1
|
Meakin AS, Nathanielsz PW, Li C, Huber HF, Clifton VL, Wiese MD, Morrison JL. Maternal obesogenic diet during pregnancy and its impact on fetal hepatic function in baboons. Obesity (Silver Spring) 2024; 32:1910-1922. [PMID: 39210592 PMCID: PMC11421985 DOI: 10.1002/oby.24124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/08/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Maternal obesity (MO) increases the risk of later-life liver disease in offspring, especially in males. This may be due to impaired cytochrome P450 (CYP) enzyme activity driven by an altered maternal-fetal hormonal milieu. MO increases fetal cortisol concentrations that may increase CYP activity; however, glucocorticoid receptor (GR)-mediated signaling can be modulated by alternative GR isoform expression. We hypothesized that MO induces sex-specific changes in GR isoform expression and localization that contribute to reduced hepatic CYP activity. METHODS Nonpregnant, nulliparous female baboons were assigned to either an ad libitum control diet or a high-fat, high-energy diet (HF-HED) at 9 months pre pregnancy. At 165 days' gestation (term = 180 days), fetal liver samples were collected (n = 6/sex/group). CYP activity was quantified using functional assays, and GR was measured using quantitative RT-PCR and Western blot. RESULTS CYP3A activity was reduced in the HF-HED group, whereas CYP2B6 activity was reduced in HF-HED males only. Total GR expression was increased in the HF-HED group. Relative nuclear expression of the antagonistic GR isoform GRβ was increased in HF-HED males only. CONCLUSIONS Reduced CYP activity in HF-HED males may be driven in part by dampened hepatic-specific glucocorticoid signaling via altered GR isoform expression. These findings highlight targetable mechanisms that may reduce later-life sex-specific disease risk.
Collapse
Affiliation(s)
- Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | | | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Vicki L Clifton
- Mater Medical Research Institute - The University of Queensland, Brisbane, Australia
| | - Michael D Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
2
|
Zang YN, Wan Z, Jia F, Yang Q, Liu CG, Wang Q, Liu SS, Dong F, Li AN, de Leon J, Wang G, Ruan CJ. Population pharmacokinetics of olanzapine in pediatric patients with psychiatric disorders. Expert Opin Drug Metab Toxicol 2024; 20:827-840. [PMID: 39010781 DOI: 10.1080/17425255.2024.2380472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE To develop and validate a population pharmacokinetic (PPK) model of oral olanzapine in pediatric Chinese patients in order to individualize therapy in this population. METHODS A total of 897 serum concentrations from 269 pediatric patients taking oral olanzapine (ages 8-17 years) were collected. Demographic parameters, biological characteristics and concomitant medications were investigated as covariates. The data were analyzed using a nonlinear mixed-effects modeling approach. Bootstrapping (1000 runs), normalized prediction distribution error (NPDE), and external validation of 62 patients were employed. Simulations were performed to explore the individualized dosing regimens in various situations. RESULTS The one-compartment model with first-order absorption and elimination had an apparent clearance (CL/F) of 10.38 L/h, a distribution volume (V/F) of 9.41 L/kg and an absorption rate constant (Ka) fixed at 0.3 h-1. The equation was CL∕F (L∕h) = 10.38 × (body weight∕60)0.25 ×1.33 (if male) × 0.71 (if co-occurrence of infection) × 0.51 (if co-therapy with fluvoxamine) × 1.27 (if co-therapy with sertraline) × 1.43 (if co-therapy with valproate). The final model had satisfactory stability, robustness, and predictive ability. The results from a simulation suggested the oral olanzapine doses required for male and female pediatric patients weighing between 40 and 60 kg without co-medication were 10-15 mg/day and 7.5-10 mg/day, respectively, and dosage adjustments should be based on sex and body weight; and co-administrated with valproate, sertraline, or fluvoxamine. CONCLUSION This model may help individualize optimum dosing of oral olanzapine for pediatric patients.
