1
|
Fradot V, Augustin S, Fontaine V, Marazova K, Guillonneau X, Sahel JA, Picaud S. Rodent Models of Retinal Degeneration: From Purified Cells in Culture to Living Animals. Cold Spring Harb Perspect Med 2024; 14:a041311. [PMID: 37848250 PMCID: PMC11444255 DOI: 10.1101/cshperspect.a041311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Rodent models of retinal degeneration are essential for the development of therapeutic strategies. In addition to living animal models, we here also discuss models based on rodent cell cultures, such as purified retinal ganglion cells and retinal explants. These ex vivo models extend the possibilities for investigating pathological mechanisms and assessing the neuroprotective effect of pharmacological agents by eliminating questions on drug pharmacokinetics and bioavailability. The number of living rodent models has greatly increased with the possibilities to achieve transgenic modifications in animals for knocking in and out genes and mutations. The Cre-lox system has further enabled investigators to target specific genes or mutations in specific cells at specific stages. However, chemically or physically induced models can provide alternatives to such targeted gene modifications. The increased diversity of rodent models has widened our possibility to address most ocular pathologies for providing initial proof of concept of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Valérie Fradot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Katia Marazova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - José A Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| |
Collapse
|
2
|
Hu JL, Hsu CC, Hsiao YJ, Lin YY, Lai WY, Liu YH, Wang CL, Ko YL, Tsai ML, Tseng HC, Chien Y, Yang YP. Leber's hereditary optic neuropathy: Update on the novel genes and therapeutic options. J Chin Med Assoc 2024; 87:12-16. [PMID: 38016117 DOI: 10.1097/jcma.0000000000001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
A maternal inheritance disorder called Leber's hereditary optic neuropathy (LHON) is the most common primary mitochondrial deoxyribonucleic acid (DNA) disorder. In most studies, there are more male patients than female patients, which contradicts the usual pattern in mitochondrial hereditary diseases. This suggests that nuclear DNA (nDNA) may influence the degeneration of retinal ganglion cells (RGCs) in LHON. The primary cause of this is dysfunction in complex I of the electron transport chain, leading to ineffective adenosine triphosphate (ATP) production. In addition to MT-ND4 or MT-ND1 mutations, genes such as PRICKLE3 , YARS2 , and DNAJC30 , which come from nDNA, also play a role in LHON. These three genes affect the electron chain transport differently. PRICKLE3 interacts with ATP synthase (complex V) at Xp11.23, while YARS2 is a tyrosyl-tRNA synthetase 2 involved in mitochondria . DNAJC30 mutations result in autosomal recessive LHON (arLHON). Understanding how genes impact the disease is crucial for developing new treatments. Idebenone has been approved for treating LHON and has shown safety and efficacy in clinical trials. Mesenchymal stem cell-based therapy has also emerged as a potential treatment for LHON by transferring mitochondria into target cells. Gene therapy research focuses on specific gene mutations, and the wild-type ND4 gene target in the adeno-associated viruses (AAV) vector has shown promise in clinical trials as a potential treatment for LHON.
Collapse
Affiliation(s)
- Jui-Lin Hu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Jer Hsiao
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Long Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Huan-Chin Tseng
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yueh Chien
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Chou TH, Hao Z, Alba D, Lazo A, Gallo Afflitto G, Eastwood JD, Porciatti V, Guy J, Yu H. Mitochondrially Targeted Gene Therapy Rescues Visual Loss in a Mouse Model of Leber's Hereditary Optic Neuropathy. Int J Mol Sci 2023; 24:17068. [PMID: 38069388 PMCID: PMC10707051 DOI: 10.3390/ijms242317068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a common mitochondrial genetic disease, causing irreversible blindness in young individuals. Current treatments are inadequate, and there is no definitive cure. This study evaluates the effectiveness of delivering wildtype human NADH ubiquinone oxidoreductase subunit 4 (hND4) gene using mito-targeted AAV(MTSAAV) to rescue LHOH mice. We observed a declining pattern in electroretinograms amplitudes as mice aged across all groups (p < 0.001), with significant differences among groups (p = 0.023; Control vs. LHON, p = 0.008; Control vs. Rescue, p = 0.228). Inner retinal thickness and intraocular pressure did not change significantly with age or groups. Compared to LHON mice, those rescued with wildtype hND4 exhibited improved retinal visual acuity (0.29 ± 0.1 cy/deg vs. 0.15 ± 0.1 cy/deg) and increased functional hyperemia response (effect of flicker, p < 0.001, effect of Group, p = 0.004; Interaction Flicker × Group, p < 0.001). Postmortem analysis shows a marked reduction in retinal ganglion cell density in the LHON group compared to the other groups (Effect of Group, p < 0.001, Control vs. LHON, p < 0.001, Control vs. Rescue, p = 0.106). These results suggest that MTSAAV-delivered wildtype hND4 gene rescues, at least in part, visual impairment in an LHON mouse model and has the therapeutic potential to treat this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (T.-H.C.); (Z.H.); (D.A.); (A.L.); (G.G.A.); (J.D.E.); (J.G.)
| | | | - Hong Yu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (T.-H.C.); (Z.H.); (D.A.); (A.L.); (G.G.A.); (J.D.E.); (J.G.)
