1
|
Pérez-Ramos L, Ibarra-Gómez L, Lubomirov R, García-Cremades M, Asín-Prieto E, Fudio S, Zubiaur P. Description and Modeling of Relevant Demographic and Laboratory Variables in a Large Oncology Cohort to Generate Virtual Populations. Pharmaceutics 2024; 16:1548. [PMID: 39771527 PMCID: PMC11728769 DOI: 10.3390/pharmaceutics16121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Pathophysiological variability in patients with cancer is associated with differences in responses to pharmacotherapy. In this work, we aimed to describe the demographic characteristics and hematological, biochemical, and coagulation variables in a large oncology cohort and to develop, optimize, and provide open access to modeling equations for the estimation of variables potentially relevant in pharmacokinetic modeling. Methods: Using data from 1793 patients with cancer, divided into training (n = 1259) and validation (n = 534) datasets, a modeling network was developed and used to simulate virtual oncology populations. All analyses were conducted in RStudio 4.3.2 Build 494. Results: The simulation network based on sex, age, biogeographic origin/ethnicity, and tumor type (fixed or primary factors) was successfully validated, able to predict age, height, weight, alpha-1-acid glycoprotein, albumin, hemoglobin, C-reactive protein and lactate dehydrogenase serum levels, platelet-lymphocyte and neutrophil-lymphocyte ratios, and hematocrit. This network was then successfully extrapolated to simulate the laboratory variables of eight oncology populations (n = 1200); only East Asians, Sub-Saharan Africans, Europeans, only males, females, patients with an ECOG performance status equal to 2, and only patients with pancreas cancer or ovarian cancer. Conclusions: this network constitutes a valuable tool to predict relevant characteristics/variables of patients with cancer, which may be useful in the evaluation and prediction of pharmacokinetics in virtual oncology populations, as well as for model-based optimization of oncology treatments.
Collapse
Affiliation(s)
- Laura Pérez-Ramos
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| | - Laura Ibarra-Gómez
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| | - Rubin Lubomirov
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| | - María García-Cremades
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Eduardo Asín-Prieto
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| | - Salvador Fudio
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| | - Pablo Zubiaur
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| |
Collapse
|
2
|
Wen J, McCann S, Balevic SJ, Muller WJ, Hornik CD, Autmizguine J, Anderson SG, Payne EH, Turdalieva S, Gonzalez D. Pharmacokinetics of Dexamethasone in Children and Adolescents with Obesity. J Clin Pharmacol 2024; 64:1491-1504. [PMID: 39120865 PMCID: PMC11598673 DOI: 10.1002/jcph.6108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Dexamethasone is a synthetic glucocorticoid approved for treating disorders of various organ systems in both adult and pediatric populations. Currently, approved pediatric dosing recommendations are weight-based, but it is unknown whether differences in dexamethasone drug disposition and exposure exist for children with obesity. This study aimed to develop a population pharmacokinetic (PopPK) model for dexamethasone with data collected from children with obesity. Dexamethasone was given as either IV or oral/enteral administration, and a salt factor correction was used for dexamethasone sodium phosphate injection. A PopPK analysis using dexamethasone plasma concentration versus time was performed using the software NONMEM. A virtual population of 1000 children with obesity across three age groups was generated for dosing simulations. Data from 59 study participants with 82 PK plasma samples were used in the PopPK analysis. A one-compartment model with first-order absorption and the inclusion of total body weight as a covariate characterized the data. No other covariates were included in the PopPK model. Single and multiple IV dose(s) of 0.5 and 1 mg/kg every 8 h resulted in 68% or more of virtual children with obesity attaining simulated exposures that were within exposure ranges previously reported in adult studies. In conclusion, this was the first study to characterize dexamethasone's PopPK in children with obesity. Simulation results suggest that virtual children with obesity receiving oral doses of 0.5 and 1 mg/kg had generally comparable dexamethasone exposures as adult estimates. Additional studies are needed to characterize the dexamethasone's target exposure in children.