Collapse
Affiliation(s)
- Yan-Nan Zang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhou Wan
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fei Jia
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qi Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chen-Geng Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qian Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shan-Shan Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fang Dong
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - An-Ning Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jose de Leon
- Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
- Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apóstol Hospital, University of the Basque Country, Vitoria, Spain
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Can-Jun Ruan
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Peter JU, Dieudonné P, Zolk O. Pharmacokinetics, Pharmacodynamics, and Side Effects of Midazolam: A Review and Case Example. Pharmaceuticals (Basel) 2024; 17:473. [PMID: 38675433 PMCID: PMC11054797 DOI: 10.3390/ph17040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Midazolam, a short-acting benzodiazepine, is widely used to alleviate patient anxiety, enhance compliance, and aid in anesthesia. While its side effects are typically dose-dependent and manageable with vigilant perioperative monitoring, serious cardiorespiratory complications, including fatalities and permanent neurological impairment, have been documented. Prolonged exposure to benzodiazepines, such as midazolam, has been associated with neurological changes in infants. Despite attempts to employ therapeutic drug monitoring for optimal sedation dosing, its efficacy has been limited. Consequently, efforts are underway to identify alternative predictive markers to guide individualized dosing and mitigate adverse effects. Understanding these factors is crucial for determining midazolam's suitability for future administration, particularly after a severe adverse reaction. This article aims to elucidate the factors influencing midazolam's pharmacokinetics and pharmacodynamics, potentially leading to adverse events. Finally, a case study is presented to exemplify the complex investigation into the causative factors of midazolam-related adverse events.
Collapse
Affiliation(s)
- Jens-Uwe Peter
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| | - Peter Dieudonné
- Department of Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| |
Collapse
|
4
|
Yeung CHT, Verstegen RHJ, Greenberg R, Lewis TR. Pharmacokinetic and pharmacodynamic principles: unique considerations for optimal design of neonatal clinical trials. Front Pediatr 2024; 11:1345969. [PMID: 38283405 PMCID: PMC10811156 DOI: 10.3389/fped.2023.1345969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Core clinical pharmacology principles must be considered when designing and executing neonatal clinical trials. In this review, the authors discuss important aspects of drug dose selection, pharmacokinetics, pharmacogenetics and pharmacodynamics that stakeholders may consider when undertaking a neonatal or infant clinical trial.
Collapse
Affiliation(s)
- Cindy Hoi Ting Yeung
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ruud H. J. Verstegen
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Rachel Greenberg
- Duke Clinical Research Institute, Durham, NC, United States
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Tamorah Rae Lewis
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Savitskii MV, Moskaleva NE, Brito A, Zigangirova NA, Soloveva AV, Sheremet AB, Bondareva NE, Lubenec NL, Kuznetsov RM, Samoylov VM, Tagliaro F, Appolonova SA. Pharmacokinetics, quorum-sensing signal molecules and tryptophan-related metabolomics of the novel anti-virulence drug Fluorothiazinon in a Pseudomonas aeruginosa-induced pneumonia murine model. J Pharm Biomed Anal 2023; 236:115739. [PMID: 37778200 DOI: 10.1016/j.jpba.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Pseudomonas aeruginosa (PA) infection is commonly associated with hospital-acquired infections in patients with immune deficiency and/or severe lung diseases. Managing this bacterium is complex due to drug resistance and high adaptability. Fluorothiazinon (FT) is an anti-virulence drug developed to suppress the virulence of bacteria as opposed to bacterial death increasing host's immune response to infection and improving treatment to inhibit drug resistant bacteria. We aimed to evaluate FT pharmacokinetics, quorum sensing signal molecules profiling and tryptophan-related metabolomics in blood, liver, kidneys, and lungs of mice. Study comprised three groups: a group infected with PA that was treated with 400 mg/kg FT ("infected treated group"); a non-infected group, but also treated with the same single drug dose ("non-infected treated group"); and an infected group that received a vehicle ("infected non-treated group"). PA-mediated infection blood pharmacokinetics profiling was indicative of increased drug concentrations as shown by increased Cmax and AUCs. Tissue distribution in liver, kidneys, and lungs, showed that liver presented the most consistently higher concentrations of FT in the infected versus non-infected mice. FT showed that HHQ levels were decreased at 1 h after dosing in lungs while PQS levels were lower across time in lungs of infected treated mice in comparison to infected non-treated mice. Metabolomics profiling performed in lungs and blood of infected treated versus infected non-treated mice revealed drug-associated metabolite alterations, especially in the kynurenic and indole pathways.