| |
Collapse
|
4
|
Nieto-Panqueva F, Rubalcava-Gracia D, Hamel PP, González-Halphen D. The constraints of allotopic expression. Mitochondrion 2023; 73:30-50. [PMID: 37739243 DOI: 10.1016/j.mito.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Allotopic expression is the functional transfer of an organellar gene to the nucleus, followed by synthesis of the gene product in the cytosol and import into the appropriate organellar sub compartment. Here, we focus on mitochondrial genes encoding OXPHOS subunits that were naturally transferred to the nucleus, and critically review experimental evidence that claim their allotopic expression. We emphasize aspects that may have been overlooked before, i.e., when modifying a mitochondrial gene for allotopic expression━besides adapting the codon usage and including sequences encoding mitochondrial targeting signals━three additional constraints should be considered: (i) the average apparent free energy of membrane insertion (μΔGapp) of the transmembrane stretches (TMS) in proteins earmarked for the inner mitochondrial membrane, (ii) the final, functional topology attained by each membrane-bound OXPHOS subunit; and (iii) the defined mechanism by which the protein translocator TIM23 sorts cytosol-synthesized precursors. The mechanistic constraints imposed by TIM23 dictate the operation of two pathways through which alpha-helices in TMS are sorted, that eventually determine the final topology of membrane proteins. We used the biological hydrophobicity scale to assign an average apparent free energy of membrane insertion (μΔGapp) and a "traffic light" color code to all TMS of OXPHOS membrane proteins, thereby predicting which are more likely to be internalized into mitochondria if allotopically produced. We propose that the design of proteins for allotopic expression must make allowance for μΔGapp maximization of highly hydrophobic TMS in polypeptides whose corresponding genes have not been transferred to the nucleus in some organisms.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico; Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA; Vellore Institute of Technology (VIT), School of BioScience and Technology, Vellore, Tamil Nadu, India
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Sobh M, Lagali PS, Ghiasi M, Montroy J, Dollin M, Hurley B, Leonard BC, Dimopoulos I, Lafreniere M, Fergusson DA, Lalu MM, Tsilfidis C. Safety and Efficacy of Adeno-Associated Viral Gene Therapy in Patients With Retinal Degeneration: A Systematic Review and Meta-Analysis. Transl Vis Sci Technol 2023; 12:24. [PMID: 37982768 PMCID: PMC10668613 DOI: 10.1167/tvst.12.11.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/18/2023] [Indexed: 11/21/2023] Open
Abstract
Purpose This systematic review evaluates the safety and efficacy of ocular gene therapy using adeno-associated virus (AAV). Methods MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov were searched systematically for controlled or non-controlled interventional gene therapy studies using key words related to retinal diseases, gene therapy, and AAV vectors. The primary outcome measure was safety, based on ocular severe adverse events (SAEs). Secondary outcome measures evaluated efficacy of the therapy based on best corrected visual acuity (BCVA) and improvements in visual sensitivity and systemic involvement following ocular delivery. Pooling was done using a DerSimonian Laird random effects model. Risk of bias was assessed using the Cochrane Risk of Bias Tool, version 1. Results Our search identified 3548 records. Of these, 80 publications met eligibility criteria, representing 28 registered clinical trials and 5 postmarket surveillance studies involving AAV gene therapy for Leber congenital amaurosis (LCA), choroideremia, Leber hereditary optic neuropathy (LHON), age-related macular degeneration (AMD), retinitis pigmentosa (RP), X-linked retinoschisis, and achromatopsia. Overall, AAV therapy vectors were associated with a cumulative incidence of at least one SAE of 8% (95% confidence intervals [CIs] of 5% to 12%). SAEs were often associated with the surgical procedure rather than the therapeutic vector itself. Poor or inconsistent reporting of adverse events (AEs) were a limitation for the meta-analysis. The proportion of patients with any improvement in BCVA and visual sensitivity was 41% (95% CIs of 31% to 51%) and 51% (95% CIs of 31% to 70%), respectively. Systemic immune involvement was associated with a cumulative incidence of 31% (95% CI = 21% to 42%). Conclusions AAV gene therapy vectors appear to be safe but the surgical procedure required to deliver them is associated with some risk. The large variability in efficacy can be attributed to the small number of patients treated, the heterogeneity of the population and the variability in dosage, volume, and follow-up. Translational Relevance This systematic review will help to inform and guide future clinical trials.
Collapse
Affiliation(s)
- Mohamad Sobh
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Pamela S. Lagali
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maryam Ghiasi
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael Dollin
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Bernard Hurley
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Brian C. Leonard
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ioannis Dimopoulos
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Mackenzie Lafreniere
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean A. Fergusson
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Departments of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Catherine Tsilfidis
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Current and Future Landscape in Genetic Therapies for Leber Hereditary Optic Neuropathy. Cells 2023; 12:2013. [PMID: 37566092 PMCID: PMC10416882 DOI: 10.3390/cells12152013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial genetic disease that causes blindness in young adults. Over 50 inherited mitochondrial DNA (mtDNA) variations are associated with LHON; however, more than 95% of cases are caused by one of three missense variations (m.11778 G > A, m.3460 G > A, and m.14484 T > C) encoding for subunits ND4, ND1, and ND6 of the respiration complex I, respectively. These variants remain silent until further and currently poorly understood genetic and environmental factors precipitate the visual loss. The clinical course that ensues is variable, and a convincing treatment for LHON has yet to emerge. In 2015, an antioxidant idebenone (Raxone) received European marketing authorisation to treat visual impairment in patients with LHON, and since then it was introduced into clinical practice in several European countries. Alternative therapeutic strategies, including gene therapy and gene editing, antioxidant and neurotrophic agents, mitochondrial biogenesis, mitochondrial replacement, and stem cell therapies are being investigated in how effective they might be in altering the course of the disease. Allotopic gene therapies are in the most advanced stage of development (phase III clinical trials) whilst most other agents are in phase I or II trials or at pre-clinical stages. This manuscript discusses the phenotype and genotype of the LHON disease with complexities and peculiarities such as incomplete penetrance and gender bias, which have challenged the therapies in development emphasising the most recent use of gene therapy. Furthermore, we review the latest results of the three clinical trials based on adeno-associated viral (AAV) vector-mediated delivery of NADH dehydrogenase subunit 4 (ND4) with mitochondrial targeting sequence, highlighting the differences in the vector design and the rationale behind their use in the allotopic transfer.
