahim
- Department of Medicine and McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Raed G Albogmi
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Modather F Hussein
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Mohamed Abdel Rafea
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623 Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623 Riyadh, Saudi Arabia
| | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia.
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
7
|
da Silva BM, dos Santos IFC, Mancuso P, Pereira LAF, Moroz I, Gallina MF, Tsunemi MH, Souza MT, Pellizzon CH, Silva JIS, Brandão CVS, Alves LAG. Clinical, thermographic, and tensiometric evaluation of rat cutaneous wounds treated with collagen gel associated with F18 bioactive glass. Acta Cir Bras 2024; 39:e399424. [PMID: 39630703 PMCID: PMC11606614 DOI: 10.1590/acb399424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE To evaluate the association of collagen gel with F18 bioactive glass (BG) in the healing of non-contaminated cutaneous wounds induced in healthy Wistar rats. METHODS One hundred twelve adult and healthy Wistar rats were randomly divided into four groups (n = 28): saline solution (0.9%); healing ointment based on allantoin and zinc oxide; collagen gel; and association of F18 BG powder and collagen gel. All the rats underwent the creation of a 3-cm diameter wound in their dorsal region. Macroscopic, thermographic, and tensiometric evaluations of the wound were performed. RESULTS The presence of granulation tissue varied significantly in and between the groups. The surface temperature assessed through thermography of wounds treated with saline solution (0.9%) increased significantly over time and between the groups. No difference was identified regarding tensiometry. CONCLUSIONS Collagen gel associated with F18 BG induced beneficial healing effects on non-contaminated cutaneous wounds in Wistar rats, which included the induction of increased blood perfusion as assessed through thermography.
Collapse
Affiliation(s)
- Bruna Martins da Silva
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Postgraduate Program in Animal Biotechnology – Botucatu (SP) – Brazil
| | - Ivan Felismino Charas dos Santos
- Universidade Federal de Rondônia – Rolim de Moura (RO) – Brazil
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Botucatu (SP) – Brazil
| | - Paula Mancuso
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Botucatu (SP) – Brazil
| | | | - Ivan Moroz
- Universidade Estadual Paulista – School of Agronomic Sciences – Department of Bioprocesses and Biotechnology – Botucatu (SP) – Brazil
| | - Marina Frazatti Gallina
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Postgraduate Program in Animal Biotechnology – Botucatu (SP) – Brazil
| | - Miriam Harumi Tsunemi
- Universidade Estadual Paulista – Institute of Biosciences of Botucatu – Department of Biostatistics – Botucatu (SP) – Brazil
| | - Marina Trevelin Souza
- Vetra Pesquisa e Desenvolvimento de Produtos Cerâmicos de Alta Tecnologia – Ribeirão Preto (SP) – Brazil
| | - Claudia Helena Pellizzon
- Universidade Estadual Paulista – Institute of Biosciences of Botucatu – Department of Structural and Functional Biology – Botucatu (SP) – Brazil
| | - José Ivaldo Siqueira Silva
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Postgraduate Program in Animal Biotechnology – Botucatu (SP) – Brazil
| | - Cláudia Valéria Seullner Brandão
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Department of Veterinary Surgery and Animal Reproduction – Botucatu (SP) – Brazil
| | | |
Collapse
|
8
|
Heidari R, Assadollahi V, Shakib Manesh MH, Mirzaei SA, Elahian F. Recent advances in mesoporous silica nanoparticles formulations and drug delivery for wound healing. Int J Pharm 2024; 665:124654. [PMID: 39244073 DOI: 10.1016/j.ijpharm.2024.124654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Wound healing is a natural process that can be disrupted by disease. Nanotechnology is a promising platform for the development of new therapeutic agents to accelerate acute and chronic wound healing. Drug delivery by means of nanoparticles as well as wound dressings have emerged as suitable options to improving the healing process. The characteristics of mesoporous silica nanoparticles (MSNs) make them efficient carriers of pharmaceutical agents alone or in combination with dressings. In order to maximize the effect of a drug and minimize its adverse consequences, it may be possible to include targeted and intelligent release of the drug into the design of MSNs. Its use to facilitate closure of adjacent sides of a cut as a tissue adhesive, local wound healing, controlled drug release and induction of blood coagulation are possible applications of MSNs. This review summarizes research on MSN applications for wound healing. It includes a general overview, wound healing phases, MSN formulation, therapeutic possibilities of MSNs and MSN-based drug delivery systems for wound healing.
Collapse
Affiliation(s)
- Razieh Heidari
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hossein Shakib Manesh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Chrószcz-Porębska M, Gadomska-Gajadhur A. Cysteine Conjugation: An Approach to Obtain Polymers with Enhanced Muco- and Tissue Adhesion. Int J Mol Sci 2024; 25:12177. [PMID: 39596243 PMCID: PMC11594736 DOI: 10.3390/ijms252212177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The modification of polymers towards increasing their biocompatibility gathers the attention of scientists worldwide. Several strategies are used in this field, among which chemical post-polymerization modification has recently been the most explored. Particular attention revolves around polymer-L-cysteine (Cys) conjugates. Cys, a natural amino acid, contains reactive thiol, amine, and carboxyl moieties, allowing hydrogen bond formation and improved tissue adhesion when conjugated to polymers. Conjugation of Cys and its derivatives to polymers has been examined mostly for hyaluronic acid, chitosan, alginate, polyesters, polyurethanes, poly(ethylene glycol), poly(acrylic acid), polycarbophil, and carboxymethyl cellulose. It was shown that the conjugation of Cys and its derivatives to polymers significantly increased their tissue adhesion, particularly mucoadhesion, stability at physiological pH, drug encapsulation efficiency, drug release, and drug permeation. Conjugates were also non-toxic toward various cell lines. These properties make Cys conjugation a promising strategy for advancing polymer applications in drug delivery systems and tissue engineering. This review aims to provide an overview of these features and to present the conjugation of Cys and its derivatives as a modern and promising approach for enhancing polymer tissue adhesion and its application in the medical field.
Collapse
|
10
|
Fang Y, Han Y, Yang L, Kankala RK, Wang S, Chen A, Fu C. Conductive hydrogels: intelligent dressings for monitoring and healing chronic wounds. Regen Biomater 2024; 12:rbae127. [PMID: 39776855 PMCID: PMC11703555 DOI: 10.1093/rb/rbae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
Conductive hydrogels (CHs) represent a burgeoning class of intelligent wound dressings, providing innovative strategies for chronic wound repair and monitoring. Notably, CHs excel in promoting cell migration and proliferation, exhibit powerful antibacterial and anti-inflammatory properties, and enhance collagen deposition and angiogenesis. These capabilities, combined with real-time monitoring functions, play a pivotal role in accelerating collagen synthesis, angiogenesis and continuous wound surveillance. This review delves into the preparation, mechanisms and applications of CHs in wound management, highlighting their diverse and significant advantages. It emphasizes the effectiveness of CHs in treating various chronic wounds, such as diabetic ulcers, infected wounds, temperature-related injuries and athletic joint wounds. Additionally, it explores the diverse applications of multifunctional intelligent CHs in advanced wound care technologies, encompassing self-powered dressings, electrically-triggered drug delivery, comprehensive diagnostics and therapeutics and scar-free healing. Furthermore, the review highlights the challenges to their broader implementation, explores the future of intelligent wound dressings and discusses the transformative role of CHs in chronic wound management, particularly in the context of the anticipated integration of artificial intelligence (AI). Additionally, this review underscores the challenges hindering the widespread adoption of CHs, delves into the prospects of intelligent wound dressings and elucidates the transformative impact of CHs in managing chronic wounds, especially with the forthcoming integration of AI. This integration promises to facilitate predictive analytics and tailor personalized treatment plans, thereby further refining the healing process and elevating patient satisfaction. Addressing these challenges and harnessing emerging technologies, we postulate, will establish CHs as a cornerstone in revolutionizing chronic wound care, significantly improving patient outcomes.