Collapse
Affiliation(s)
- Jiali Wen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sean McCann
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - William J. Muller
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Chi D. Hornik
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Julie Autmizguine
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine, Monetreal, Quebec, Canada
| | | | | | | | - Daniel Gonzalez
- Duke Clinical Research Institute, Durham, NC, USA
- Division of Clinical Pharmacology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Zajicek A. Creativity in Pediatric Clinical Pharmacology: Study Design and Oral Dosage Forms. J Pediatr Pharmacol Ther 2024; 29:564-569. [PMID: 39659863 PMCID: PMC11627571 DOI: 10.5863/1551-6776-29.6.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Anne Zajicek
- Program Director, Office of Clinical Research Education and Collaboration Outreach, Office of Intramural Research, Office of the Director, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Yang R, Ding Q, Ding J, Zhu L, Pei Q. Physiologically based pharmacokinetic modeling in obesity: applications and challenges. Expert Opin Drug Metab Toxicol 2024:1-12. [PMID: 39101366 DOI: 10.1080/17425255.2024.2388690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Rising global obesity rates pose a threat to people's health. Obesity causes a series of pathophysiologic changes, making the response of patients with obesity to drugs different from that of nonobese, thus affecting the treatment efficacy and even leading to adverse events. Therefore, understanding obesity's effects on pharmacokinetics is essential for the rational use of drugs in patients with obesity. AREAS COVERED Articles related to physiologically based pharmacokinetic (PBPK) modeling in patients with obesity from inception to October 2023 were searched in PubMed, Embase, Web of Science and the Cochrane Library. This review outlines PBPK modeling applications in exploring factors influencing obesity's effects on pharmacokinetics, guiding clinical drug development and evaluating and optimizing clinical use of drugs in patients with obesity. EXPERT OPINION Obesity-induced pathophysiologic alterations impact drug pharmacokinetics and drug-drug interactions (DDIs), altering drug exposure. However, there is a lack of universal body size indices or quantitative pharmacology models to predict the optimal for the patients with obesity. Therefore, dosage regimens for patients with obesity must consider individual physiological and biochemical information, and clinically individualize therapeutic drug monitoring for highly variable drugs to ensure effective drug dosing and avoid adverse effects.
Collapse
Affiliation(s)
- Ruwei Yang
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| | - Qin Ding
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| | - Junjie Ding
- Center for Tropical Medicine and Global Health, Oxford Medical School, Oxford, UK
| | - Liyong Zhu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Pei
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Thompson EJ, Jeong A, Helfer VE, Shakhnovich V, Edginton A, Balevic SJ, James LP, Collier DN, Anand R, Gonzalez D. Physiologically-based pharmacokinetic modeling of pantoprazole to evaluate the role of CYP2C19 genetic variation and obesity in the pediatric population. CPT Pharmacometrics Syst Pharmacol 2024; 13:1394-1408. [PMID: 38837864 PMCID: PMC11330186 DOI: 10.1002/psp4.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Pantoprazole is a proton pump inhibitor indicated for the treatment of gastroesophageal reflux disease, a condition that disproportionately affects children with obesity. Appropriately dosing pantoprazole in children with obesity requires understanding the body size metric that best guides dosing, but pharmacokinetic (PK) trials using traditional techniques are limited by the need for larger sample sizes and frequent blood sampling. Physiologically-based PK (PBPK) models are an attractive alternative that can account for physiologic-, genetic-, and drug-specific changes without the need for extensive clinical trial data. In this study, we explored the effect of obesity on pantoprazole PK and evaluated label-suggested dosing in this population. An adult PBPK model for pantoprazole was developed using data from the literature and accounting for genetic variation in CYP2C19. The adult PBPK model was scaled to children without obesity using age-associated changes in anatomical and physiological parameters. Lastly, the pediatric PBPK model was expanded to children with obesity. Three pantoprazole dosing strategies were evaluated: 1 mg/kg total body weight, 1.2 mg/kg lean body weight, and US Food and Drug Administration-recommended weight-tiered dosing. Simulated concentration-time profiles from our model were compared with data from a prospective cohort study (PAN01; NCT02186652). Weight-tiered dosing resulted in the most (>90%) children with pantoprazole exposures in the reference range, regardless of obesity status or CYP2C19 phenotype, confirming results from previously published population PK models. PBPK models may allow for the efficient study of physiologic and developmental effects of obesity on PK in special populations where clinical trial data may be limited.