Collapse
Affiliation(s)
- Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
7
|
McGrady NR, Boal AM, Risner ML, Taiel M, Sahel JA, Calkins DJ. Ocular stress enhances contralateral transfer of lenadogene nolparvovec gene therapy through astrocyte networks. Mol Ther 2023; 31:2005-2013. [PMID: 37016579 PMCID: PMC10362393 DOI: 10.1016/j.ymthe.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/10/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Lenadogene nolparvovec (GS010) was developed to treat a point mutation in mitochondrial ND4 that causes Leber hereditary optic neuropathy. GS010 delivers human cDNA encoding wild-type ND4 packaged into an rAAV2/2 vector that transduces retinal ganglion cells, to induce allotopic expression of hybrid mitochondrial ND4. GS010 clinical trials improved best-corrected visual acuity (BCVA) up to 5 years after treatment. Interestingly, unilateral treatment improved BCVA bilaterally. Subsequent studies revealed GS010 DNA in visual tissues contralateral to the injected eye, suggesting migration. Here we tested whether unilateral intraocular pressure (IOP) elevation could influence the transfer of viral ND4 RNA in contralateral tissues after GS010 delivery to the IOP-elevated eye and probed a potential mechanism mediating translocation in mice. We found IOP elevation enhanced viral ND4 RNA transcripts in contralateral visual tissues, including retinas. Using conditional transgenic mice, we depleted astrocytic gap junction connexin 43 (Cx43), required for distant redistribution of metabolic resources between astrocytes during stress. After unilateral IOP elevation and GS010 injection, Cx43 knockdown eradicated ND4 RNA transcript detection in contralateral retinal tissues, while transcript was still detectable in optic nerves. Overall, our study indicates long-range migration of GS010 product to contralateral visual tissues is enhanced by Cx43-linked astrocyte networks.
Collapse
Affiliation(s)
- Nolan R McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew M Boal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael L Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Jose A Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Fondation Ophtalmologique A. de Rothschild, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; CHNO des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC, Paris, France
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
García-López C, García-López V, Matamoros JA, Fernández-Albarral JA, Salobrar-García E, de Hoz R, López-Cuenca I, Sánchez-Puebla L, Ramírez JM, Ramírez AI, Salazar JJ. The Role of Citicoline and Coenzyme Q10 in Retinal Pathology. Int J Mol Sci 2023; 24:5072. [PMID: 36982157 PMCID: PMC10049438 DOI: 10.3390/ijms24065072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Ocular neurodegenerative diseases such as glaucoma, diabetic retinopathy, and age-related macular degeneration are common retinal diseases responsible for most of the blindness causes in the working-age and elderly populations in developed countries. Many of the current treatments used in these pathologies fail to stop or slow the progression of the disease. Therefore, other types of treatments with neuroprotective characteristics may be necessary to allow a more satisfactory management of the disease. Citicoline and coenzyme Q10 are molecules that have neuroprotective, antioxidant, and anti-inflammatory properties, and their use could have a beneficial effect in ocular neurodegenerative pathologies. This review provides a compilation, mainly from the last 10 years, of the main studies that have been published on the use of these drugs in these neurodegenerative diseases of the retina, analyzing the usefulness of these drugs in these pathologies.
Collapse
Affiliation(s)
- Claudia García-López
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Verónica García-López
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José A. Matamoros
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - José A. Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Medicina, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| |
Collapse
|
9
|
Newman NJ, Yu-Wai-Man P, Biousse V, Carelli V. Understanding the molecular basis and pathogenesis of hereditary optic neuropathies: towards improved diagnosis and management. Lancet Neurol 2023; 22:172-188. [PMID: 36155660 DOI: 10.1016/s1474-4422(22)00174-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023]
Abstract
Hereditary optic neuropathies result from defects in the human genome, both nuclear and mitochondrial. The two main and most recognised phenotypes are dominant optic atrophy and Leber hereditary optic neuropathy. Advances in modern molecular diagnosis have expanded our knowledge of genotypes and phenotypes of inherited disorders that affect the optic nerve, either alone or in combination, with various forms of neurological and systemic degeneration. A unifying feature in the pathophysiology of these disorders appears to involve mitochondrial dysfunction, suggesting that the retinal ganglion cells and their axons are especially susceptible to perturbations in mitochondrial homoeostasis. As we better understand the pathogenesis behind these genetic diseases, aetiologically targeted therapies are emerging and entering into clinical trials, including treatments aimed at halting the cascade of neurodegeneration, replacing or editing the defective genes or their protein products, and potentially regenerating damaged optic nerves, as well as preventing generational disease transmission.
Collapse
MESH Headings
- Humans
- Optic Nerve Diseases/diagnosis
- Optic Nerve Diseases/genetics
- Optic Nerve Diseases/therapy
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Atrophy, Autosomal Dominant/diagnosis
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Nerve
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- DNA, Mitochondrial/genetics
Collapse
Affiliation(s)
- Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Valérie Biousse
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Carelli V, Newman NJ, Yu-Wai-Man P, Biousse V, Moster ML, Subramanian PS, Vignal-Clermont C, Wang AG, Donahue SP, Leroy BP, Sergott RC, Klopstock T, Sadun AA, Rebolleda Fernández G, Chwalisz BK, Banik R, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA. Indirect Comparison of Lenadogene Nolparvovec Gene Therapy Versus Natural History in Patients with Leber Hereditary Optic Neuropathy Carrying the m.11778G>A MT-ND4 Mutation. Ophthalmol Ther 2023; 12:401-429. [PMID: 36449262 PMCID: PMC9834474 DOI: 10.1007/s40123-022-00611-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Lenadogene nolparvovec is a promising novel gene therapy for patients with Leber hereditary optic neuropathy (LHON) carrying the m.11778G>A ND4 mutation (MT-ND4). A previous pooled analysis of phase 3 studies showed an improvement in visual acuity of patients injected with lenadogene nolparvovec compared to natural history. Here, we report updated results by incorporating data from the latest phase 3 trial REFLECT in the pool, increasing the number of treated patients from 76 to 174. METHODS The visual acuity of 174 MT-ND4-carrying patients with LHON injected in one or both eyes with lenadogene nolparvovec from four pooled phase 3 studies (REVERSE, RESCUE and their long-term extension trial RESTORE; and REFLECT trial) was compared to the spontaneous evolution of an external control group of 208 matched patients from 11 natural history studies. RESULTS Treated patients showed a clinically relevant and sustained improvement in their visual acuity when compared to natural history. Mean improvement versus natural history was - 0.30 logMAR (+ 15 ETDRS letters equivalent) at last observation (P < 0.01) with a maximal follow-up of 3.9 years after injection. Most treated eyes were on-chart as compared to less than half of natural history eyes at 48 months after vision loss (89.6% versus 48.1%; P < 0.01) and at last observation (76.1% versus 44.4%; P < 0.01). When we adjusted for covariates of interest (gender, age of onset, ethnicity, and duration of follow-up), the estimated mean gain was - 0.43 logMAR (+ 21.5 ETDRS letters equivalent) versus natural history at last observation (P < 0.0001). Treatment effect was consistent across all phase 3 clinical trials. Analyses from REFLECT suggest a larger treatment effect in patients receiving bilateral injection compared to unilateral injection. CONCLUSION The efficacy of lenadogene nolparvovec in improving visual acuity in MT-ND4 LHON was confirmed in a large cohort of patients, compared to the spontaneous natural history decline. Bilateral injection of gene therapy may offer added benefits over unilateral injection. TRIAL REGISTRATION NUMBERS NCT02652780 (REVERSE); NCT02652767 (RESCUE); NCT03406104 (RESTORE); NCT03293524 (REFLECT); NCT03295071 (REALITY).