Collapse
Affiliation(s)
- Ying Fang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Yiran Han
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Lu Yang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Chaoping Fu
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
11
|
Mantry S, Behera A, Pradhan S, Mohanty L, Kumari R, Singh A, Yadav MK. Polysaccharide-based chondroitin sulfate macromolecule loaded hydrogel/scaffolds in wound healing- A comprehensive review on possibilities, research gaps, and safety assessment. Int J Biol Macromol 2024; 279:135410. [PMID: 39245102 DOI: 10.1016/j.ijbiomac.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Wound healing is an intricate multifactorial process that may alter the extent of scarring left by the wound. A substantial portion of the global population is impacted by non-healing wounds, imposing significant financial burdens on the healthcare system. The conventional dosage forms fail to improve the condition, especially in the presence of other morbidities. Thus, there is a pressing requirement for a type of wound dressing that can safeguard the wound site and facilitate skin regeneration, ultimately expediting the healing process. In this context, Chondroitin sulfate (CS), a sulfated glycosaminoglycan material, is capable of hydrating tissues and further promoting the healing. Thus, this comprehensive review article delves into the recent advancement of CS-based hydrogel/scaffolds for wound healing management. The article initially summarizes the various physicochemical characteristics and sources of CS, followed by a brief understanding of the importance of hydrogel and CS in tissue regeneration processes. This is the first instance of such a comprehensive summarization of CS-based hydrogel/scaffolds in wound healing, focusing more on the mechanistic wound healing process, furnishing the recent innovations and toxicity profile. This contemporary review provides a profound acquaintance of strategies for contemporary challenges and future direction in CS-based hydrogel/scaffolds for wound healing.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India.
| | - Ashutosh Behera
- Department of Pharmaceutical Quality Assurance, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India; Department of Pharmaceutical Quality Assurance, Florence College of Pharmacy, IRBA, Ranchi, 835103, Jharkhand, India
| | - Shaktiprasad Pradhan
- Department of Pharmaceutical Chemistry, Koustuv Research Institute of Medical Science (KRIMS), Koustuv Technical Campus, Patia, Bhubaneswar, Odisha 751024, India
| | - Lalatendu Mohanty
- Department of Pharmacology, Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Tehri Garhwal, Uttarakhand 24916, India
| | - Ragni Kumari
- School of Pharmacy, LNCT University, Bhopal 462022, Madhya Pradesh, India
| | - Ankita Singh
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| | - Mahesh Kumar Yadav
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| |
Collapse
|
12
|
Sarkar S, Mandal D, Ghosh A, Chattopadhyay D. Biopolymers in Wound Dressing. ACS SYMPOSIUM SERIES 2024:207-234. [DOI: 10.1021/bk-2024-1487.ch009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Sresha Sarkar
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata -700 009, India
| | - Debashmita Mandal
- Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Salt Lake City, Kolkata-700098, India
| | - Adrija Ghosh
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata -700 009, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata -700 009, India
- Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Salt Lake City, Kolkata-700098, India
| |
Collapse
|
13
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Panigrahy UP, Urs D, Fatima AF, Nallasivan PK, Chhabra GS, Sayeed M, Alshehri MA, Rab SO, Khan SL, Emran TB. Polyphenols in wound healing: unlocking prospects with clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03538-1. [PMID: 39453503 DOI: 10.1007/s00210-024-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Wound healing is a multifaceted, complex process that factors like aging, metabolic diseases, and infections may influence. The potentiality of polyphenols, natural compounds, has shown anti-inflammatory and antimicrobial properties in promoting wound healing and their potential applications in wound management. The studies reviewed indicate that polyphenols have multiple mechanisms that promote wound healing. This involves enhancing antioxidant defenses, reducing oxidative stress, modulating inflammatory responses, improving healing times, reducing infection rates, and enhancing tissue regeneration in clinical trials and in vivo and in vitro studies. Polyphenols have been proven to be effective in managing hard-to-heal wounds, especially in diabetic and elderly populations. Polyphenols have shown significant benefits in promoting angiogenesis and stimulating collagen synthesis. Polyphenol treatment has been demonstrated to have therapeutic effects in wound healing and chronic wound management. Their ability to regulate key healing processes makes them suitable for new wound care products and treatments. Future research should enhance formulations and delivery methods to optimize polyphenols' bioavailability and therapeutic efficacy in wound management approaches.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka, 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, 781026, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Campus, Kodagu, Karnataka, India
| | - Ayesha Farhath Fatima
- Department of Pharmaceutics, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - P Kumar Nallasivan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari, Coimbatore, Tamilnadu, India
| | - Gurmeet Singh Chhabra
- Department Pharmaceutical Chemistry, Indore Institute of Pharmacy, Opposite Indian Institute of Management Rau, Pithampur Road, Indore, Madhya Pradesh, India
| | - Mohammed Sayeed
- Department of Pharmacology, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
14
|
Chundayil Kalathil N, Shah MR, Lailakumari VC, Prabhakaran P, Kumarapilla H, Kumar GSV. 3D Bilayered Hydrogel and Nanofiber Multifunctional Sponge Dressing: An Efficacious Healing Agent for Chronic Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:6492-6505. [PMID: 39271646 DOI: 10.1021/acsabm.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Chronic wound management using biomaterial-based dressings has significantly impacted the standard and efficiency of wound healing. However, various available wound healing aids are ineffective in treating deep open injuries and chronic wounds such as diabetic wounds. Herein, we developed a 3D bilayered multifunctional sponge, which addresses the structural and functional issues faced by biomaterial dressings in treating deep and chronic wounds. The 3D bilayered sponge consists of a hydrogel base functionalized with wound healing peptide (Tylotoin)-carrying nanoparticles and topped with a nanofiber layer functionalized with an antimicrobial peptide (LLKKK18). The 3D bilayered sponge, with its highly porous, elastic, and enhanced fluid absorption ability, makes it a suitable wound treatment aid. The developed multifunctional 3D sponge shows antibacterial action and promotes a microenvironment similar to the extracellular matrix (ECM) in regulating dermal cell survival and migration. Study in a full-thickness skin defect diabetic mouse model has shown that the developed 3D bilayered sponge accelerated wound closure and promoted functional skin regeneration through reduced inflammation, faster granulation tissue formation, re-epithelialization, neovascularization, and skin appendage restoration, which make the developed 3D bilayered multifunctional sponge an efficient and advanced chronic wound management aid with potential for future clinical application.
Collapse
Affiliation(s)
- Nanditha Chundayil Kalathil
- Nano Drug Delivery Systems (NDDS), Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India
- Research Centre, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| | - Manan Rakesh Shah
- Nano Drug Delivery Systems (NDDS), Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India
| | - Vipin Chandrasekharan Lailakumari
- Nano Drug Delivery Systems (NDDS), Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India
- Regional Centre for Biotechnology (DBT-RCB), Faridabad, Haryana 121001, India
| | - Priya Prabhakaran
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Harikrishnan Kumarapilla
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | | |
Collapse
|
15
|
Pourhajrezaei S, Abbas Z, Khalili MA, Madineh H, Jooya H, Babaeizad A, Gross JD, Samadi A. Bioactive polymers: A comprehensive review on bone grafting biomaterials. Int J Biol Macromol 2024; 278:134615. [PMID: 39128743 DOI: 10.1016/j.ijbiomac.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The application of bone grafting materials in bone tissue engineering is paramount for treating severe bone defects. In this comprehensive review, we explore the significance and novelty of utilizing bioactive polymers as grafts for successful bone repair. Unlike metals and ceramics, polymers offer inherent biodegradability and biocompatibility, mimicking the native extracellular matrix of bone. While these polymeric micro-nano materials may face challenges such as mechanical strength, various fabrication techniques are available to overcome these shortcomings. Our study not only investigates diverse biopolymeric materials but also illuminates innovative fabrication methods, highlighting their importance in advancing bone tissue engineering.
Collapse
Affiliation(s)
- Sana Pourhajrezaei
- Department of biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zahid Abbas
- Department of Chemistry, University of Bologna, Bologna, Italy
| | | | - Hossein Madineh
- Department of Polymer Engineering, University of Tarbiat Modares, Tehran, Iran
| | - Hossein Jooya
- Biochemistry group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jeffrey D Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, NV, USA
| | - Ali Samadi
- Department of Basic Science, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
16
|
D K, B M, Gowda D C, Sionkowska A, S N M, S V, Vicini S. Insights into the Physicochemical Characteristics and Miscibility of Chitosan/Polypeptide Blends: Promising Material for Wound Healing in Sprague-Dawley Rats. ACS Biomater Sci Eng 2024; 10:5807-5821. [PMID: 39177293 DOI: 10.1021/acsbiomaterials.4c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In this study, the synthesis of poly(AVGVP) [where A-Alanine, V-Valine, G-Glycine, and P-Proline] is executed by the stepwise solution phase method. The interaction between Chitosan and synthetic polypentapeptide in blends was examined in the liquid and solid phases. Viscosity criteria that establish the total miscibility with Chitosan are the Δ[η]m, the intrinsic viscosity [η], Huggins coefficient [KH], by Garcia ΔB, α by Sun, and μ suggested by Chee, ΔK, and β buttressed by Jiang and Han. Besides, the results are corroborated in the solid phase by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Miscibility in the blends led to higher thermal stability than that of pure polymers, according to thermogravimetric analysis (TGA). In vitro, studies offered the absence of cytotoxicity, and in vivo histopathological results advocated that the blend shows less inflammation and is more compact as against cotton gauge, evincing an enhanced healing environment and promising the possibility of use in wound therapeutic applications.
