1
|
Li Y, Lou N, Liu X, Zhuang X, Chen S. Exploring new mechanisms of Imeglimin in diabetes treatment: Amelioration of mitochondrial dysfunction. Biomed Pharmacother 2024; 175:116755. [PMID: 38772155 DOI: 10.1016/j.biopha.2024.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
With the increasing prevalence of type 2 diabetes mellitus (T2DM), it has become critical to identify effective treatment strategies. In recent years, the novel oral hypoglycaemic drug Imeglimin has attracted much attention in the field of diabetes treatment. The mechanisms of its therapeutic action are complex and are not yet fully understood by current research. Current evidence suggests that pancreatic β-cells, liver, and skeletal muscle are the main organs in which Imeglimin lowers blood glucose levels and that it acts mainly by targeting mitochondrial function, thereby inhibiting hepatic gluconeogenesis, enhancing insulin sensitivity, promoting pancreatic β-cell function, and regulating energy metabolism. There is growing evidence that the drug also has a potentially volatile role in the treatment of diabetic complications, including metabolic cardiomyopathy, diabetic vasculopathy, and diabetic neuroinflammation. According to available clinical studies, its efficacy and safety profile are more evident than other hypoglycaemic agents, and it has synergistic effects when combined with other antidiabetic drugs, and also has potential in the treatment of T2DM-related complications. This review aims to shed light on the latest research progress in the treatment of T2DM with Imeglimin, thereby providing clinicians and researchers with the latest insights into Imeglimin as a viable option for the treatment of T2DM.
Collapse
Affiliation(s)
- Yilin Li
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Nenngjun Lou
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaojing Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| | - Shihong Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
2
|
Sultan J, Agarwal N, Sharma S. Characteristics and Biological Properties of Imeglimin Hydrochlo ride, A Novel Antidiabetic Agent: A Systematic Review. Curr Diabetes Rev 2024; 20:e171023222286. [PMID: 37855361 DOI: 10.2174/0115733998260331231009104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND WHO indicates that diabetes will become the 7th leading reason for death by 2030. The physiopathology of dysfunctioning is associated with obesity, weight gain and predominantly insulin resistance in insulin-sensitive cells and continuous deterioration of pancreatic beta cell function..Imeglimin is an investigational novel oral anti-diabetic drug. OBJECTIVES The motive of the review is to comprehensively explore the chemistry, biological and analytical analysis of the Imeglimin hydrochloride. METHODS To enhance the understanding, a systematic review was conducted by forming a database of relevant existing studies from electronic resources like Web of Science, ScienceDirect and PubMed. The methodology is reflected in the PRISMA design. RESULT The drug was approved in the year 2021 for therapeutic purposes in Japan. It is the novel and first approved drug for this type of Anti-diabetic treatment. It is a small molecular drug whose molecular weight is 191.6 grams per mole utilized for oral administration. Imeglimin is thought to have both activities, as the amount of glucose is dependent on insulin secretory impact and insulin sensitivity is increased. CONCLUSION Therapeutic, pharmacological, and analytical considerations for the novel drug Imeglimin hydrochloride are discussed in this review.