Collapse
Affiliation(s)
- Valerio Carelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Via Altura, 3, 40139, Bologna, BO, Italy.
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Patrick Yu-Wai-Man
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Valerie Biousse
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark L Moster
- Department of Neurology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
- Department of Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
| | - Prem S Subramanian
- Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Catherine Vignal-Clermont
- Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France
- Centre d'Investigation Clinique, Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sean P Donahue
- Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Bart P Leroy
- Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Robert C Sergott
- Department of Neurology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
- Department of Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alfredo A Sadun
- David Geffen, Doheny Eye Institute, School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Bart K Chwalisz
- Department of Ophthalmology, Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA
| | - Rudrani Banik
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean François Girmens
- Centre d'Investigation Clinique, Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France
| | - Chiara La Morgia
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Via Altura, 3, 40139, Bologna, BO, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Adam A DeBusk
- Department of Neurology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
- Department of Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
| | - Neringa Jurkute
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Department of Neuro-Ophthalmology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Rustum Karanjia
- David Geffen, Doheny Eye Institute, School of Medicine, University of California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Ottawa Eye, Ottawa, ON, Canada
| | - Constant Josse
- eXYSTAT, Data Management and Statistic, Malakoff, France
| | | | | | | | | | - José-Alain Sahel
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
- Rothschild Foundation Hospital, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France
| |
Collapse
|
11
|
Vignal-Clermont C, Yu-Wai-Man P, Newman NJ, Carelli V, Moster ML, Biousse V, Subramanian PS, Wang AG, Donahue SP, Leroy BP, Sadun AA, Klopstock T, Sergott RC, Fernandez R, Chwalisz BK, Banik R, Taiel M, Roux M, Sahel JA. Safety of Lenadogene Nolparvovec Gene Therapy Over 5 Years in 189 Patients With Leber Hereditary Optic Neuropathy. Am J Ophthalmol 2022; 249:108-125. [PMID: 36496192 DOI: 10.1016/j.ajo.2022.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the safety profile of lenadogene nolparvovec (Lumevoq) in patients with Leber hereditary optic neuropathy. DESIGN Pooled analysis of safety data from 5 clinical studies. METHODS A total of 189 patients received single unilateral or bilateral intravitreal injections of a recombinant adeno-associated virus 2 (rAAV2/2) vector encoding the human wild-type ND4 gene. Adverse events (AEs) were collected throughout the studies, up to 5 years. Intraocular inflammation and increased intraocular pressure (IOP) were ocular AEs of special interest. Other assessments included ocular examinations, vector bio-dissemination, and systemic immune responses against rAAV2/2. RESULTS Almost all patients (95.2%) received 9 × 1010 viral genomes and 87.8% had at least 2 years of follow-up. Most patients (75.1%) experienced at least one systemic AE, but systemic treatment-related AEs occurred in 3 patients; none were serious. Intraocular inflammation was reported in 75.6% of lenadogene nolparvovec-treated eyes. Almost all intraocular inflammations occurred in the anterior chamber (58.8%) or in the vitreous (40.3%), and were of mild (90.3%) or moderate (8.8%) intensity; most resolved with topical corticosteroids alone. All IOP increases were mild to moderate in intensity. No AE led to study discontinuation. Bio-dissemination of lenadogene nolparvovec and systemic immune response were limited. The safety profile was comparable for patients treated bilaterally and unilaterally. CONCLUSIONS Lenadogene nolparvovec had a good overall safety profile with excellent systemic tolerability, consistent with limited bio-dissemination. The product was well tolerated, with mostly mild ocular side effects responsive to conventional ophthalmologic treatments.
Collapse
Affiliation(s)
- Catherine Vignal-Clermont
- From Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France (C.V-C.); Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France (C.V-C.).
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK (P.Y-W-M.); Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK (P.Y-W-M.); UCL Institute of Ophthalmology, University College London, London, UK (P.Y-W-M.); Moorfields Eye Hospital, London, UK
| | - Nancy J Newman
- Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA (P.Y-W-M.)
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy (V.C.); Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (V.C.)
| | - Mark L Moster
- Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA (M.L.M.)
| | - Valerie Biousse
- Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA (P.Y-W-M.)
| | - Prem S Subramanian
- Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA (P.S.S.)
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei, Taiwan (A-G.W.)
| | - Sean P Donahue
- Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA (S.P.D.)
| | - Bart P Leroy
- Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital, and Department of Head & Skin, Ghent University, Ghent, Belgium (B.P.L.)