Collapse
Affiliation(s)
- Elizabeth J. Thompson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
| | - Angela Jeong
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Victória E. Helfer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Valentina Shakhnovich
- University of Missouri‐Kansas City School of MedicineKansas CityMissouriUSA
- Divisions of Gastroenterology, Hepatology and Nutrition & Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas CityKansas CityMissouriUSA
- Ironwood PharmaceuticalsBostonMassachusettsUSA
| | - Andrea Edginton
- School of PharmacyUniversity of WaterlooWaterlooOntarioCanada
| | - Stephen J. Balevic
- Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
| | - Laura P. James
- Department of PediatricsUniversity of Arkansas for Medical Sciences, Section of Clinical Pharmacology and Toxicology, Arkansas Children's HospitalLittle RockArkansasUSA
| | - David N. Collier
- Department of Pediatrics and Center for Health Disparities, Division of General PediatricsEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | | | - Daniel Gonzalez
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Division of Clinical Pharmacology, Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
6
|
Meesters K, Balbas-Martinez V, Allegaert K, Downes KJ, Michelet R. Personalized Dosing of Medicines for Children: A Primer on Pediatric Pharmacometrics for Clinicians. Paediatr Drugs 2024; 26:365-379. [PMID: 38755515 DOI: 10.1007/s40272-024-00633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
The widespread use of drugs for unapproved purposes remains common in children, primarily attributable to practical, ethical, and financial constraints associated with pediatric drug research. Pharmacometrics, the scientific discipline that involves the application of mathematical models to understand and quantify drug effects, holds promise in advancing pediatric pharmacotherapy by expediting drug development, extending applications, and personalizing dosing. In this review, we delineate the principles of pharmacometrics, and explore its clinical applications and prospects. The fundamental aspect of any pharmacometric analysis lies in the selection of appropriate methods for quantifying pharmacokinetics and pharmacodynamics. Population pharmacokinetic modeling is a data-driven method ('top-down' approach) to approximate population-level pharmacokinetic parameters, while identifying factors contributing to inter-individual variability. Model-informed precision dosing is increasingly used to leverage population pharmacokinetic models and patient data, to formulate individualized dosing recommendations. Physiologically based pharmacokinetic models integrate physicochemical drug properties with biological parameters ('bottom-up approach'), and is particularly valuable in situations with limited clinical data, such as early drug development, assessing drug-drug interactions, or adapting dosing for patients with specific comorbidities. The effective implementation of these complex models hinges on strong collaboration between clinicians and pharmacometricians, given the pivotal role of data availability. Promising advancements aimed at improving data availability encompass innovative techniques such as opportunistic sampling, minimally invasive sampling approaches, microdialysis, and in vitro investigations. Additionally, ongoing research efforts to enhance measurement instruments for evaluating pharmacodynamics responses, including biomarkers and clinical scoring systems, are expected to significantly bolster our capacity to understand drug effects in children.
Collapse
Affiliation(s)
- Kevin Meesters
- Department of Pediatrics, University of British Columbia, 4480 Oak Street, Vancouver, BC, V6H 3V4, Canada.