Collapse
Affiliation(s)
- Kathyayani D
- Department of Chemistry, JSS Academy of Technical Education, Dr. Vishnuvardhan Road, Bengaluru 560060, India
| | - Mahesh B
- Department of Chemistry, JSS Academy of Technical Education, Dr. Vishnuvardhan Road, Bengaluru 560060, India
| | - Channe Gowda D
- Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysuru 560006, India
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland
| | - Manjula S N
- Department of Pharmacology, JSS Pharmacy College, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570 015, India
| | - Veeranna S
- Department of Dermatology, JSS Medical College, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570 015, India
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecanese, 31, 16146 Genova, Italy
| |
Collapse
|
17
|
Larue L, Michely L, Grande D, Belbekhouche S. Design of Collagen and Gelatin-based Electrospun Fibers for Biomedical Purposes: An Overview. ACS Biomater Sci Eng 2024; 10:5537-5549. [PMID: 39092811 DOI: 10.1021/acsbiomaterials.4c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Collagen and gelatin are essential natural biopolymers commonly utilized in biomaterials and tissue engineering because of their excellent physicochemical and biocompatibility properties. They can be used either in combination with other biomacromolecules or particles or even exclusively for the enhancement of bone regeneration or for the development of biomimetic scaffolds. Collagen or gelatin derivatives can be transformed into nanofibrous materials with porous micro- or nanostructures and superior mechanical properties and biocompatibility using electrospinning technology. Specific attention was recently paid to electrospun mats of such biopolymers, due to their high ratio of surface area to volume, as well as their biocompatibility, biodegradability, and low immunogenicity. The fiber mats with submicro- and nanometer scale can replicate the extracellular matrix structure of human tissues and organs, making them highly suitable for use in tissue engineering due to their exceptional bioaffinity. The drawbacks may include rapid degradation and complete dissolution in aqueous media. The use of gelatin/collagen electrospun nanofibers in this form is thus greatly restricted for biomedicine. Therefore, the cross-linking of these fibers is necessary for controlling their aqueous solubility. This led to enhanced biological characteristics of the fibers, rendering them excellent options for various biomedical uses. The objective of this review is to highlight the key research related to the electrospinning of collagen and gelatin, as well as their applications in the biomedical field. The review features a detailed examination of the electrospinning fiber mats, showcasing their varying structures and performances resulting from diverse solvents, electrospinning processes, and cross-linking methods. Judiciously selected examples from literature will be presented to demonstrate major advantages of such biofibers. The current developments and difficulties in this area of research are also being addressed.
Collapse
Affiliation(s)
- Laura Larue
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Laurent Michely
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Daniel Grande
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
18
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
19
|
Yadav R, Kumar R, Kathpalia M, Ahmed B, Dua K, Gulati M, Singh S, Singh PJ, Kumar S, Shah RM, Deol PK, Kaur IP. Innovative approaches to wound healing: insights into interactive dressings and future directions. J Mater Chem B 2024; 12:7977-8006. [PMID: 38946466 DOI: 10.1039/d3tb02912c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The objective of this review is to provide an up-to-date and all-encompassing account of the recent advancements in the domain of interactive wound dressings. Considering the gap between the achieved and desired clinical outcomes with currently available or under-study wound healing therapies, newer more specific options based on the wound type and healing phase are reviewed. Starting from the comprehensive description of the wound healing process, a detailed classification of wound dressings is presented. Subsequently, we present an elaborate and significant discussion describing interactive (unconventional) wound dressings. Latter includes biopolymer-based, bioactive-containing and biosensor-based smart dressings, which are discussed in separate sections together with their applications and limitations. Moreover, recent (2-5 years) clinical trials, patents on unconventional dressings, marketed products, and other information on advanced wound care designs and techniques are discussed. Subsequently, the future research direction is highlighted, describing peptides, proteins, and human amniotic membranes as potential wound dressings. Finally, we conclude that this field needs further development and offers scope for integrating information on the healing process with newer technologies.
Collapse
Affiliation(s)
- Radhika Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Rohtash Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Muskan Kathpalia
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Monica Gulati
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Singh
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushvinder Jit Singh
- Tynor Orthotics Private Limited, Janta Industrial Estate, Mohali 160082, Punjab, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| | - Parneet Kaur Deol
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India.
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
20
|
Deng LE, Qiu Y, Zeng Y, Zou J, Kumar A, Pan Y, Nezamzadeh-Ejhieh A, Liu J, Liu X. Current and promising applications of MOF composites in the healing of diabetes wounds. RSC Med Chem 2024; 15:2601-2621. [PMID: 39149100 PMCID: PMC11324049 DOI: 10.1039/d4md00232f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/16/2024] [Indexed: 08/17/2024] Open
Abstract
Diabetes mellitus is an exponentially growing chronic metabolic disease identified by prolonged hyperglycemia that leads to a plethora of health problems. It is well established that the skin of diabetic patients is more prone to injury, and hence, wound healing is an utmost critical restorative process for injured skin and other tissues. Diabetes patients have problems with wound healing at all stages, which ultimately results in delays in the healing process. Therefore, it is vital to find new medications or techniques to hasten the healing of wounds. Metal-organic frameworks (MOFs), an assorted class of porous hybrid materials comprising metal ions coordinated to organic ligands, can display great potential in accelerating diabetic wound healing due to their good physicochemical properties. The release of metal ions during the degradation of MOFs can promote the differentiation of fibroblasts into myofibroblasts and subsequently angiogenesis. Secondly, similar to enzyme-like active substances, they can eliminate reactive oxygen species (ROS) overproduction (secondary to the bio-load of wound bacteria), which is conducive to accelerating diabetic wound healing. Subsequently, MOFs can support the slow release of drugs (molecular or gas therapeutics) in diabetic wounds and promote wound healing by regulating pathological signaling pathways in the wound microenvironment or inhibiting the expression of inflammatory factors. In addition, the combination of photodynamic and photothermal therapies using photo-stimulated porphyrin-based MOF nanosystems has brought up a new idea for treating complicated diabetic wound microenvironments. In this review, recent advances affecting diabetic wound healing, current means of rapid diabetic wound healing, and the limitations of traditional approaches are discussed. Further, the diabetic wound healing applications of MOFs have been discussed followed by the future challenges and directions of MOF materials in diabetic wound healing.
Collapse
Affiliation(s)
- Li-Er Deng
- Department of Nephrology, Dongguan Traditional Chinese Medicine Hospital, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine Dongguan Guangdong 523000 China
| | - Yuzhi Qiu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University 523808 China
| | - Yana Zeng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University 523808 China
| | - Jiafeng Zou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University 523808 China
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow Lucknow 226007 India
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University 523808 China
| | | | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University 523808 China
| | - Xingyan Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University Dongguan 523808 China
| |
Collapse
|
21
|
Toumaj N, Salehi M, Zamani S, Arabpour Z, Djalian AR, Rahmati M. Development of alginate/chitosan hydrogel loaded with obestatin and evaluation of collagen type I, III, VEGF and TGF-β 1 gene expression for skin repair in a rat model (in vitro and in vitro study). Skin Res Technol 2024; 30:e70018. [PMID: 39167033 PMCID: PMC11337927 DOI: 10.1111/srt.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Skin injuries have long been recognized as a prevalent type of physical injury. As a result, numerous research studies have been performed to discover an effective mechanism for wound healing. Therefore, tissue engineering of skin has developed as a potential solution for traditional methods of treating skin injuries. METHODS AND MATERIALS Alginate/Chitosan hydrogel was mixed with 1, 10, 100, and 150 µM Obestatin, and evaluated the morphology, cumulative release, hemocompatibility and cytocompatibility, water absorption, cell viability, weight loss, and antibacterial characteristics of three-dimensional (3D) alginate (Alg) and chitosan (Cs) hydrogels during the process of wound curing. Various concentrations of Obestatin (Obes) were utilized for this purpose. Finally, the hydrogels that were made were tested on a full-thickness dermal wound in a Wistar rat model. The curative effects were determined by analyzing RNA expression and examining tissue stained with Masson's trichrome (MT) and hematoxylin-eosin (H&E). RESULTS The biodegradability of this hydrogel was verified using weight loss testing, which demonstrated a reduction of around 90% after a period of 3 days. Furthermore, the MTT assay demonstrated that hydrogels have a beneficial effect on cell proliferation without inducing any harmful effects. Furthermore, the hydrogels produced demonstrated higher wound closure in vivo compared to the wounds treated with gauze (negative control group). Among the hydrogel groups, the chitosan/alginate/obestatin 100 µM group exhibited the apical percentage of wound closure, gene expression, and secondary epithelialization, but in 150 µM concentrations, we saw a lower rate of cell growth and proliferation and increase in hemolysis. In addition, RT-PCR analysis demonstrated that a concentration of 100 µM obestatin resulted in an upregulation in the expression of mRNA for vascular endothelial growth factor (VEGF), collagen type I & type III, and transforming growth factor-beta (TGF-β). CONCLUSION The present study suggests that 3D Alg/Cs hydrogels with a concentration of 100 µM obestatin have the potential for clinical application in the treatment of skin injuries.