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA (A.A.S.); Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA (A.A.S.)
| | - Thomas Klopstock
- Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany (T.K.); German Center for Neurodegenerative Diseases (DZNE), Munich, Germany (T.K.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (T.K.)
| | - Robert C Sergott
- Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA (M.L.M.)
| | | | - Bart K Chwalisz
- Department of Ophthalmology, Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA (B.K.C.); Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston MA, USA (B.K.C.)
| | - Rudrani Banik
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA (R.B.)
| | | | - Michel Roux
- GenSight Biologics, Paris, France (M.T., M.R.)
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France (J-A.S.); Rothschild Foundation Hospital, Paris, France (J-A.S.); Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (J-A.S.); Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC, Paris, France (J-A.S.)
| | | |
Collapse
|
12
|
Chen BS, Yu-Wai-Man P, Newman NJ. Developments in the Treatment of Leber Hereditary Optic Neuropathy. Curr Neurol Neurosci Rep 2022; 22:881-892. [PMID: 36414808 PMCID: PMC9750907 DOI: 10.1007/s11910-022-01246-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
PURPOSEOF REVIEW To outline the current landscape of treatments for Leber hereditary optic neuropathy (LHON) along the therapeutic delivery pipeline, exploring the mechanisms of action and evidence for these therapeutic approaches. RECENT FINDINGS Treatments for LHON can be broadly classified as either mutation-specific or mutation-independent. Mutation-specific therapies aim to correct the underlying mutation through the use of a gene-editing platform or replace the faulty mitochondrial DNA-encoded protein by delivering the wild-type gene using a suitable vector. Recent gene therapy clinical trials assessing the efficacy of allotopically expressed MT-ND4 for the treatment of LHON due to the m.11778G > A mutation in MT-ND4 have shown positive results when treated within 12 months of symptom onset. Mutation-independent therapies can have various downstream targets that aim to improve mitochondrial respiration, reduce mitochondrial stress, inhibit or delay retinal ganglion cell apoptosis, and/or promote retinal ganglion cell survival. Idebenone, a synthetic hydrosoluble analogue of co-enzyme Q10 (ubiquinone), is the only approved treatment for LHON. Mutation-independent approaches to gene therapy under pre-clinical investigation for other neurodegenerative disorders may have the potential to benefit patients with LHON. Although approved treatments are presently limited, innovations in gene therapy and editing are driving the expansion of the therapeutic delivery pipeline for LHON.
Collapse
Affiliation(s)
- Benson S Chen
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK.
| | - Patrick Yu-Wai-Man
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Newman NJ, Yu-Wai-Man P, Subramanian PS, Moster ML, Wang AG, Donahue SP, Leroy BP, Carelli V, Biousse V, Vignal-Clermont C, Sergott RC, Sadun AA, Fernández GR, Chwalisz BK, Banik R, Bazin F, Roux M, Cox ED, Taiel M, Sahel JA. Randomized trial of bilateral gene therapy injection for m.11778G > A MT-ND4 Leber optic neuropathy. Brain 2022; 146:1328-1341. [PMID: 36350566 PMCID: PMC10115230 DOI: 10.1093/brain/awac421] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is an important example of mitochondrial blindness with the m.11778G > A mutation in the MT-ND4 gene being the most common disease-causing mitochondrial DNA (mtDNA) variant worldwide. The REFLECT phase 3 pivotal study is a randomized, double-masked, placebo-controlled trial investigating the efficacy and safety of bilateral intravitreal injection of lenadogene nolparvovec in patients with a confirmed m.11778G > A mutation, using a recombinant adeno-associated virus vector 2, serotype 2 (rAAV2/2-ND4). The first-affected eye received gene therapy; the fellow (affected/not-yet-affected) eye was randomly injected with gene therapy or placebo. The primary endpoint was the difference in change from baseline of best-corrected visual acuity (BCVA) in second-affected/not-yet-affected eyes treated with lenadogene nolparvovec versus placebo at 1.5 years post-treatment, expressed in logarithm of the minimal angle of resolution (LogMAR). Forty-eight patients were treated bilaterally and 50 unilaterally. At 1.5 years, the change from baseline in BCVA was not statistically different between second-affected/not-yet-affected eyes receiving lenadogene nolparvovec and placebo (primary endpoint). A statistically significant improvement in BCVA was reported from baseline to 1.5 years in lenadogene nolparvovec-treated eyes: -0.23 LogMAR for the first-affected eyes of bilaterally treated patients (p < 0.01); and -0.15 LogMAR for second-affected/not-yet-affected eyes of bilaterally treated patients and the first-affected eyes of unilaterally treated patients (p < 0.05). The mean improvement in BCVA from nadir to 1.5 years was -0.38 (0.052) LogMAR and -0.33 (0.052) LogMAR in first-affected and second-affected/not-yet-affected eyes treated with lenadogene nolparvovec, respectively (bilateral treatment group). A mean improvement of -0.33 (0.051) LogMAR and -0.26 (0.051) LogMAR was observed in first-affected lenadogene nolparvovec-treated eyes and second-affected/not-yet-affected placebo-treated eyes, respectively (unilateral treatment group). The proportion of patients with one or both eyes on-chart at 1.5 years was 85.4% and 72.0% for bilaterally and unilaterally treated patients, respectively. The gene therapy was well tolerated, with no systemic issues. Intraocular inflammation, which was mostly mild and well controlled with topical corticosteroids, occurred in 70.7% of lenadogene nolparvovec-treated eyes versus 10.2% of placebo-treated eyes. Among eyes treated with lenadogene nolparvovec, there was no difference in the incidence of intraocular inflammation between bilaterally and unilaterally treated patients. Overall, the REFLECT trial demonstrated an improvement of BCVA in LHON eyes carrying the m.11778G > A mtDNA mutation treated with lenadogene nolparvovec or placebo to a degree not reported in natural history studies and supports an improved benefit/risk profile for bilateral injections of lenadogene nolparvovec relative to unilateral injections.