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| | | | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Kevin J Downes
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
- qPharmetra LLC, Berlin, Germany
| |
Collapse
|
7
|
Carreño FO, Gerhart JG, Helfer VE, Sinha J, Kumar KR, Kirkpatrick C, Hornik CP, Gonzalez D. Characterizing Enoxaparin's Population Pharmacokinetics to Guide Dose Individualization in the Pediatric Population. Clin Pharmacokinet 2024; 63:999-1014. [PMID: 38955947 PMCID: PMC11288483 DOI: 10.1007/s40262-024-01388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Pediatric dosing of enoxaparin was derived based on extrapolation of the adult therapeutic range to children. However, a large fraction of children do not achieve therapeutic anticoagulation with initial dosing. We aim to use real-world anti-Xa data obtained from children receiving enoxaparin per standard of care to characterize the population pharmacokinetics (PopPK).Author names: Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Also, kindly confirm the details in the metadata are correct.The author names are accurately presented and the metadata are correct. METHODS: A PopPK analysis was performed using NONMEM, and a stepwise covariate modeling approach was applied for the covariate selection. The final PopPK model, developed with data from 1293 patients ranging in age from 1 day to 18 years, was used to simulate enoxaparin subcutaneous dosing for prophylaxis and treatment based on total body weight (0-18 years, TBW) or fat-free mass (2-18 years, FFM). Simulated exposures in children with obesity (body mass index percentile ≥95th percentile) were compared with those without obesity. RESULTS A linear, one-compartment PopPK model that included allometric scaling using TBW (<2 years) or FFM (≥2 years) characterized the enoxaparin pharmacokinetic data. In addition, serum creatinine was identified as a significant covariate influencing clearance. Simulations indicated that in patients aged <2 years, the recommended 1.5 mg/kg TBW-based dosing achieves therapeutic simulated concentrations. In pediatric patients aged ≥2 years, the recommended 1.0 mg/kg dose resulted in exposures more comparable in children with and without obesity when FFM weight-based dosing was applied. CONCLUSION Using real-world data and PopPK modeling, enoxaparin's pharmacokinetics were characterized in pediatric patients. Using FFM and twice-daily dosing might reduce the risk of overdosing, especially in children with obesity.
Collapse
Affiliation(s)
- Fernando O Carreño
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline G Gerhart
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victória E Helfer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jaydeep Sinha
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karan R Kumar
- Duke Clinical Research Institute, PO Box 17969, Durham, NC, 27715, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Carl Kirkpatrick
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Christoph P Hornik
- Duke Clinical Research Institute, PO Box 17969, Durham, NC, 27715, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Daniel Gonzalez
- Duke Clinical Research Institute, PO Box 17969, Durham, NC, 27715, USA.
- Division of Clinical Pharmacology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Maglalang PD, Sinha J, Zimmerman K, McCann S, Edginton A, Hornik CP, Hornik CD, Muller WJ, Al-Uzri A, Meyer M, Chen JY, Anand R, Perrin EM, Gonzalez D. Application of Physiologically Based Pharmacokinetic Modeling to Characterize the Effects of Age and Obesity on the Disposition of Levetiracetam in the Pediatric Population. Clin Pharmacokinet 2024; 63:885-899. [PMID: 38814425 PMCID: PMC11225543 DOI: 10.1007/s40262-024-01367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Levetiracetam is an antiseizure medication used for several seizure types in adults and children aged 1 month and older; however, due to a lack of data, pharmacokinetic (PK) variability of levetiracetam is not adequately characterized in certain populations, particularly neonates, children younger than 2 years of age, and children older than 2 years of age with obesity. OBJECTIVE This study aimed to address the gap by leveraging PK data from two prospective standard-of-care pediatric trials (n = 88) covering an age range from 1 month to 19 years, including those with obesity (64%), and applying a physiologically based PK (PBPK) modeling framework. METHODS A published PBPK model of levetiracetam for children aged 2 years and older was extended to pediatric patients younger than 2 years of age and patients older than 2 years of age with obesity by accounting for the obesity and age-related changes in PK using PK-Sim® software. The prospective pediatric data, along with the literature data for neonates and children younger than 2 years of age, were used to evaluate the extended PBPK models. RESULTS Overall, 82.4% of data fell within the 90% interval of model-predicted concentrations, with an average fold error within twofold of the accepted criteria. PBPK modeling revealed that children with obesity had lower weight-normalized clearances (0.053 L/h/kg) on average than children without obesity (0.063 L/h/kg). The effect of maturation was well-characterized, resulting in comparable PBPK-simulated, weight-normalized clearances for neonates and children younger than 2 years of age reported from the literature. CONCLUSIONS PBPK modeling simulations revealed that the current US FDA-labeled pediatric dosing regimen listed in the prescribing information can produce the required exposure of levetiracetam in these target populations with dose adjustments for children with obesity aged 4 years to younger than 16 years.