Collapse
Affiliation(s)
- Jasira Sultan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Nikhil Agarwal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle West, Mumbai, Maharashtra 400056, India
| |
Collapse
|
3
|
Swain J, Jadhao P, Sravya SL, Teli B, Lavanya K, Singh J, Sahoo A, Das S. Mitochondrial Dysfunction and Imeglimin: A New Ray of Hope for the Treatment of Type-2 Diabetes Mellitus. Mini Rev Med Chem 2024; 24:1575-1589. [PMID: 37861052 DOI: 10.2174/0113895575260225230921062013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 10/21/2023]
Abstract
Diabetes is a rapidly growing health challenge and epidemic in many developing countries, including India. India, being the diabetes capital of the world, has the dubious dual distinction of being the leading nations for both undernutrition and overnutrition. Diabetes prevalence has increased in both rural and urban areas, affected the younger population and increased the risk of complications and economic burden. These alarming statistics ring an alarm bell to achieve glycemic targets in the affected population in order to decrease diabetes-related morbidity and mortality. In the recent years, diabetes pathophysiology has been extended from an ominous triad through octet and dirty dozen etc. There is a new scope to target multiple pathways at the molecular level to achieve a better glycemic target and further prevent micro- and macrovascular complications. Mitochondrial dysfunction has a pivotal role in both β-cell failure and insulin resistance. Hence, targeting this molecular pathway may help with both insulin secretion and peripheral tissue sensitization to insulin. Imeglimin is the latest addition to our anti-diabetic armamentarium. As imeglimin targets, this root cause of defective energy metabolism and insulin resistance makes it a new add-on therapy in different diabetic regimes to achieve the proper glycemic targets. Its good tolerability and efficacy profiles in recent studies shows a new ray of hope in the journey to curtail diabetes-related morbidity.
Collapse
Affiliation(s)
- Jayshree Swain
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Pooja Jadhao
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - S L Sravya
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Brij Teli
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Kasukurti Lavanya
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Jaspreet Singh
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Abhay Sahoo
- Department of Endocrinology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
4
|
Chevalier C, Fouqueray P, Bolze S. Imeglimin: A Clinical Pharmacology Review. Clin Pharmacokinet 2023; 62:1393-1411. [PMID: 37713097 DOI: 10.1007/s40262-023-01301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Imeglimin (PXL008, EMD-387008, Twymeeg®) is a first-in-class novel oral hypoglycemic agent, launched in Japan, for the treatment of type 2 diabetes mellitus. Its mechanism of action targets mitochondrial bioenergetics to ameliorate insulin resistance and to enhance β-cell function. This review summarizes the properties underlying the pharmacokinetic profile of imeglimin, a small cationic drug belonging to the tetrahydrotriazine chemical class, with a complex mechanism of absorption involving an active transport through organic cation transporters (OCTs). Imeglimin absorption decreases when dose increases due to the saturation of the active uptake transport. Post absorption, imeglimin is rapidly and primarily distributed to organs and tissues, and has a half-life ranging from 9.03 to 20.2 h. Plasma protein binding of imeglimin is low, which explains the rapid distribution to the organs observed in all species. Imeglimin is excreted unchanged in urine, indicating a low extent of metabolism. Imeglimin is a substrate of multidrug and toxic compound extrusion (MATE) 2-K and a substrate and inhibitor of OCT1, OCT2, and MATE1. Clinical drug-drug interaction studies confirmed the absence of relevant clinical interaction with substrates or inhibitors of these transporters. Overall, the drug-drug interaction potential of imeglimin is low. Its pharmacokinetics profile has also been characterized in special populations, showing no influence of mild and moderate hepatic impairment but an impact of renal function on imeglimin renal clearance. Dosage adjustment is thus required in moderately and severely renally impaired patients. Imeglimin pharmacokinetics was shown to be insensitive to ethnicity and food intake and to have no effect on QTcF interval.