Collapse
Affiliation(s)
- Nancy J Newman
- Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Prem S Subramanian
- Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark L Moster
- Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sean P Donahue
- Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bart P Leroy
- Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital, and Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valerie Biousse
- Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Catherine Vignal-Clermont
- Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France
- Centre Hospitalier National D'Ophtalmologie des Quinze Vingts, Paris, France
| | - Robert C Sergott
- Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA
| | - Alfredo A Sadun
- Doheny Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA
| | | | - Bart K Chwalisz
- Department of Ophthalmology, Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston MA, USA
| | - Rudrani Banik
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Fondation Ophtalmologique A. de Rothschild, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- CHNO des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC, Paris, France
| | | |
Collapse
|
14
|
Subramanian PS, Newman NJ, Moster M, Wang AG, Yu-Wai-Man P, Donahue S, Leroy BP, Carelli V, Biousse V, Vignal-Clermont C, Sergott RC, Sadun AA, Rebolleda G, Chwalisz BK, Banik R, Bazin F, Cox E, Roux M, Taiel M, Sahel JA. Study design and baseline characteristics for the reflect gene therapy trial ofm.11778g>A/ ND4-LHON. BMJ Open Ophthalmol 2022. [DOI: 10.1136/bmjophth-2022-001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ObjectiveREFLECT is the first randomised, double-masked, placebo-controlled multicentre phase 3 clinical trial that evaluated the efficacy and safety of bilateral intravitreal (IVT) injection of lenadogene nolparvovec in subjects with Leber hereditary optic neuropathy carrying the m.11778G>A mutation.Methods and analysisA total of 98 subjects were enrolled with vision loss of ≤12 months. The subjects were randomised to one of two treatment arms with all subjects receiving an intravitreal (IVT) injection of lenadogene nolparvovec in their first affected eye and the second-affected eye randomised to receive IVT of either lenadogene nolparvovec or placebo.ResultsThe majority of subjects were male with a mean duration of vision loss of 8.3 months. All but one subject experienced bilateral loss of vision at the time of injection. The mean best-corrected visual acuity of first-affected eyes was worse compared with second/not-yet-affected eyes. Analysis of retinal anatomical parameters showed increased thinning in the first-affected eyes when compared with the second/not-yet-affected eyes with both treatment arms showing significant changes compared with unaffected individuals.ConclusionThe REFLECT trial is the third and the largest phase 3 clinical study evaluating lenadogene nolparvovec in m.11778G>A Leber hereditary optic neuropathy (LHON) subjects. The observed demographics in REFLECT are consistent with previous reports in LHON subjects in the acute and dynamic phases of LHON disease. Combined with the visual function and anatomical parameters obtained in the previous RESCUE and REVERSE trials, REFLECT has provided a uniformly collected data set that should help direct future LHON clinical trials.
Collapse
|
15
|
Leber Hereditary Optic Neuropathy: Molecular Pathophysiology and Updates on Gene Therapy. Biomedicines 2022; 10:biomedicines10081930. [PMID: 36009477 PMCID: PMC9405679 DOI: 10.3390/biomedicines10081930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Molecular pathophysiology of LHON was reviewed and the current status of gene therapy for LHON is updated.
Collapse
|
16
|
Chen BS, Yu-Wai-Man P. From Bench to Bedside-Delivering Gene Therapy for Leber Hereditary Optic Neuropathy. Cold Spring Harb Perspect Med 2022; 12:a041282. [PMID: 35863905 PMCID: PMC9310952 DOI: 10.1101/cshperspect.a041282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Leber hereditary optic neuropathy (LHON) is a rare, maternally inherited mitochondrial disorder that presents with severe bilateral sequential vision loss, due to the selective degeneration of retinal ganglion cells (RGCs). Since the mitochondrial genetic basis for LHON was uncovered in 1988, considerable progress has been made in understanding the pathogenetic mechanisms driving RGC loss, which has enabled the development of therapeutic approaches aimed at mitigating the underlying mitochondrial dysfunction. In this review, we explore the genetics of LHON, from bench to bedside, focusing on the pathogenetic mechanisms and how these have informed the development of different gene therapy approaches, in particular the technique of allotopic expression with adeno-associated viral vectors. Finally, we provide an overview of the recent gene therapy clinical trials and consider the unanswered questions, challenges, and future prospects.
Collapse
Affiliation(s)
- Benson S Chen
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge CB2 0QQ, United Kingdom
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge CB2 0QQ, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| |
Collapse
|
17
|
Newman NJ, Schniederjan M, Mendoza PR, Calkins DJ, Yu-Wai-Man P, Biousse V, Carelli V, Taiel M, Rugiero F, Singh P, Rogue A, Sahel JA, Ancian P. Absence of lenadogene nolparvovec DNA in a brain tumor biopsy from a patient in the REVERSE clinical study, a case report. BMC Neurol 2022; 22:257. [PMID: 35820885 PMCID: PMC9277876 DOI: 10.1186/s12883-022-02787-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leber Hereditary Optic Neuropathy (LHON) is a rare, maternally-inherited mitochondrial disease that primarily affects retinal ganglion cells (RGCs) and their axons in the optic nerve, leading to irreversible, bilateral severe vision loss. Lenadogene nolparvovec gene therapy was developed as a treatment for patients with vision loss from LHON caused by the most prevalent m.11778G > A mitochondrial DNA point mutation in the MT-ND4 gene. Lenadogene nolparvovec is a replication-defective recombinant adeno-associated virus vector 2 serotype 2 (AAV2/2), encoding the human wild-type MT-ND4 protein. Lenadogene nolparvovec was administered by intravitreal injection (IVT) in LHON patients harboring the m.11778G > A ND4 mutation in a clinical development program including one phase 1/2 study (REVEAL), three phase 3 pivotal studies (REVERSE, RESCUE, REFLECT), and one long-term follow-up study (RESTORE, the follow-up of REVERSE and RESCUE patients). CASE PRESENTATION A 67-year-old woman with MT-ND4 LHON, included in the REVERSE clinical study, received a unilateral IVT of lenadogene nolparvovec in the right eye and a sham injection in the left eye in May 2016, 11.4 months and 8.8 months after vision loss in her right and left eyes, respectively. The patient had a normal brain magnetic resonance imaging with contrast at the time of diagnosis of LHON. Two years after treatment administration, BCVA had improved in both eyes. The product was well tolerated with mild and resolutive anterior chamber inflammation in the treated eye. In May 2019, the patient was diagnosed with a right temporal lobe glioblastoma, IDH-wildtype, World Health Organization grade 4, based on histological analysis of a tumor excision. The brain tumor was assessed for the presence of vector DNA by using a sensitive validated qPCR assay targeting the ND4 sequence of the vector. CONCLUSION ND4 DNA was not detected (below 15.625 copies/μg of genomic DNA) in DNA extracted from the brain tumor, while a housekeeping gene DNA was detected at high levels. Taken together, this data shows the absence of detection of lenadogene nolparvovec in a brain tumor (glioblastoma) of a treated patient in the REVERSE clinical trial 3 years after gene therapy administration, supporting the long-term favorable safety of lenadogene nolparvovec.