Collapse
Affiliation(s)
- Patricia D Maglalang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jaydeep Sinha
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kanecia Zimmerman
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, PO Box 17969, Durham, NC, 27715, USA
| | - Sean McCann
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea Edginton
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Christoph P Hornik
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, PO Box 17969, Durham, NC, 27715, USA
| | - Chi D Hornik
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, PO Box 17969, Durham, NC, 27715, USA
| | - William J Muller
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Amira Al-Uzri
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | - Eliana M Perrin
- Department of Pediatrics, School of Medicine and School of Nursing, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Gonzalez
- Duke Clinical Research Institute, PO Box 17969, Durham, NC, 27715, USA.
- Division of Clinical Pharmacology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
9
|
Burhanuddin K, Mohammed A, Badhan RKS. The Impact of Paediatric Obesity on Drug Pharmacokinetics: A Virtual Clinical Trials Case Study with Amlodipine. Pharmaceutics 2024; 16:489. [PMID: 38675150 PMCID: PMC11053426 DOI: 10.3390/pharmaceutics16040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of paediatric obesity continues to rise worldwide and contributes to a range of diseases including cardiovascular disease. Obesity in children has been shown to impact upon the plasma concentrations of various compounds, including amlodipine. Nonetheless, information on the influence of obesity on amlodipine pharmacokinetics and the need for dose adjustment has not been studied previously. This study applied the physiologically based pharmacokinetic modelling and established a paediatric obesity population to assess the impact of obesity on amlodipine pharmacokinetics in children and explore the possible dose adjustments required to reach the same plasma concentration as non-obese paediatrics. The difference in predicted maximum concentration (Cmax) and area under the curve (AUC) were significant between children with and without obesity across the age group 2 to 18 years old when a fixed-dose regimen was used. On the contrary, a weight-based dose regimen showed no difference in Cmax between obese and non-obese from 2 to 9 years old. Thus, when a fixed-dose regimen is to be administered, a 1.25- to 1.5-fold increase in dose is required in obese children to achieve the same Cmax concentration as non-obese children, specifically for children aged 5 years and above.
Collapse
Affiliation(s)
| | | | - Raj K. S. Badhan
- School of Pharmacy, College of Health and Life Science, Aston University, Birmingham B4 7ET, UK; (K.B.); (A.M.)
| |
Collapse
|
10
|
Maglalang PD, Wen J, Hornik CP, Gonzalez D. Sources of pharmacokinetic and pharmacodynamic variability and clinical pharmacology studies of antiseizure medications in the pediatric population. Clin Transl Sci 2024; 17:e13793. [PMID: 38618871 PMCID: PMC11017206 DOI: 10.1111/cts.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Multiple treatment options exist for children with epilepsy, including surgery, dietary therapies, neurostimulation, and antiseizure medications (ASMs). ASMs are the first line of therapy, and more than 30 ASMs have U.S. Food and Drug Administration (FDA) approval for the treatment of various epilepsy and seizure types in children. Given the extensive FDA approval of ASMs in children, it is crucial to consider how the physiological and developmental changes throughout childhood may impact drug disposition. Various sources of pharmacokinetic (PK) variability from different extrinsic and intrinsic factors such as patients' size, age, drug-drug interactions, and drug formulation could result in suboptimal dosing of ASMs. Barriers exist to conducting clinical pharmacological studies in neonates, infants, and children due to ethical and practical reasons, limiting available data to fully characterize these drugs' disposition and better elucidate sources of PK variability. Modeling and simulation offer ways to circumvent traditional and intensive clinical pharmacology methods to address gaps in epilepsy and seizure management in children. This review discusses various physiological and developmental changes that influence the PK and pharmacodynamic (PD) variability of ASMs in children, and several key ASMs will be discussed in detail. We will also review novel trial designs in younger pediatric populations, highlight the role of extrapolation of efficacy in epilepsy, and the use of physiologically based PK modeling as a tool to investigate sources of PK/PD variability in children. Finally, we will conclude with current challenges and future directions for optimizing the efficacy and safety of these drugs across the pediatric age spectrum.