Collapse
Affiliation(s)
- Nazanin Toumaj
- Student Research Committee, School of MedicineShahroud University of Medical SciencesShahroudIran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research CenterShahroud University of Medical SciencesShahroudIran
- Department of Tissue Engineering, School of MedicineShahroud University of Medical SciencesShahroudIran
| | - Sepehr Zamani
- Student Research Committee, School of MedicineShahroud University of Medical SciencesShahroudIran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Ali R. Djalian
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Majid Rahmati
- Department of Medical Biotechnology, School of MedicineShahroud University of Medical SciencesShahroudIran
| |
Collapse
|
22
|
Shiroud Heidari B, Dodda JM, El-Khordagui LK, Focarete ML, Maroti P, Toth L, Pacilio S, El-Habashy SE, Boateng J, Catanzano O, Sahai N, Mou L, Zheng M. Emerging materials and technologies for advancing bioresorbable surgical meshes. Acta Biomater 2024; 184:1-21. [PMID: 38879102 DOI: 10.1016/j.actbio.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Surgical meshes play a significant role in the treatment of various medical conditions, such as hernias, pelvic floor issues, guided bone regeneration, and wound healing. To date, commercial surgical meshes are typically made of non-absorbable synthetic polymers, notably polypropylene and polytetrafluoroethylene, which are associated with postoperative complications, such as infections. Biological meshes, based on native tissues, have been employed to overcome such complications, though mechanical strength has been a main disadvantage. The right balance in mechanical and biological performances has been achieved by the advent of bioresorbable meshes. Despite improvements, recurrence of clinical complications associated with surgical meshes raises significant concerns regarding the technical adequacy of current materials and designs, pointing to a crucial need for further development. To this end, current research focuses on the design of meshes capable of biomimicking native tissue and facilitating the healing process without post-operative complications. Researchers are actively investigating advanced bioresorbable materials, both synthetic polymers and natural biopolymers, while also exploring the performance of therapeutic agents, surface modification methods and advanced manufacturing technologies such as 4D printing. This review seeks to evaluate emerging biomaterials and technologies for enhancing the performance and clinical applicability of the next-generation surgical meshes. STATEMENT OF SIGNIFICANCE: In the ever-transforming landscape of regenerative medicine, the embracing of engineered bioabsorbable surgical meshes stands as a key milestone in addressing persistent challenges and complications associated with existing treatments. The urgency to move beyond conventional non-absorbable meshes, fraught with post-surgery complications, emphasises the necessity of using advanced biomaterials for engineered tissue regeneration. This review critically examines the growing field of absorbable surgical meshes, considering their potential to transform clinical practice. By strategically combining mechanical strength with bioresorbable characteristics, these innovative meshes hold the promise of mitigating complications and improving patient outcomes across diverse medical applications. As we navigate the complexities of modern medicine, this exploration of engineered absorbable meshes emerges as a promising approach, offering an overall perspective on biomaterials, technologies, and strategies adopted to redefine the future of surgical meshes.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | | | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Italy. Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| | - Peter Maroti
- University of Pecs, Medical School, 3D Printing and Visualization Centre, Hungary, University of Pecs, Medical Skills Education and Innovation Centre, Hungary
| | - Luca Toth
- University of Pecs, Medical School, Institute for Translational Medicine, Hungary, University of Pecs, Medical School, Department of Neurosurgery, Hungary
| | - Serafina Pacilio
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Italy. Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy; Department of Biomedical and Neuromotor Sciences DIBINEM, Alma Mater Studiorum-University of Bologna, Italy
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Joshua Boateng
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, UK
| | - Ovidio Catanzano
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Nitin Sahai
- University of Pecs, Medical School, 3D Printing and Visualization Centre, Hungary, University of Pecs, Medical Skills Education and Innovation Centre, Hungary; Department of Biomedical Engineering, North Eastern Hill University, Meghalaya, India
| | - Lingjun Mou
- WA Liver and Kidney Transplant Department, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
23
|
Dey R, Mukherjee R, Biswas S, Haldar J. Stimuli-Responsive Release-Active Dressing: A Promising Solution for Eradicating Biofilm-Mediated Wound Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37795-37805. [PMID: 39008846 DOI: 10.1021/acsami.4c09820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Biofilm-mediated wound infections pose a significant challenge due to the limitations of conventional antibiotics, which often exhibit narrow-spectrum activity, fail to eliminate recurrent bacterial contamination, and are unable to penetrate the biofilm matrix. While the search for alternatives has explored the use of metal nanoparticles and synthetic biocides, these solutions often suffer from unintended toxicity to surrounding tissues and lack controlled administration and release. In this study, we engineered a pH-responsive release-active dressing film based on carboxymethyl cellulose, incorporating a synthetic antibacterial molecule (SAM-17). The dressing film exhibited optimal mechanical stability for easy application and demonstrated excellent fluid absorption properties, allowing for prolonged moisturization at the site of injury. The film exhibited pH-dependent release of cargo, with 78% release within 24 h at acidic pH, enabling targeted antibacterial drug delivery within the wound microenvironment. Furthermore, the release-active film effectively eliminated repeated challenges of bacterial contamination. Remarkably, the film demonstrated a minimal toxicity profile in both in vitro and in vivo models. The film eliminated preformed bacterial biofilms, achieving a reduction of 2.5 log against methicillin-resistant Staphylococcus aureus (MRSA) and 4.1 log against vancomycin-resistant S. aureus (VRSA). In a biofilm-mediated MRSA wound infection model, this release-active film eradicated the biofilm-embedded bacteria by over 99%, resulting in accelerated wound healing. These findings highlight the potential of this film as an effective candidate for tackling biofilm-associated wound infections.
Collapse
Affiliation(s)
- Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sucheta Biswas
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
24
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
25
|
Díaz-Hurtado D, Etxart-Lasa MP, Izaga-González O, Lodoso-Gibaja L, Ruiz de Larramendi-Fernández MT, Riaño-Fernández I. Effect of a topical silicone gel and a polyurethane dressing on the evolution of scars. ENFERMERIA CLINICA (ENGLISH EDITION) 2024; 34:250-258. [PMID: 38642837 DOI: 10.1016/j.enfcle.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVE To assess the effectiveness and safety of a topical silicone gel (BE + Gel reductor y reparador de cicatrices) and a polyurethane dressing (BE + Apósito reductor y reparador de cicatrices) on the evolution of scars of patients who were previously recruited in the emergency care unit while seeking wound care. METHOD A single center, stratified observational, open label study was performed in the emergency care unit of Donostia Universitary Hospital (recruitment) and in the Biodonostia Health Research Institute (intervention). Scars located in unexposed body areas with the dressing, and scars located in exposed areas with either the gel or the dressing. Investigators assessed interventions at day 1 and on weeks 4, 8 and 12. Vancouver Scar Scale (VSS) and a photographical assessment were used to determine the scars evolution, and the subjective perception of the scar was evaluated by means of a questionnaire administered to the patients. RESULTS Patients whose scars were treated with the silicone gel had an average initial VSS score of 5.4 ± 2.08. This value was reduced to 0.86 ± 1.17 after 90 days of treatment. Patients treated with the polyurethane dressing had an average initial VSS score of 5.8 ± 2.29. After 90 days of treatment, this average score was reduced to 0.33 ± 0.66. Positive evolution of scars was also supported by photographs and by a patient questionnaire. CONCLUSIONS Both treatments appear to be safe and effective, objectively, and subjectively, in the context of scar evolution.
Collapse
Affiliation(s)
- David Díaz-Hurtado
- Unidad de Urgencias, Hospital Universitario de Donostia, Osakidetza, San Sebastián, Spain; Instituto de Investigación Sanitaria Biodonostia, Plataforma de Investigación Clínica, San Sebastián, Spain.
| | - María Pilar Etxart-Lasa
- Instituto de Investigación Sanitaria Biodonostia, Plataforma de Investigación Clínica, San Sebastián, Spain
| | - Oihane Izaga-González
- Unidad de Urgencias, Hospital Universitario de Donostia, Osakidetza, San Sebastián, Spain
| | - Leire Lodoso-Gibaja
- Unidad de Urgencias, Hospital Universitario de Donostia, Osakidetza, San Sebastián, Spain
| | | | - Ioana Riaño-Fernández
- Instituto de Investigación Sanitaria Biodonostia, Plataforma de Investigación Clínica, San Sebastián, Spain
| |
Collapse
|
26
|
de Souza A, Santo GE, Amaral GO, Sousa KSJ, Parisi JR, Achilles RB, Ribeiro DA, Renno ACM. Electrospun skin dressings for diabetic wound treatment: a systematic review. J Diabetes Metab Disord 2024; 23:49-71. [PMID: 38932903 PMCID: PMC11196489 DOI: 10.1007/s40200-023-01324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/26/2023] [Indexed: 06/28/2024]
Abstract
Abstract Diabetes mellitus is a metabolic disease characterized by persistent hyperglycemia associated with a lack of insulin production or insulin resistance. In diabetic patients, the capacity for healing is generally decreased, leading to chronic wounds. One of the most common treatments for chronic wounds is skin dressings, which serve as protection from infection, reduce pain levels, and stimulate tissue healing. Furthermore, electrospinning is one of the most effective techniques used for manufacturing skin dressings. Objective The purpose of this study was to perform a systematic review of the literature to examine the effects of electrospun skin dressings from different sources in the process of healing skin wounds using in vivo experiments in diabetic rats. Methods The search was carried out according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), and the Medical Subject Headings (MeSH) descriptors were defined as "wound dressing," "diabetes," "in vivo," and "electrospun." A total of 14 articles were retrieved from PubMed and Scopus databases. Results The results were based mainly on histological analysis and macroscopic evaluation, demonstrating moderate evidence synthesis for all experimental studies, showing a positive effect of electrospun skin dressings for diabetic wound treatment. Conclusion This review confirms the significant benefits of using electrospun skin dressings for skin repair and regeneration. All the inks used were demonstrated to be suitable for dressing manufacturing. Moreover, in vivo findings showed full wound closure in most of the studies, with well-organized dermal and epidermal layers.