Collapse
Affiliation(s)
- Mark V Savitskii
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Natalia E Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nailya A Zigangirova
- National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russia
| | - Anna V Soloveva
- National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russia
| | - Anna B Sheremet
- National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russia
| | - Natalia E Bondareva
- National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russia
| | - Nadezhda L Lubenec
- National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russia
| | - Roman M Kuznetsov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Viktor M Samoylov
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Franco Tagliaro
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, 37129 Verona, Italy
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
Boglione-Kerrien C, Zerrouki S, Le Bot A, Camus C, Marchand T, Bellissant E, Tron C, Verdier MC, Gangneux JP, Lemaitre F. Can we predict the influence of inflammation on voriconazole exposure? An overview. J Antimicrob Chemother 2023; 78:2630-2636. [PMID: 37796931 DOI: 10.1093/jac/dkad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Voriconazole is a triazole antifungal indicated for invasive fungal infections that exhibits a high degree of inter-individual and intra-individual pharmacokinetic variability. Voriconazole pharmacokinetics is non-linear, making dosage adjustments more difficult. Therapeutic drug monitoring is recommended by measurement of minimum plasma concentrations. Several factors are responsible for the high pharmacokinetic variability of voriconazole: age, feeding (which decreases absorption), liver function, genetic polymorphism of the CYP2C19 gene, drug interactions and inflammation. Invasive fungal infections are indeed very frequently associated with inflammation, which engenders a risk of voriconazole overexposure. Many studies have reviewed this topic in both the adult and paediatric populations, but few studies have focused on the specific point of the prediction, to evaluate the influence of inflammation on voriconazole pharmacokinetics. Predicting the impact of inflammation on voriconazole pharmacokinetics could help optimize antifungal therapy and improve patient management. This review summarizes the existing data on the influence of inflammation on voriconazole pharmacokinetics in adult populations. We also evaluate the role of C-reactive protein, the impact of inflammation on patient metabolic phenotypes, and the tools that can be used to predict the effect of inflammation on voriconazole pharmacokinetics.
Collapse
Affiliation(s)
- Christelle Boglione-Kerrien
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
| | - Selim Zerrouki
- Rennes University Hospital, Department of Biochemistry, Rennes, France
| | - Audrey Le Bot
- Rennes University Hospital, Department of Infectious Diseases, Rennes, France
| | - Christophe Camus
- Rennes University Hospital, Department of Intensive Care Medicine, Rennes, France
| | - Tony Marchand
- Rennes University Hospital, Department of Clinical Haematology, Rennes, France
| | - Eric Bellissant
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Camille Tron
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Marie-Clémence Verdier
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Jean-Pierre Gangneux
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
- Rennes University Hospital, Department of Parasitology and Mycology, National Reference Centre for Mycoses and Antifungals (LA Asp-C) and European Excellence Centre in Medical Mycology (ECMM EC), Rennes, France
| | - Florian Lemaitre
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
7
|
Chen X, Yu G, Li GF. Use of Clearance Concepts to Simulate Impact of Interleukin-6 on Drug Elimination Governed by Cytochromes P450 3A4 and Glomerular Filtration Rate. Eur J Drug Metab Pharmacokinet 2023; 48:619-621. [PMID: 37792131 DOI: 10.1007/s13318-023-00859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Affiliation(s)
- Xiang Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Guo Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Guo-Fu Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
- Subei People's Hospital, Yangzhou, China.