Collapse
Affiliation(s)
- Patricia D. Maglalang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jiali Wen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Christoph P. Hornik
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Daniel Gonzalez
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Division of Clinical Pharmacology, Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
11
|
Dabke A, Ghosh S, Dabke P, Sawant K, Khopade A. Revisiting the in-vitro and in-vivo considerations for in-silico modelling of complex injectable drug products. J Control Release 2023; 360:185-211. [PMID: 37353161 DOI: 10.1016/j.jconrel.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Complex injectable drug products (CIDPs) have often been developed to modulate the pharmacokinetics along with efficacy for therapeutic agents used for remediation of chronic disorders. The effective development of CIDPs has exhibited complex kinetics associated with multiphasic drug release from the prepared formulations. Consequently, predictability of pharmacokinetic modelling for such CIDPs has been difficult and there is need for advanced complex computational models for the establishment of accurate prediction models for in-vitro-in-vivo correlation (IVIVC). The computational modelling aims at supplementing the existing knowledge with mathematical equations to develop formulation strategies for generation of predictable and discriminatory IVIVC. Such an approach would help in reduction of the burden of effect of hidden factors on preclinical to clinical translations. Computational tools like physiologically based pharmacokinetics (PBPK) modelling have combined physicochemical and physiological properties along with IVIVC characteristics of clinically used formulations. Such techniques have helped in prediction and understanding of variability in pharmacodynamic parameters of potential generic products to clinically used formulations like Doxil®, Ambisome®, Abraxane® in healthy and diseased population using mathematical equations. The current review highlights the important formulation characteristics, in-vitro, preclinical in-vivo aspects which need to be considered while developing a stimulatory predictive PBPK model in establishment of an IVIVC and in-vitro-in-vivo relationship (IVIVR).
Collapse
Affiliation(s)
- Amit Dabke
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390001, India; Formulation Research & Development- Biopharmaceutics, Sun Pharmaceutical Industries Ltd, Vadodara, Gujarat 390012, India
| | - Saikat Ghosh
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390001, India
| | - Pallavi Dabke
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390001, India
| | - Krutika Sawant
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390001, India.
| | - Ajay Khopade
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390001, India; Formulation Research & Development- Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, Gujarat 390012, India.
| |
Collapse
|
12
|
Anderson BJ, Cortinez LI. Perioperative Acetaminophen Dosing in Obese Children. CHILDREN 2023; 10:children10040625. [PMID: 37189874 DOI: 10.3390/children10040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Acetaminophen is a commonly used perioperative analgesic drug in children. The use of a preoperative loading dose achieves a target concentration of 10 mg/L associated with a target analgesic effect that is 2.6 pain units (visual analogue scale 1–10). Postoperative maintenance dosing is used to keep this effect at a steady-state concentration. The loading dose in children is commonly prescribed per kilogram. That dose is consistent with the linear relationship between the volume of distribution and total body weight. Total body weight is made up of both fat and fat-free mass. The fat mass has little influence on the volume of distribution of acetaminophen but fat mass should be considered for maintenance dosing that is determined by clearance. The relationship between the pharmacokinetic parameter, clearance, and size is not linear. A number of size metrics (e.g., fat-free and normal fat mass, ideal body weight and lean body weight) have been proposed to scale clearance and all consequent dosing schedules recognize curvilinear relationships between clearance and size. This relationship can be described using allometric theory. Fat mass also has an indirect influence on clearance that is independent of its effects due to increased body mass. Normal fat mass, used in conjunction with allometry, has proven a useful size metric for acetaminophen; it is calculated using fat-free mass and a fraction (Ffat) of the additional mass contributing to total body weight. However, the Ffat for acetaminophen is large (Ffat = 0.82), pharmacokinetic and pharmacodynamic parameter variability high, and the concentration–response slope gentle at the target concentration. Consequently, total body weight with allometry is acceptable for the calculation of maintenance dose. The dose of acetaminophen is tempered by concerns about adverse effects, notably hepatotoxicity associated with use after 2–3 days at doses greater than 90 mg/kg/day.