Collapse
Affiliation(s)
- Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Giovanna E. Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Gustavo O. Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Karolyne S. J. Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Julia R. Parisi
- Metropolitan University of Santos (UNIMES), 8 Francisco Glicerio Avenue, Santos, SP 11045002 Brazil
| | - Rodrigo B. Achilles
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Daniel A. Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Ana C. M. Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| |
Collapse
|
27
|
Anand K, Sharma R, Sharma N. Recent advancements in natural polymers-based self-healing nano-materials for wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35435. [PMID: 38864664 DOI: 10.1002/jbm.b.35435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The field of wound healing has witnessed remarkable progress in recent years, driven by the pursuit of advanced wound dressings. Traditional dressing materials have limitations like poor biocompatibility, nonbiodegradability, inadequate moisture management, poor breathability, lack of inherent therapeutic properties, and environmental impacts. There is a compelling demand for innovative solutions to transcend the constraints of conventional dressing materials for optimal wound care. In this extensive review, the therapeutic potential of natural polymers as the foundation for the development of self-healing nano-materials, specifically for wound dressing applications, has been elucidated. Natural polymers offer a multitude of advantages, possessing exceptional biocompatibility, biodegradability, and bioactivity. The intricate engineering strategies employed to fabricate these polymers into nanostructures, thereby imparting enhanced mechanical robustness, flexibility, critical for efficacious wound management has been expounded. By harnessing the inherent properties of natural polymers, including chitosan, alginate, collagen, hyaluronic acid, and so on, and integrating the concept of self-healing materials, a comprehensive overview of the cutting-edge research in this emerging field is presented in the review. Furthermore, the inherent self-healing attributes of these materials, wherein they exhibit innate capabilities to autonomously rectify any damage or disruption upon exposure to moisture or body fluids, reducing frequent dressing replacements have also been explored. This review consolidates the existing knowledge landscape, accentuating the benefits and challenges associated with these pioneering materials while concurrently paving the way for future investigations and translational applications in the realm of wound healing.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Rishi Sharma
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
28
|
Khan T, Vadivel G, Ramasamy B, Murugesan G, Sebaey TA. Biodegradable Conducting Polymer-Based Composites for Biomedical Applications-A Review. Polymers (Basel) 2024; 16:1533. [PMID: 38891481 PMCID: PMC11175044 DOI: 10.3390/polym16111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, researchers have increasingly directed their focus toward the biomedical field, driven by the goal of engineering polymer systems that possess a unique combination of both electrical conductivity and biodegradability. This convergence of properties holds significant promise, as it addresses a fundamental requirement for biomedical applications: compatibility with biological environments. These polymer systems are viewed as auspicious biomaterials, precisely because they meet this critical criterion. Beyond their biodegradability, these materials offer a range of advantageous characteristics. Their exceptional processability enables facile fabrication into various forms, and their chemical stability ensures reliability in diverse physiological conditions. Moreover, their low production costs make them economically viable options for large-scale applications. Notably, their intrinsic electrical conductivity further distinguishes them, opening up possibilities for applications that demand such functionality. As the focus of this review, a survey into the use of biodegradable conducting polymers in tissue engineering, biomedical implants, and antibacterial applications is conducted.
Collapse
Affiliation(s)
- Tabrej Khan
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Gayathri Vadivel
- Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| | - Balan Ramasamy
- Department of Physics, Government Arts and Science College, Mettupalayam 641104, Tamil Nadu, India
| | - Gowtham Murugesan
- Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Tamer A. Sebaey
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Sharkia, Egypt
| |
Collapse
|
29
|
Yousefi M, Ghahremanzadeh R, Nejadmoghaddam MR, Samadi FY, Najafzadeh S, Fatideh FM, Mohammadi Z, Minai-Tehrani A. Nanofabrication of chitosan-based dressing to treat the infected wounds: in vitro and in vivo evaluations. Future Sci OA 2024; 10:FSO921. [PMID: 38827799 PMCID: PMC11140651 DOI: 10.2144/fsoa-2023-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/12/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: Here, an innovative kind of antibacterial nanocomposite film is developed by incorporating graphene oxide and zinc oxide into chitosan matrix. Materials & methods: Our dressing was fabricated using the solution casting method. Fourier transform infrared spectra and TGA-DTG clearly confirmed the structure of film dressing. Results & conclusion: Our results showed the tensile strength and elongation at the break of the films were 20.1 ± 0.7 MPa and 36 ± 10%, respectively. Our fabricated film could absorb at least three-times the fluid of its dry weight while being biocompatible, antibacterial, non-irritant and non-allergic. In addition, it accelerated the healing process of infected wounds by regulating epithelium thickness and the number of inflammatory cells, thus it may be useful for direct application to damaged infected wounds.
Collapse
Affiliation(s)
- Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | | | - Fatemeh Yazdi Samadi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | - Somayeh Najafzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | | | - Zohreh Mohammadi
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| |
Collapse
|
30
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
31
|
Youn S, Ki MR, Abdelhamid MAA, Pack SP. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics (Basel) 2024; 9:278. [PMID: 38786488 PMCID: PMC11117890 DOI: 10.3390/biomimetics9050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Biomimetic materials have become a promising alternative in the field of tissue engineering and regenerative medicine to address critical challenges in wound healing and skin regeneration. Skin-mimetic materials have enormous potential to improve wound healing outcomes and enable innovative diagnostic and sensor applications. Human skin, with its complex structure and diverse functions, serves as an excellent model for designing biomaterials. Creating effective wound coverings requires mimicking the unique extracellular matrix composition, mechanical properties, and biochemical cues. Additionally, integrating electronic functionality into these materials presents exciting possibilities for real-time monitoring, diagnostics, and personalized healthcare. This review examines biomimetic skin materials and their role in regenerative wound healing, as well as their integration with electronic skin technologies. It discusses recent advances, challenges, and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung-Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| |
Collapse
|
32
|
Liu Y, Teng J, Huang R, Zhao W, Yang D, Ma Y, Wei H, Chen H, Zhang J, Chen J. Injectable plant-derived polysaccharide hydrogels with intrinsic antioxidant bioactivity accelerate wound healing by promoting epithelialization and angiogenesis. Int J Biol Macromol 2024; 266:131170. [PMID: 38554906 DOI: 10.1016/j.ijbiomac.2024.131170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Skin wound healing is a complex and dynamic process involving hemostasis, inflammatory response, cell proliferation and migration, and angiogenesis. Currently used wound dressings remain unsatisfactory in the clinic due to the lack of adjustable mechanical property for injection operation and bioactivity for accelerating wound healing. In this work, an "all-sugar" hydrogel dressing is developed based on dynamic borate bonding network between the hydroxyl groups of okra polysaccharide (OP) and xyloglucan (XG). Benefiting from the reversible crosslinking network, the resulting composite XG/OP hydrogels exhibited good shear-thinning and fast self-healing properties, which is suitable to be injected at wound beds and filled into irregular injured site. Besides, the proposed XG/OP hydrogels showed efficient antioxidant capacity by scavenging DPPH activity of 73.9 %. In vivo experiments demonstrated that XG/OP hydrogels performed hemostasis and accelerated wound healing with reduced inflammation, enhanced collagen deposition and angiogenesis. This plant-derived dynamic hydrogel offers a facile and effective approach for wound management and has great potential for clinical translation in feature.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, China; Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Jingmei Teng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Rongjian Huang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Wei Zhao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Dan Yang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, China; Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yuxi Ma
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Hua Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Hailan Chen
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004, China.
| | - Jiantao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| |
Collapse
|
33
|
Palani N, Vijayakumar P, Monisha P, Ayyadurai S, Rajadesingu S. Electrospun nanofibers synthesized from polymers incorporated with bioactive compounds for wound healing. J Nanobiotechnology 2024; 22:211. [PMID: 38678271 PMCID: PMC11056076 DOI: 10.1186/s12951-024-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The development of innovative wound dressing materials is crucial for effective wound care. It's an active area of research driven by a better understanding of chronic wound pathogenesis. Addressing wound care properly is a clinical challenge, but there is a growing demand for advancements in this field. The synergy of medicinal plants and nanotechnology offers a promising approach to expedite the healing process for both acute and chronic wounds by facilitating the appropriate progression through various healing phases. Metal nanoparticles play an increasingly pivotal role in promoting efficient wound healing and preventing secondary bacterial infections. Their small size and high surface area facilitate enhanced biological interaction and penetration at the wound site. Specifically designed for topical drug delivery, these nanoparticles enable the sustained release of therapeutic molecules, such as growth factors and antibiotics. This targeted approach ensures optimal cell-to-cell interactions, proliferation, and vascularization, fostering effective and controlled wound healing. Nanoscale scaffolds have significant attention due to their attractive properties, including delivery capacity, high porosity and high surface area. They mimic the Extracellular matrix (ECM) and hence biocompatible. In response to the alarming rise of antibiotic-resistant, biohybrid nanofibrous wound dressings are gradually replacing conventional antibiotic delivery systems. This emerging class of wound dressings comprises biopolymeric nanofibers with inherent antibacterial properties, nature-derived compounds, and biofunctional agents. Nanotechnology, diminutive nanomaterials, nanoscaffolds, nanofibers, and biomaterials are harnessed for targeted drug delivery aimed at wound healing. This review article discusses the effects of nanofibrous scaffolds loaded with nanoparticles on wound healing, including biological (in vivo and in vitro) and mechanical outcomes.