| |
Collapse
|
8
|
Ketharanathan N, Lili A, de Vries JMP, Wildschut ED, de Hoog M, Koch BCP, de Winter BCM. A Population Pharmacokinetic Model of Pentobarbital for Children with Status Epilepticus and Severe Traumatic Brain Injury. Clin Pharmacokinet 2023; 62:1011-1022. [PMID: 37247187 PMCID: PMC10338388 DOI: 10.1007/s40262-023-01249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Pentobarbital pharmacokinetics (PK) remain elusive and the therapeutic windows narrow. Administration is frequent in critically ill children with refractory status epilepticus (SE) and severe traumatic brain injury (sTBI). OBJECTIVES To investigate pentobarbital PK in SE and sTBI patients admitted to the paediatric intensive care unit (PICU) with population-based PK (PopPK) modelling and dosing simulations. METHODS Develop a PopPK model with non-linear mixed-effects modelling (NONMEM®) with retrospective data (n = 36; median age 1.3 years; median weight 10 kg; 178 blood samples) treated with continuous intravenous pentobarbital. An independent dataset was used for external validation (n = 9). Dosing simulations with the validated model evaluated dosing regimens. RESULTS A one-compartment PK model with allometrically scaled weight on clearance (CL; 0.75) and volume of distribution (Vd; 1) captured data well. Typical CL and Vd values were 3.59 L/70 kg/h and 142 L/70 kg, respectively. Elevated creatinine and C-reactive protein (CRP) levels significantly correlated to decreased CL, explaining 84% of inter-patient variability, and were incorporated in the final model. External validation using stratified visual predictive checks showed good results. Simulations demonstrated patients with elevated serum creatinine and CRP failed to achieve steady state yet progressed to toxic levels with current dosing regimens. CONCLUSIONS The one-compartment PK model of intravenous pentobarbital described data well whereby serum creatinine and CRP significantly correlated with pentobarbital CL. Dosing simulations formulated adjusted dosing advice in patients with elevated creatinine and/or CRP. Prospective PK studies with pharmacodynamic endpoints, are imperative to optimise pentobarbital dosing in terms of safety and clinical efficacy in critically ill children.
Collapse
Affiliation(s)
- Naomi Ketharanathan
- Department of Neonatal and Paediatric Intensive Care, Division of Paediatric Intensive Care, Erasmus MC-Sophia Children's Hospital, Room Sp-3435, Wytemaweg 80, 3015GD, Rotterdam, The Netherlands.
| | - Anastasia Lili
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
| | | | - Enno D Wildschut
- Department of Neonatal and Paediatric Intensive Care, Division of Paediatric Intensive Care, Erasmus MC-Sophia Children's Hospital, Room Sp-3435, Wytemaweg 80, 3015GD, Rotterdam, The Netherlands
| | - Matthijs de Hoog
- Department of Neonatal and Paediatric Intensive Care, Division of Paediatric Intensive Care, Erasmus MC-Sophia Children's Hospital, Room Sp-3435, Wytemaweg 80, 3015GD, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
9
|
McColl ER, Croyle MA, Zamboni WC, Honer WG, Heise M, Piquette-Miller M, Goralski KB. COVID-19 Vaccines and the Virus: Impact on Drug Metabolism and Pharmacokinetics. Drug Metab Dispos 2023; 51:130-141. [PMID: 36273826 PMCID: PMC11022893 DOI: 10.1124/dmd.122.000934] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 01/08/2023] Open
Abstract
This article reports on an American Society of Pharmacology and Therapeutics, Division of Drug Metabolism and Disposition symposium held at Experimental Biology on April 2, 2022, in Philadelphia. As of July 2022, over 500 million people have been infected with SARS-CoV-2 (the virus causing COVID-19) and over 12 billion vaccine doses have been administered. Clinically significant interactions between viral infections and hepatic drug metabolism were first recognized over 40 years ago during a cluster of pediatric theophylline toxicity cases attributed to reduced hepatic drug metabolism amid an influenza B outbreak. Today, a substantive body of research supports that the activated