Collapse
Affiliation(s)
- Nancy J Newman
- Departments of Ophthalmology, Neurology and Neurological Surgery, Neuro-Ophthalmology Unit, Emory Eye Center, Emory University School of Medicine, 1365-B Clifton Road NE, Atlanta, GA, 30322, USA.
| | - Matthew Schniederjan
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Pia R Mendoza
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Valérie Biousse
- Departments of Ophthalmology, Neurology and Neurological Surgery, Neuro-Ophthalmology Unit, Emory Eye Center, Emory University School of Medicine, 1365-B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Magali Taiel
- GenSight Biologics, 74 rue du Faubourg Saint Antoine, 75012, Paris, France
| | | | | | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Fondation Ophtalmologique A. de Rothschild, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- CHNO des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC, Paris, France
| | | |
Collapse
|
18
|
Updated Review of Leber Hereditary Optic Neuropathy. Curr Treat Options Neurol 2022. [DOI: 10.1007/s11940-022-00729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Calkins DJ, Yu-Wai-Man P, Newman NJ, Taiel M, Singh P, Chalmey C, Rogue A, Carelli V, Ancian P, Sahel JA. Biodistribution of intravitreal lenadogene nolparvovec gene therapy in nonhuman primates. Mol Ther Methods Clin Dev 2021; 23:307-318. [PMID: 34729378 PMCID: PMC8526752 DOI: 10.1016/j.omtm.2021.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
Lenadogene nolparvovec (Lumevoq) gene therapy was developed to treat Leber hereditary optic neuropathy (LHON) caused by the m.11778G > A in MT-ND4 that affects complex I of the mitochondrial respiratory chain. Lenadogene nolparvovec is a replication-defective, single-stranded DNA recombinant adeno-associated virus vector 2 serotype 2, containing a codon-optimized complementary DNA encoding the human wild-type MT-ND4 subunit protein. Lenadogene nolparvovec was administered by unilateral intravitreal injection in MT-ND4 LHON patients in two randomized, double-masked, and sham-controlled phase III clinical trials (REVERSE and RESCUE), resulting in bilateral improvement of visual acuity. These and other earlier results suggest that lenadogene nolparvovec may travel from the treated to the untreated eye. To investigate this possibility further, lenadogene nolparvovec was unilaterally injected into the vitreous body of the right eye of healthy, nonhuman primates. Viral vector DNA was quantifiable in all eye and optic nerve tissues of the injected eye and was detected at lower levels in some tissues of the contralateral, noninjected eye, and optic projections, at 3 and 6 months after injection. The results suggest that lenadogene nolparvovec transfers from the injected to the noninjected eye, thus providing a potential explanation for the bilateral improvement of visual function observed in the LHON patients.
Collapse
Affiliation(s)
- David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Nancy J. Newman
- Departments of Ophthalmology, Neurology, and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Magali Taiel
- GenSight Biologics, 74 rue du Faubourg Saint Antoine, 75012 Paris, France
| | | | | | | | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica, Neurologica, Bologna, Italy
- Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - José A. Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Fondation Ophtalmologique A. de Rothschild, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- CHNO des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC, Paris, France
| |
Collapse
|
20
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Biousse V, Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Vignal-Clermont C, Klopstock T, Sadun AA, Sergott RC, Hage R, Esposti S, La Morgia C, Priglinger C, Karanja R, Blouin L, Taiel M, Sahel JA. Long-Term Follow-Up After Unilateral Intravitreal Gene Therapy for Leber Hereditary Optic Neuropathy: The RESTORE Study. J Neuroophthalmol 2021; 41:309-315. [PMID: 34415265 PMCID: PMC8366761 DOI: 10.1097/wno.0000000000001367] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND RESCUE and REVERSE were 2 Phase 3 clinical trials that assessed the efficacy and safety of intravitreal gene therapy with lenadogene nolparvovec (rAAV2/2-ND4) for the treatment of Leber hereditary optic neuropathy (LHON). RESTORE is the long-term follow-up study of subjects treated in the RESCUE and REVERSE trials. METHODS In RESCUE and REVERSE, 76 subjects with LHON because of the m.11778 G>A mutation in the mitochondrial gene ND4 received a single unilateral intravitreal injection of lenadogene nolparvovec. After 96 weeks, 61 subjects were enrolled in the long-term follow-up study RESTORE. The best-corrected visual acuity (BCVA) was assessed over a period of up to 52 months after onset of vision loss. A locally estimated scatterplot smoothing regression model was used to analyze changes in BCVA over time. Vision-related quality of life was reported using the visual function questionnaire-25 (VFQ-25). RESULTS The population of MT-ND4 subjects enrolled in RESTORE was representative of the combined cohorts of RESCUE and REVERSE for mean age (35.1 years) and gender distribution (79% males). There was a progressive and sustained improvement of BCVA up to 52 months after the onset of vision loss. The final mean BCVA was 1.26 logarithm of the minimal angle of resolution 48 months after the onset of vision loss. The mean VFQ-25 composite score increased by 7 points compared with baseline. CONCLUSION The treatment effect of lenadogene nolparvovec on BCVA and vision-related quality of life observed 96 weeks (2 years) after treatment in RESCUE and REVERSE was sustained at 3 years in RESTORE, with a maximum follow-up of 52 months (4.3 years) after the onset of vision loss.