Collapse
Affiliation(s)
- Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Pradeshwaran Vijayakumar
- Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem, 636 016, Tamil Nadu, India
| | - Saravanakumar Ayyadurai
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
34
|
Sanjarnia P, Picchio ML, Polegre Solis AN, Schuhladen K, Fliss PM, Politakos N, Metterhausen L, Calderón M, Osorio-Blanco ER. Bringing innovative wound care polymer materials to the market: Challenges, developments, and new trends. Adv Drug Deliv Rev 2024; 207:115217. [PMID: 38423362 DOI: 10.1016/j.addr.2024.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
The development of innovative products for treating acute and chronic wounds has become a significant topic in healthcare, resulting in numerous products and innovations over time. The growing number of patients with comorbidities and chronic diseases, which may significantly alter, delay, or inhibit normal wound healing, has introduced considerable new challenges into the wound management scenario. Researchers in academia have quickly identified promising solutions, and many advanced wound healing materials have recently been designed; however, their successful translation to the market remains highly complex and unlikely without the contribution of industry experts. This review article condenses the main aspects of wound healing applications that will serve as a practical guide for researchers working in academia and industry devoted to designing, evaluating, validating, and translating polymer wound care materials to the market. The article highlights the current challenges in wound management, describes the state-of-the-art products already on the market and trending polymer materials, describes the regulation pathways for approval, discusses current wound healing models, and offers a perspective on new technologies that could soon reach consumers. We envision that this comprehensive review will significantly contribute to highlighting the importance of networking and exchanges between academia and healthcare companies. Only through the joint of these two actors, where innovation, manufacturing, regulatory insights, and financial resources act in harmony, can wound care products be developed efficiently to reach patients quickly and affordably.
Collapse
Affiliation(s)
- Pegah Sanjarnia
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Matías L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain; Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Agustin N Polegre Solis
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Katharina Schuhladen
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Patricia M Fliss
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Nikolaos Politakos
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Lutz Metterhausen
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ernesto R Osorio-Blanco
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany.
| |
Collapse
|
35
|
Polez RT, Ajiboye MA, Österberg M, Horn MM. Chitosan hydrogels enriched with bioactive phloroglucinol for controlled drug diffusion and potential wound healing. Int J Biol Macromol 2024; 265:130808. [PMID: 38490386 DOI: 10.1016/j.ijbiomac.2024.130808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
We report a facile strategy to prepare chitosan (CS) hydrogels that eliminates the need for chemical crosslinking for advanced biomedical therapies. This approach gives controlled properties to the hydrogels by incorporating a natural bioactive phenolic compound, phloroglucinol (PG), into their microstructure. The adsorption of PG onto CS chains enhanced the hydrogels' antioxidant activity by up to 25 % and resulted in a denser, more entangled structure, reducing the pore size by 59 μm while maintaining porosity above 94 %. This allowed us to finely adjust pore size and swelling capacity. These structural properties make these hydrogels well-suited for wound healing dressings, promoting fibroblast proliferation and exhibiting excellent hemocompatibility. Furthermore, to ensure the versatility of these hydrogels, herein, we demonstrate their potential as drug delivery systems, particularly for dermal infections. The drug release can be controlled by a combination of drug diffusion through the swollen hydrogel and relaxation of the CS chains. In summary, our hydrogels leverage the synergistic effects of CS's antibacterial and antifungal properties with PG's antimicrobial and anti-inflammatory attributes, positioning them as promising candidates for biomedical and pharmaceutical applications, more specifically in advanced wound healing therapies with local drug delivery.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Margaret A Ajiboye
- Physical Chemistry of Nanomaterials, Institute of Chemistry, University of Kassel, 34109 Kassel, Germany
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Marilia M Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry, University of Kassel, 34109 Kassel, Germany.
| |
Collapse
|
36
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
37
|
Xu X, Wang Q, Xu X, Han Q, Nie X, Ding X, Liu X, Li J, Shi Q, Dong H. Unconventional luminescent CS-PEC-based composite hemostasis sponge with antibacterial activity and visual monitoring for wound healing. Int J Biol Macromol 2024; 261:129735. [PMID: 38281531 DOI: 10.1016/j.ijbiomac.2024.129735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Multifunctional wound dressings are promising medical materials for various applications. Among them, dressings with antimicrobial activity, high biosafety, and real-time monitoring have attracted considerable research interest. Herein, a biodegradable hemostatic sponge comprising a chitosan skeleton and polyelectrolyte-surfactant complex (CS-PEC) was developed as a versatile wound dressing for wound pH monitoring and inhibition of bacterial infection. CS-PEC sponge with high porosity exhibited satisfactory fluid absorption capacity and biocompatibility, along with antibacterial properties against E. coli and S. aureus. In vivo experiments in rat liver trauma model revealed that wounds treated with the CS-PEC sponge recorded less blood loss (97.1 mg) and shorter hemostasis time (27.2 s) than those treated with commercial gelatin sponge (309.1 mg and 163.5 s, respectively). Furthermore, PECs based on unconventional luminescent molecules (L-C16-Hyp) were used as pH fluorescent indicators, which endowed the sponge with fluorescence-responsive behavior to wound pH changes in the range of 5.0-8.5. Visual images can be captured using a smartphone and converted to RGB color mode values for on-site assessment of wound status. This study sheds light on the design and application of unconventional luminescent materials in wound dressing and provides a smart and effective solution for wound management.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Qingwu Wang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Xiaodong Xu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaojuan Nie
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Xu Ding
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Xia Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Junqing Li
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Hongxing Dong
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| |
Collapse
|
38
|
Tyubaeva PM, Varyan IA, Nikolskaya ED, Yabbarov NG, Chirkina MV, Sokol MB, Mollaeva MR, Yurina LV, Vasilyeva AD, Rosenfeld MA, Obydennyi SI, Chabin IA, Popov AA. Electrospinning of biomimetic materials with fibrinogen for effective early-stage wound healing. Int J Biol Macromol 2024; 260:129514. [PMID: 38237825 DOI: 10.1016/j.ijbiomac.2024.129514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/01/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Electrospun biomimetic materials based on polyester of natural origin poly-3-hudroxybutyrate (PHB) modified with hemin (Hmi) and fibrinogen (Fbg) represent a great interest and are potentially applicable in various fields. Here, we describe formulation of the new fibrous PHB-Fbg and PHB-Hmi-Fbg materials with complex structure for biomedical application. The average diameter of the fibers was 3.5 μm and 1.8 μm respectively. Hmi presence increased porosity from 80 % to 94 %, significantly reduced the number of defects, ensured the formation of a larger number of open pores, and improved mechanical properties. Hmi presence significantly improved the molding properties of the material. Hmi facilitated effective Fbg adsorption on the of the PHB wound-healing material, ensuring uniform localization of the protein on the surface of the fibers. Next, we evaluated cytocompatibility, cell behavior, and open wound healing in mice. The results demonstrated that PHB-Fbg and PHB-Hmi-Fbg electrospun materials had pronounced properties and may be promising for early-stage wound healing - the PHB-Hmi-Fbg sample accelerated wound closure by 35 % on the 3rd day, and PHB-Hmi showed 45 % more effective wound closure on the 15th day.