innate immune response generally decreases hepatic cytochrome P450 activity. The interactions extend to drug transporters and other organs and have the potential to impact drug absorption, distribution, metabolism, and excretion (ADME). Based on this knowledge, altered ADME is predicted with SARS-CoV-2 infection or vaccination. The report begins with a clinical case exploring the possibility of SARS-CoV-2 vaccination increasing clozapine levels. This is followed by discussions of how SARS-CoV-2 infection or vaccines alter the metabolism and disposition of complex drugs, such as nanoparticles and biologics and small molecule therapies. The review concludes with a discussion of the effects of viral infections on placental amino acid transport and their potential to impact fetal development. The session improved our understanding of the impact of emerging viral infections and vaccine technologies on drug metabolism and disposition, which will help mitigate drug toxicity and improve drug and vaccine safety and effectiveness. SIGNIFICANCE STATEMENT: Altered pharmacokinetics of small molecule and complex molecule drugs and fetal brain distribution of amino acids following SARS-CoV-2 infection or immunization are possible. The proposed mechanisms involve decreased liver cytochrome P450 metabolism of small molecules, enhanced innate immune system metabolism of complex molecules, and altered placental and fetal blood-brain barrier amino acid transport, respectively. Future research is needed to understand the effects of these interactions on adverse drug responses, drug and vaccine safety, and effectiveness and fetal neurodevelopment.
Collapse
Affiliation(s)
- Eliza R McColl
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Maria A Croyle
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - William C Zamboni
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - William G Honer
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Mark Heise
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Mossé U, Chaumette B, Wils J, Imbert L, Lamoureux F, Ferrafiat V. Evidence of pharmacogenetics-based fluvoxamine use as an add-on to clozapine treatment in psychiatry. Pharmacogenomics 2022; 23:649-654. [PMID: 35916148 DOI: 10.2217/pgs-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pharmacological treatments used for psychiatric disorders, such as clozapine, demonstrate large interindividual variability in terms of possible adverse effects and therapeutic benefit. This variability can be explained by multiple factors, including pharmacogenetic factors. Clozapine efficacy can be impacted by CYP polymorphisms. A growing body of literature on pharmacogenetics suggests the clinical benefit of concomitant use of clozapine and fluvoxamine to improve global pharmacotherapeutic management. This article reviews and discusses available clinical and pharmacological data and limitations of clozapine augmentation with fluvoxamine based on pharmacogenetic rationale and clinical experience. The aim is to provide an updated approach on how to use the pharmacological and pharmacogenetic profile to improve clozapine efficacy and tolerance in severely ill patients.
Collapse
Affiliation(s)
- Ulysse Mossé
- Child and Adolescent Psychiatric Unit, L'Unité Régionale d'Hospitalisation Psychiatrique pour Enfants et Adolescents, Centre Hospitalier du Rouvray Sotteville-les Rouen, Rouen, 76000, France
| | - Boris Chaumette
- Institut National de la Santé et de la Recherche Médicale U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, 75000, France.,Groupe Hospitalier Universitaire Paris, Psychiatrie et Neurosciences, Paris, 75000, France.,Department of Psychiatry, McGill University, Montreal, H3A 0G4, Canada
| | - Julien Wils
- Department of Pharmacology, Toxicology and Pharmacogenetics, Rouen University Hospital, Rouen, 76000, France.,Institut National de la Santé et de la Recherche Médicale U1096, Université de Rouen Normandie, Rouen, 76000, France
| | - Laurent Imbert
- Department of Pharmacology, Toxicology and Pharmacogenetics, Rouen University Hospital, Rouen, 76000, France