Collapse
|
22
|
Sahel JA, Vignal-Clermont C, Yu-Wai-Man P, Biousse V, Blouin L, Taiel M. [Leber hereditary optic neuropathy: Bilateral improvement of visual acuity following gene therapy by unilateral injection]. Med Sci (Paris) 2021; 37:712-715. [PMID: 34491178 DOI: 10.1051/medsci/2021099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- José-Alain Sahel
- Université de la Sorbonne, Inserm, CNRS, Institut de la vision, Paris, France. - Centre hospitalier national d'ophtalmologie des Quinze-Vingts, Paris, France. - Fondation ophtalmologique A. de Rothschild, Paris, France. - Department of ophthalmology, The university of Pittsburgh school of medicine, Pittsburgh, États-Unis
| | - Catherine Vignal-Clermont
- Centre hospitalier national d'ophtalmologie des Quinze-Vingts, Paris, France. - Fondation ophtalmologique A. de Rothschild, Paris, France
| | - Patrick Yu-Wai-Man
- Cambridge centre for brain repair and MRC mitochondrial biology unit, Department of clinical neurosciences, University of Cambridge, Cambridge, Royaume-Uni. - Cambridge eye unit, Addenbrooke's hospital, Cambridge university hospitals, Cambridge, Royaume-Uni. - Moorfields eye hospital, Londres, Royaume-Uni. - UCL institute of ophthalmology, University college London, Londres, Royaume-Uni
| | - Valérie Biousse
- Departments of ophthalmology, neurology, and neurological surgery, Emory university school of medicine, Atlanta, États-Unis
| | | | | |
Collapse
|
23
|
Newman NJ, Yu-Wai-Man P, Carelli V, Biousse V, Moster ML, Vignal-Clermont C, Sergott RC, Klopstock T, Sadun AA, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA. Intravitreal Gene Therapy vs. Natural History in Patients With Leber Hereditary Optic Neuropathy Carrying the m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison. Front Neurol 2021; 12:662838. [PMID: 34108929 PMCID: PMC8181419 DOI: 10.3389/fneur.2021.662838] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023] Open
Abstract
Objective: This work aimed to compare the evolution of visual outcomes in Leber hereditary optic neuropathy (LHON) patients treated with intravitreal gene therapy to the spontaneous evolution in prior natural history (NH) studies. Design: A combined analysis of two phase three randomized, double-masked, sham-controlled studies (REVERSE and RESCUE) and their joint long-term extension trial (CLIN06) evaluated the efficacy of rAAV2/2-ND4 vs. 11 pooled NH studies used as an external control. Subjects: The LHON subjects carried the m.11778G>A ND4 mutation and were aged ≥15 years at onset of vision loss. Methods: A total of 76 subjects received a single intravitreal rAAV2/2-ND4 injection in one eye and sham injection in the fellow eye within 1 year after vision loss in REVERSE and RESCUE. Both eyes were considered as treated due to the rAAV2/2-ND4 treatment efficacy observed in the contralateral eyes. Best corrected visual acuity (BCVA) from REVERSE, RESCUE, and CLIN06 up to 4.3 years after vision loss was compared to the visual acuity of 208 NH subjects matched for age and ND4 genotype. The NH subjects were from a LHON registry (REALITY) and from 10 NH studies. A locally estimated scatterplot smoothing (LOESS), non-parametric, local regression model was used to modelize visual acuity curves over time, and linear mixed model was used for statistical inferences. Main Outcome Measures: The main outcome measure was evolution of visual acuity from 12 months after vision loss, when REVERSE and RESCUE patients had been treated with rAAV2/2-ND4. Results: The LOESS curves showed that the BCVA of the treated patients progressively improved from month 12 to 52 after vision loss. At month 48, there was a statistically and clinically relevant difference in visual acuity of -0.33 logarithm of the minimal angle of resolution (LogMAR) (16.5 ETDRS letters equivalent) in favor of treated eyes vs. NH eyes (p < 0.01). Most treated eyes (88.7%) were on-chart at month 48 as compared to 48.1% of the NH eyes (p < 0.01). The treatment effect at last observation remained statistically and clinically significant when adjusted for age and duration of follow-up (-0.32 LogMAR, p < 0.0001). Conclusions: The m.11778G>A LHON patients treated with rAAV2/2-ND4 exhibited an improvement of visual acuity over more than 4 years after vision loss to a degree not demonstrated in NH studies. Clinical Trial Registration: NCT02652767, NCT02652780, NCT03406104, and NCT03295071.
Collapse
Affiliation(s)
- Nancy J. Newman
- Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Nancy J. Newman
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital National Health Service Foundation Trust, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Valerio Carelli
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Unitá Operativa Compless Clinica Neurologica, Bologna, Italy
- Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valerie Biousse
- Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark L. Moster
- Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, United States
| | - Catherine Vignal-Clermont
- Department of Neuro Ophthalmology and Emergencies, A. de Rothschild Foundation Hospital, Paris, France
- Centre d'investigation Clinique, Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France
| | - Robert C. Sergott
- Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Alfredo A. Sadun
- Doheny Eye Institute, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jean-François Girmens
- Centre d'investigation Clinique, Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France
| | - Chiara La Morgia
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Unitá Operativa Compless Clinica Neurologica, Bologna, Italy
| | - Adam A. DeBusk
- Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, United States
| | - Neringa Jurkute
- Moorfields Eye Hospital National Health Service Foundation Trust, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Rustum Karanjia
- Doheny Eye Institute, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ophthalmology, University of Ottawa Eye, Ottawa, ON, Canada
| | - Constant Josse
- eXYSTAT, Data Management and Statistic, Malakoff, France
| | | | | | | | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- A. de Rothschild Foundation Hospital, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- CHNO des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France
| |
Collapse
|