Collapse
Affiliation(s)
- Polina M Tyubaeva
- Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation.
| | - Ivetta A Varyan
- Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Elena D Nikolskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Nikita G Yabbarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Margarita V Chirkina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Maria B Sokol
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Mariia R Mollaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Lyubov V Yurina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Alexandra D Vasilyeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Mark A Rosenfeld
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Sergei I Obydennyi
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation; Centre for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russian Federation
| | - Ivan A Chabin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Anatoly A Popov
- Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| |
Collapse
|
39
|
Primous NR, Elvin PT, Carter KV, Andrade HL, La Fontaine J, Shibuya N, Biguetti CC. Bioengineered Skin for Diabetic Foot Ulcers: A Scoping Review. J Clin Med 2024; 13:1221. [PMID: 38592047 PMCID: PMC10932123 DOI: 10.3390/jcm13051221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 04/10/2024] Open
Abstract
Diabetic foot ulcers (DFUs) pose a significant threat to individuals with diabetes mellitus (DM), such as lower limb amputation and severe morbidity. Bioengineered skin substitutes (BSS) are alternatives to traditional interventions for treating DFUs, but their efficacy compared to standard wound care (SWC) or other treatment types, such as allografts, remains unknown. A scoping review of human studies was conducted to identify current approaches in the treatment of DFUs using BSS as compared with other treatment options. Systematic searches in PubMed, Cochrane Library, and Web of Science were conducted to identify comparative studies that enrolled 10 or more patients and evaluated wound healing outcomes (closure, time-to-healing, and area reduction). Database searches isolated articles published from 1 December 2012 to 1 December 2022 and were conducted in accordance with PRISMA-ScR guidelines. The literature search yielded 1312 articles, 24 of which were included for the qualitative analysis. Findings in these studies demonstrated that BSS outperformed SWC in all measured outcomes, suggesting that BSS may be a superior treatment for DFUs. Of the 24 articles, 8 articles compared human amniotic membrane allografts (hAMA) to BSS. Conflicting evidence was observed when comparing BSS and hAMA treatments, highlighting the need for future research.
Collapse
Affiliation(s)
- Nathaniel R. Primous
- Department of Podiatric Medicine, Surgery and Biomechanics, School of Podiatric Medicine, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA; (N.R.P.); (P.T.E.); (H.L.A.); (J.L.F.); (N.S.)
| | - Peter T. Elvin
- Department of Podiatric Medicine, Surgery and Biomechanics, School of Podiatric Medicine, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA; (N.R.P.); (P.T.E.); (H.L.A.); (J.L.F.); (N.S.)
- Department of Biomedical Engineering, University of Texas at Dallas, Dallas, TX 75080, USA
| | - Kathleen V. Carter
- Library, School of Medicine, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA;
| | - Hagner L. Andrade
- Department of Podiatric Medicine, Surgery and Biomechanics, School of Podiatric Medicine, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA; (N.R.P.); (P.T.E.); (H.L.A.); (J.L.F.); (N.S.)
| | - Javier La Fontaine
- Department of Podiatric Medicine, Surgery and Biomechanics, School of Podiatric Medicine, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA; (N.R.P.); (P.T.E.); (H.L.A.); (J.L.F.); (N.S.)
| | - Naohiro Shibuya
- Department of Podiatric Medicine, Surgery and Biomechanics, School of Podiatric Medicine, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA; (N.R.P.); (P.T.E.); (H.L.A.); (J.L.F.); (N.S.)
| | - Claudia C. Biguetti
- Department of Podiatric Medicine, Surgery and Biomechanics, School of Podiatric Medicine, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA; (N.R.P.); (P.T.E.); (H.L.A.); (J.L.F.); (N.S.)
- Department of Biomedical Engineering, University of Texas at Dallas, Dallas, TX 75080, USA
| |
Collapse
|
40
|
Phulmogare G, Rani S, Lodhi S, Patil UK, Sinha S, Ajazuddin, Gupta U. Fucoidan loaded PVA/Dextran blend electrospun nanofibers for the effective wound healing. Int J Pharm 2024; 650:123722. [PMID: 38110012 DOI: 10.1016/j.ijpharm.2023.123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Chronic wounds have become a serious global health issue. In this study, we investigated the effect of increasing fucoidan (FD) concentration on the characteristics of nanofibers and their wound healing potential at in vitro as well as in vivo level. The results showed that increasing FD content (0.25 to 1 %) led to an significant increase in nanofiber diameter (487.7 ± 125.39 to 627.9 ± 149.78 nm), entrapment efficiency (64.26 ± 2.6 to 94.9 ± 3.1 %), and water uptake abilities (436.5 ± 1.2 to 679.7 ± 11.3 %). However, the in vitro biodegradation profile decreased with an increase in FD concentration. Water vapor transmission rate analysis showed that it was within the standard range for all FD concentrations. Nanofibers with 1 % PVA/DX/FD exhibited slow-release behavior, suggesting prolonged FD availability at the wound site. In vivo studies in rats with full-thickness wounds demonstrated that applying 1 % FD-enriched PVA/DEX nanofibers significantly (p < 0.0001) improved mean wound area closure. These findings suggest that FD-enriched nanofibers have immense potential as a wound dressing material in future if explored further.
Collapse
Affiliation(s)
- Ganesh Phulmogare
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Sarita Rani
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Santram Lodhi
- Sri Sathya Sai Institute of Pharmaceutical Sciences, RKDF University, Bhopal, Madhya Pradesh 462033, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Sonal Sinha
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
41
|
Gültekin HE, Yaşayan G, Bal-Öztürk A, Bigham A, Simchi AA, Zarepour A, Iravani S, Zarrabi A. Advancements and applications of upconversion nanoparticles in wound dressings. MATERIALS HORIZONS 2024; 11:363-387. [PMID: 37955196 DOI: 10.1039/d3mh01330h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Wound healing is a complex process that requires effective management to prevent infections and promote efficient tissue regeneration. In recent years, upconversion nanoparticles (UCNPs) have emerged as promising materials for wound dressing applications due to their unique optical properties and potential therapeutic functionalities. These nanoparticles possess enhanced antibacterial properties when functionalized with antibacterial agents, helping to prevent infections, a common complication in wound healing. They can serve as carriers for controlled drug delivery, enabling targeted release of therapeutic agents to the wound site, allowing for tailored treatment and optimal healing conditions. These nanoparticles possess the ability to convert near-infrared (NIR) light into the visible and/or ultraviolet (UV) regions, making them suitable for therapeutic (photothermal therapy and photodynamic therapy) and diagnostic applications. In the context of wound healing, these nanoparticles can be combined with other materials such as hydrogels, fibers, metal-organic frameworks (MOFs), graphene oxide, etc., to enhance the healing process and prevent the growth of microbial infections. Notably, UCNPs can act as sensors for real-time monitoring of the wound healing progress, providing valuable feedback to healthcare professionals. Despite their potential, the use of UCNPs in wound dressing applications faces several challenges. Ensuring the stability and biocompatibility of UCNPs under physiological conditions is crucial for their effective integration into dressings. Comprehensive safety and efficacy evaluations are necessary to understand potential risks and optimize UCNP-based dressings. Scalability and cost-effectiveness of UCNP synthesis and manufacturing processes are important considerations for practical applications. In addition, efficient incorporation of UCNPs into dressings, achieving uniform distribution, poses an important challenge that needs to be addressed. Future research should prioritize addressing concerns regarding stability and biocompatibility, efficient integration into dressings, rigorous safety evaluation, scalability, and cost-effectiveness. The purpose of this review is to critically evaluate the advantages, challenges, and key properties of UCNPs in wound dressing applications to provide insights into their potential as innovative solutions for enhancing wound healing outcomes. We have provided a detailed description of various types of smart wound dressings, focusing on the synthesis and biomedical applications of UCNPs, specifically their utilization in different types of wound dressings.
Collapse
Affiliation(s)
- Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey
| | - Ayça Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010, Istanbul, Turkey
- Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, Istinye University, 34010 Istanbul, Turkey
- Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Abdolreza Arash Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| |
Collapse
|
42
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
43
|
Gounden V, Singh M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024; 10:43. [PMID: 38247766 PMCID: PMC10815795 DOI: 10.3390/gels10010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
The care and rehabilitation of acute and chronic wounds have a significant social and economic impact on patients and global health. This burden is primarily due to the adverse effects of infections, prolonged recovery, and the associated treatment costs. Chronic wounds can be treated with a variety of approaches, which include surgery, negative pressure wound therapy, wound dressings, and hyperbaric oxygen therapy. However, each of these strategies has an array of limitations. The existing dry wound dressings lack functionality in promoting wound healing and exacerbating pain by adhering to the wound. Hydrogels, which are commonly polymer-based and swell in water, have been proposed as potential remedies due to their ability to provide a moist environment that facilitates wound healing. Their unique composition enables them to absorb wound exudates, exhibit shape adaptability, and be modified to incorporate active compounds such as growth factors and antibacterial compounds. This review provides an updated discussion of the leading natural and synthetic hydrogels utilized in wound healing, details the latest advancements in hydrogel technology, and explores alternate approaches in this field. Search engines Scopus, PubMed, Science Direct, and Web of Science were utilized to review the advances in hydrogel applications over the last fifteen years.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
44
|
Vyas G, Karpe S, Gupta K, Lad S, Kaur C, Sharma S, Singh G, Saini S, Kumar R. Threads of hope: Harnessing nanofibres-based treatment strategies for diabetic foot ulcers. J Drug Deliv Sci Technol 2024; 91:105225. [DOI: 10.1016/j.jddst.2023.105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
Jahan I, Ganesan V, Sahu M, Nandave M, Sen S. Adhesivity-tuned bioactive gelatin/gellan hybrid gels drive efficient wound healing. Int J Biol Macromol 2024; 254:127735. [PMID: 37923047 DOI: 10.1016/j.ijbiomac.2023.127735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Gelatin-based hydrogels have been widely used for wound healing applications. However, increase in ligand density and reduction in pore size with increasing gelatin concentration may delay wound healing by limiting cell infiltration. In this study, we address this shortcoming by combining gelatin with gellan-which is super hydrophilic and non-adhesive to cells. We show that UV crosslinked hybrid gels composed of methacrylated gelatin (GelMA) and methacrylated gellan gum (mGG), possess considerably larger pores and improved mechanical properties compared to GelMA gels. Reduced spreading and reduced formation of focal adhesions on hybrid gels combined with lower contractility and faster detachment upon trypsin-induced de-adhesion suggests that hybrid gels are less adhesive than GelMA gels. Gradual release of fibroblast growth factor (FGF) and silver nanoparticles (AgNPs) incorporated in hybrid gels not only boosts cell migration, but also confers anti-bacterial activity against gram-positive and gram-negative bacteria at concentrations nontoxic to cells. Full thickness wound healing in Wistar rats revealed increased granulation tissue formation in hybrid gels, fastest epithelialization and highest collagen deposition in rats treated with FGF entrapped hybrid gels. Together, our results demonstrate how adhesive tuning and incorporation of bioactive factors can be synergistically combined for achieving complete wound healing.