| | - Fabien Lamoureux
- Department of Pharmacology, Toxicology and Pharmacogenetics, Rouen University Hospital, Rouen, 76000, France.,Institut National de la Santé et de la Recherche Médicale U1096, Université de Rouen Normandie, Rouen, 76000, France
| | - Vladimir Ferrafiat
- Intensive Care Unit, Department of Child and Adolescent Psychiatry, Marseille-Nord University Hospital, Marseille, 13000, France.,Reference Center for Inborn Errors of Metabolism, La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Marseille, 13000, France
| |
Collapse
|
11
|
Ways to Improve Insights into Clindamycin Pharmacology and Pharmacokinetics Tailored to Practice. Antibiotics (Basel) 2022; 11:antibiotics11050701. [PMID: 35625345 PMCID: PMC9137603 DOI: 10.3390/antibiotics11050701] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Given the increase in bacterial resistance and the decrease in the development of new antibiotics, the appropriate use of old antimicrobials has become even more compulsory. Clindamycin is a lincosamide antibiotic approved for adults and children as a drug of choice for systemic treatment of staphylococcal, streptococcal, and gram-positive anaerobic bacterial infections. Because of its profile and high bioavailability, it is commonly used as part of an oral multimodal alternative for prolonged parenteral antibiotic regimens, e.g., to treat bone and joint or prosthesis-related infections. Clindamycin is also frequently used for (surgical) prophylaxis in the event of beta-lactam allergy. Special populations (pediatrics, pregnant women) have altered cytochrome P450 (CYP)3A4 activity. As clindamycin is metabolized by the CYP3A4/5 enzymes to bioactive N-demethyl and sulfoxide metabolites, knowledge of the potential relevance of the drug’s metabolites and disposition in special populations is of interest. Furthermore, drug–drug interactions derived from CYP3A4 inducers and inhibitors, and the data on the impact of the disease state on the CYP system, are still limited. This narrative review provides a detailed survey of the currently available literature on pharmacology and pharmacokinetics and identifies knowledge gaps (special patient population, drug–drug, and drug–disease interactions) to describe a research strategy for precision medicine.
Collapse
|
12
|
Applications, Challenges, and Outlook for PBPK Modeling and Simulation: A Regulatory, Industrial and Academic Perspective. Pharm Res 2022; 39:1701-1731. [PMID: 35552967 DOI: 10.1007/s11095-022-03274-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
Several regulatory guidances on the use of physiologically based pharmacokinetic (PBPK) analyses and physiologically based biopharmaceutics model(s) (PBBM(s)) have been issued. Workshops are routinely held, demonstrating substantial interest in applying these modeling approaches to address scientific questions in drug development. PBPK models and PBBMs have remarkably contributed to model-informed drug development (MIDD) such as anticipating clinical PK outcomes affected by extrinsic and intrinsic factors in general and specific populations. In this review, we proposed practical considerations for a "base" PBPK model construction and development, summarized current status, challenges including model validation and gaps in system models, and future perspectives in PBPK evaluation to assess a) drug metabolizing enzyme(s)- or drug transporter(s)- mediated drug-drug interactions b) dosing regimen prediction, sampling timepoint selection and dose validation in pediatric patients from newborns to adolescents, c) drug exposure in patients with renal and/or and hepatic organ impairment, d) maternal-fetal drug disposition during pregnancy, and e) pH-mediated drug-drug interactions in patients treated with proton pump inhibitors/acid-reducing agents (PPIs/ARAs) intended for gastric protection. Since PBPK can simulate outcomes in clinical studies with enrollment challenges or ethical issues, the impact of PBPK models on waivers and how to strengthen study waiver is discussed.