Collapse
|
5
|
Nishiyama K, Ono M, Tsuno T, Inoue R, Fukunaka A, Okuyama T, Kyohara M, Togashi Y, Fukushima S, Atsumi T, Sato A, Tsurumoto A, Sakai C, Fujitani Y, Terauchi Y, Ito S, Shirakawa J. Protective Effects of Imeglimin and Metformin Combination Therapy on β-Cells in db/db Male Mice. Endocrinology 2023; 164:bqad095. [PMID: 37314160 DOI: 10.1210/endocr/bqad095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Imeglimin and metformin act in metabolic organs, including β-cells, via different mechanisms. In the present study, we investigated the impacts of imeglimin, metformin, or their combination (Imeg + Met) on β-cells, the liver, and adipose tissues in db/db mice. Imeglimin, metformin, or Imeg + Met treatment had no significant effects on glucose tolerance, insulin sensitivity, respiratory exchange ratio, or locomotor activity in db/db mice. The responsiveness of insulin secretion to glucose was recovered by Imeg + Met treatment. Furthermore, Imeg + Met treatment increased β-cell mass by enhancing β-cell proliferation and ameliorating β-cell apoptosis in db/db mice. Hepatic steatosis, the morphology of adipocytes, adiposity assessed by computed tomography, and the expression of genes related to glucose or lipid metabolism and inflammation in the liver and fat tissues showed no notable differences in db/db mice. Global gene expression analysis of isolated islets indicated that the genes related to regulation of cell population proliferation and negative regulation of cell death were enriched by Imeg + Met treatment in db/db islets. In vitro culture experiments confirmed the protective effects of Imeg + Met against β-cell apoptosis. The expression of Snai1, Tnfrsf18, Pdcd1, Mmp9, Ccr7, Egr3, and Cxcl12, some of which have been linked to apoptosis, in db/db islets was attenuated by Imeg + Met. Treatment of a β-cell line with Imeg + Met prevented apoptosis induced by hydrogen peroxide or palmitate. Thus, the combination of imeglimin and metformin is beneficial for the maintenance of β-cell mass in db/db mice, probably through direct action on β-cells, suggesting a potential strategy for protecting β-cells in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masato Ono
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Takahiro Tsuno
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Tomoko Okuyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Mayu Kyohara
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Yu Togashi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Setsuko Fukushima
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Takuto Atsumi
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Aoi Sato
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Asuka Tsurumoto
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Chisato Sakai
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
6
|
Singh AK, Singh A, Singh R, Misra A. Efficacy and safety of imeglimin in type 2 diabetes: A systematic review and meta-analysis of randomized placebo-controlled trials. Diabetes Metab Syndr 2023; 17:102710. [PMID: 36702046 DOI: 10.1016/j.dsx.2023.102710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Imeglimin is a novel new oral compound recently approved for treating type 2 diabetes (T2D) in India. We conducted a systematic review and meta-analysis to evaluate the efficacy of imeglimin in people with T2D in the approved dose of 1000 mg twice daily (BID). METHODS We systematically searched the database of PubMed until December 20, 2022, and retrieved all published double-blind, randomized, placebo-controlled trials (RCTs) conducted with imeglimin 1000 mg BID, using appropriate keywords and MeSH terms. A meta-analysis was conducted to study the HbA1c lowering effect of imeglimin 1000 mg BID in people with T2D using the Comprehensive meta-analysis (CMA) software Version 3, Biostat Inc. Englewood, NJ, USA. RESULTS Of the seven Phase 2 studies and three Phase 3 studies conducted so far, only three published double-blind RCTs have reported the efficacy and safety of imeglimin 1000 mg BID against the placebo. Our meta-analysis using the random-effects model from two monotherapy studies (n = 360) showed imeglimin 1000 mg BID reduce HbA1c significantly (Δ -0.9%, 95% Confidence Interval [CI], -1.1 to -0.74%; P < 0.0001) against the placebo, without any heterogeneity (I2 = 0%). The pooled meta-analysis from all three RCTs (n = 574) found a significant reduction in HbA1c with imeglimin 1000 mg BID (Δ -0.79%; 95% CI, -1.00 to -0.59%; P < 0.0001) compared to placebo with high heterogeneity. CONCLUSIONS This meta-analysis found a significant HbA1c lowering effect of imeglimin in people with T2D with an acceptable tolerability profile. Still, larger and longer studies are needed.
Collapse
Affiliation(s)
| | - Akriti Singh
- Jawaharlal Nehru Medical College & Hospital, Kalyani, West Bengal, India
| | - Ritu Singh
- G. D Hospital & Diabetes Institute, Kolkata, West Bengal, India
| | - Anoop Misra
- Fortis C-DOC Hospital for Diabetes & Allied Sciences, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation, New Delhi, India; Diabetes Foundation (India), New Delhi, India
| |
Collapse
|