Collapse
Affiliation(s)
- Iffat Jahan
- Dept. of Biosciences & Bioengineering, IIT Bombay, India
| | | | - Megha Sahu
- Dept of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Mukesh Nandave
- Dept of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| | - Shamik Sen
- Dept. of Biosciences & Bioengineering, IIT Bombay, India.
| |
Collapse
|
46
|
Kaur D, Purwar R. Nanotechnological advancement in artificial intelligence for wound care. NANOTECHNOLOGICAL ASPECTS FOR NEXT-GENERATION WOUND MANAGEMENT 2024:281-318. [DOI: 10.1016/b978-0-323-99165-0.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
47
|
Hu Y, Tang H, Xu N, Kang X, Wu W, Shen C, Lin J, Bao Y, Jiang X, Luo Z. Adhesive, Flexible, and Fast Degradable 3D-Printed Wound Dressings with a Simple Composition. Adv Healthc Mater 2024; 13:e2302063. [PMID: 37916920 DOI: 10.1002/adhm.202302063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/15/2023] [Indexed: 11/03/2023]
Abstract
3D printing technology has revolutionized the field of wound dressings, offering tailored solutions with mechanical support to facilitate wound closure. In addition to personalization, the intricate nature of the wound healing process requires wound dressing materials with diverse properties, such as moisturization, flexibility, adhesion, anti-oxidation and degradability. Unfortunately, current materials used in digital light processing (DLP) 3D printing have been inadequate in meeting these crucial criteria. This study introduces a novel DLP resin that is biocompatible and consists of only three commonly employed non-toxic compounds in biomaterials, that is, dopamine, poly(ethylene glycol) diacrylate, and N-vinylpyrrolidone. Simple as it is, this material system fulfills all essential functions for effective wound healing. Unlike most DLP resins that are non-degradable and rigid, this material exhibits tunable and rapid degradation kinetics, allowing for complete hydrolysis within a few hours. Furthermore, the high flexibility enables conformal application of complex dressings in challenging areas such as finger joints. Using a difficult-to-heal wound model, the manifold positive effects on wound healing in vivo, including granulation tissue formation, inflammation regulation, and vascularization are substantiated. The simplicity and versatility of this material make it a promising option for personalized wound care, holding significant potential for future translation.
Collapse
Affiliation(s)
- Yu Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Hao Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Nan Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaowo Kang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chuhan Shen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Junsheng Lin
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yinyin Bao
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
48
|
Kumari J, Hammink R, Baaij J, Wagener FADTG, Kouwer PHJ. Antifibrotic properties of hyaluronic acid crosslinked polyisocyanide hydrogels. BIOMATERIALS ADVANCES 2024; 156:213705. [PMID: 38006784 DOI: 10.1016/j.bioadv.2023.213705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Fibrosis is characterized by the formation of fibrous connective tissue in response to primary injury. As a result, an affected organ may lose part of its functionality due to chronic, organ-specific tissue damage. Since fibrosis is a leading cause of death worldwide, targeting fibrotic diseases with antifibrotic hydrogels can be a lifesaving therapeutic strategy. This study developed a novel hybrid antifibrotic hydrogel by combining the synthetic polyisocyanide (PIC) with hyaluronic acid (HA). Gels of PIC are highly tailorable, thermosensitive, and strongly biomimetic in architecture and mechanical properties, whereas HA is known to promote non-fibrotic fetal wound healing and inhibits inflammatory signaling. The developed HA-PIC hybrids were biocompatible with physical properties comparable to those of the PIC gels. The antifibrotic nature of the gels was assessed by 3D cultures of human foreskin fibroblasts in the presence (or absence as control) of TGFβ1 that promotes differentiation into myofibroblasts, a critical step in fibrosis. Proliferation and macroscopic contraction assays and studies on the formation of stress fibers and characteristic fibrosis markers all indicate a strong antifibrotic nature of HA-PIC hydrogel. We showed that these effects originate from both the lightly crosslinked architecture and the presence of HA itself. The hybrid displaying both these effects shows the strongest antifibrotic nature and is a promising candidate for use as in vivo treatment for skin fibrosis.
Collapse
Affiliation(s)
- Jyoti Kumari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, the Netherlands
| | - Roel Hammink
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jochem Baaij
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, the Netherlands.
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
49
|
Ijaz F, Tahir HM, Ali S, Ali A, Khan HA, Muzamil A, Manzoor HH, Qayyum KA. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127362. [PMID: 37827396 DOI: 10.1016/j.ijbiomac.2023.127362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The need for biocompatible drug carriers has been significantly increased from the past few years. Researchers show great interest in the development of more versatile and sophisticated biomaterials based drug carriers. Hydrogels are beneficial drug carriers and easily release the controlled amount of drug at target site due to its tunable structure. The hydrogels made-up of potent biological macromolecules including collagen, gelatin, fibrin, elastin, fibroin, chitosan, starch, alginate, agarose and carrageenan have been proven as versatile biomaterials. These are three-dimensional polymeric networks, synthesized by crosslinking of hydrophilic polymers. The biological macromolecules based hydrogels containing therapeutic substances are used in a wide range of biomedical applications including wound healing, tissue engineering, cosmetics and contact lenses. However, many aspects related to hydrogels such as the mechanism of cross-linking and molecular entanglement are not clear. So, there is a need to do more research and exploration toward the extensive and cost-effective use of hydrogels. The present review article elaborately discusses the biomolecules based hydrogels and their possible biomedical applications in different fields.
Collapse
Affiliation(s)
- Fatima Ijaz
- Department of Zoology, Government College University Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University Lahore, Pakistan.
| | | | - Ayesha Muzamil
- Department of Zoology, Government College University Lahore, Pakistan
| | | | | |
Collapse
|
50
|
Chelminiak-Dudkiewicz D, Machacek M, Dlugaszewska J, Wujak M, Smolarkiewicz-Wyczachowski A, Bocian S, Mylkie K, Goslinski T, Marszall MP, Ziegler-Borowska M. Fabrication and characterization of new levan@CBD biocomposite sponges as potential materials in natural, non-toxic wound dressing applications. Int J Biol Macromol 2023; 253:126933. [PMID: 37722631 DOI: 10.1016/j.ijbiomac.2023.126933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Wound healing is a complex process; therefore, new dressings are frequently required to facilitate it. In this study, porous bacterial levan-based sponges containing cannabis oil (Lev@CBDs) were prepared and fully characterized. The sponges exhibited a suitable swelling ratio, proper water vapor transmission rate, sufficient thermal stability, desired mechanical properties, and good antioxidant and anti-inflammatory properties. The obtained Lev@CBD materials were evaluated in terms of their interaction with proteins, human serum albumin and fibrinogen, of which fibrinogen revealed the highest binding effect. Moreover, the obtained biomaterials exhibited antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, as well as being non-hemolytic material as indicated by hemolysis tests. Furthermore, the sponges were non-toxic and compatible with L929 mouse fibroblasts and HDF cells. Most significantly, the levan sponge with the highest content of cannabis oil, in comparison to others, retained its non-hemolytic, anti-inflammatory, and antimicrobial properties after prolonged storage in a climate chamber at a constant temperature and relative humidity. The designed sponges have conclusively proven their beneficial physicochemical properties and, at the preliminary stage, biocompatibility as well, and therefore can be considered a promising material for wound dressings in future in vivo applications.
Collapse
Affiliation(s)
- Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Akademika Heyrovskeho 1203, 500-05 Hradec Kralove, Czech Republic
| | - Jolanta Dlugaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Magdalena Wujak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Aleksander Smolarkiewicz-Wyczachowski
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Szymon Bocian
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Kinga Mylkie
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - T Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 10, 60-780 Poznan, Poland
| | - Michal P Marszall
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| |
Collapse
|