Collapse
|
13
|
Gatti M, Pea F. The Cytokine Release Syndrome and/or the Proinflammatory Cytokines as Underlying Mechanisms of Downregulation of Drug Metabolism and Drug Transport: A Systematic Review of the Clinical Pharmacokinetics of Victim Drugs of this Drug-Disease Interaction Under Different Clinical Conditions. Clin Pharmacokinet 2022; 61:1519-1544. [PMID: 36059001 PMCID: PMC9441320 DOI: 10.1007/s40262-022-01173-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE An ever-growing body of evidence supports the impact of cytokine modulation on the patient's phenotypic drug response. The aim of this systematic review was to analyze the clinical studies that assessed the pharmacokinetics of victim drugs of this drug-disease interaction in the presence of different scenarios of cytokine modulation in comparison with baseline conditions. METHODS We conducted a systematic review by searching the PubMed-MEDLINE database from inception until February 2022 to retrieve prospective and/or retrospective observational studies, population pharmacokinetic studies, phase I studies, and/or case series/reports that investigated the impact of cytokine modulation on the pharmacokinetic behavior of victim drugs. Only studies providing quantitative pharmacokinetic data of victim drugs by comparing normal status versus clinical conditions with documented cytokine modulation or by assessing the influence of anti-inflammatory biological agents on metabolism and/or transport of victim drugs were included. RESULTS Overall, 26 studies were included. Rheumatoid arthritis (6/26; 23.1%) and sepsis (5/26; 19.2%) were the two most frequently investigated pro-inflammatory clinical scenarios. The victim drug most frequently assessed was midazolam (14/26; 53.8%; as a probe for cytochrome P450 [CYP] 3A4). Cytokine modulation showed a moderate inhibitory effect on CYP3A4-mediated metabolism (area under the concentration-time curve increase and/or clearance decrease between 1.98-fold and 2.59-fold) and a weak-to-moderate inhibitory effect on CYP1A2, CYP2C9, and CYP2C19-mediated metabolism (in the area under the concentration-time curve increase or clearance decrease between 1.29-fold and 1.97-fold). Anti-interleukin-6 agents showed remarkable activity in counteracting downregulation of CYP3A4-mediated activity (increase in the area under the concentration-time curve between 1.75-fold and 2.56-fold). CONCLUSIONS Cytokine modulation may cause moderate or weak-to-moderate downregulation of metabolism/transport of victim drugs, and this may theoretically have relevant clinical consequences.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy ,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy ,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
14
|
Lenoir C, Rollason V, Desmeules JA, Samer CF. Influence of Inflammation on Cytochromes P450 Activity in Adults: A Systematic Review of the Literature. Front Pharmacol 2021; 12:733935. [PMID: 34867341 PMCID: PMC8637893 DOI: 10.3389/fphar.2021.733935] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Available in-vitro and animal studies indicate that inflammation impacts cytochromes P450 (CYP) activity via multiple and complex transcriptional and post-transcriptional mechanisms, depending on the specific CYP isoforms and the nature of inflammation mediators. It is essential to review the current published data on the impact of inflammation on CYP activities in adults to support drug individualization based on comorbidities and diseases in clinical practice. Methods: This systematic review was conducted in PubMed through 7th January 2021 looking for articles that investigated the consequences of inflammation on CYP activities in adults. Information on the source of inflammation, victim drugs (and CYPs involved), effect of disease-drug interaction, number of subjects, and study design were extracted. Results: The search strategy identified 218 studies and case reports that met our inclusion criteria. These articles were divided into fourteen different sources of inflammation (such as infection, autoimmune diseases, cancer, therapies with immunomodulator…). The impact of inflammation on CYP activities appeared to be isoform-specific and dependent on the nature and severity of the underlying disease causing the inflammation. Some of these drug-disease interactions had a significant influence on drug pharmacokinetic parameters and on clinical management. For example, clozapine levels doubled with signs of toxicity during infections and the concentration ratio between clopidogrel's active metabolite and clopidogrel is 48-fold lower in critically ill patients. Infection and CYP3A were the most cited perpetrator of inflammation and the most studied CYP, respectively. Moreover, some data suggest that resolution of inflammation results in a return to baseline CYP activities. Conclusion: Convincing evidence shows that inflammation is a major factor to be taken into account in drug development and in clinical practice to avoid any efficacy or safety issues because inflammation modulates CYP activities and thus drug pharmacokinetics. The impact is different depending on the CYP isoform and the inflammatory disease considered. Moreover, resolution of inflammation appears to result in a normalization of CYP activity. However, some results are still equivocal and further investigations are thus needed.
Collapse
Affiliation(s)
- Camille Lenoir
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care, and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Victoria Rollason
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care, and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jules A Desmeules
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care, and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Caroline F Samer
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care, and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|