Collapse
|
13
|
Small BG, Johnson TN, Rowland Yeo K. Another Step Toward Qualification of Pediatric Physiologically Based Pharmacokinetic Models to Facilitate Inclusivity and Diversity in Pediatric Clinical Studies. Clin Pharmacol Ther 2023; 113:735-745. [PMID: 36306419 DOI: 10.1002/cpt.2777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Robust prediction of pharmacokinetics (PKs) in pediatric subjects of diverse ages, ethnicities, and morbidities is critical. Qualification of pediatric physiologically-based pharmacokinetic (P-PBPK) models is an essential step toward enabling precision dosing of these vulnerable groups. Twenty-two manuscripts involving P-PBPK predictions and corresponding observed PK data (e.g., area under the curve and clearance) for 22 small-molecule compounds metabolized by CYP (3A4, 1A2, and 2C9), UGT (1A9 and 2B7), FMO3, renal, non-renal, and complex routes were identified; ratios of mean predicted/observed (P/O) PK parameters were calculated. Seventy-eight of 115 mean predicted PK parameters were within 0.8 to 1.25-fold of observed data, 98 within 0.67 to 1.5-fold, 109 within 2-fold, and only 6 P/O ratios were outside of these bounds. A set of 12 CYP3A4-metabolized compounds and a set of 6 metabolized by other enzymes, CYP1A2 (1 compound), CYP2C9 (2 compounds), UGT1A9 (1 compound) and UGT2B7 (2 compounds) had 56 of 59 and 22 of 25 mean P/O ratios, respectively, that fell within the > 0.5 and < 2.0-fold boundaries. For compounds covering renal, non-renal, complex, and FM03 routes of elimination, 29 of 31 mean P/O ratios fell within the 0.67 to 1.5-fold bounds, including 4 of 5 P/O ratios from newborns. P-PBPK modeling and simulation is a strategic component of the complement of precision dosing methods and has a vital role to play in dose adjustment in vulnerable pediatric populations, such as those with disease or in different ethnic groups. Qualification of such models is an essential step toward acceptance of this methodology by regulators.
Collapse
Affiliation(s)
- Ben G Small
- Certara UK Limited (Simcyp Division), Sheffield, UK
| | | | | |
Collapse
|
14
|
Jafri F, Taylor ZL, Gonzalez D, Shakhnovich V. Effects of obesity on the pharmacology of proton pump inhibitors: current understanding and future implications for patient care and research. Expert Opin Drug Metab Toxicol 2023; 19:1-11. [PMID: 36800927 PMCID: PMC10065909 DOI: 10.1080/17425255.2023.2178897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
INTRODUCTION In the United States, obesity affects approximately ⅖ adults and ⅕ children, leading to increased risk for comorbidities, like gastroesophageal reflux disease (GERD), treated increasingly with proton pump inhibitors (PPIs). Currently, there are no clinical guidelines to inform PPI dose selection for obesity, with sparse data regarding whether dose augmentation is necessary. AREAS COVERED We provide a review of available literature regarding the pharmacokinetics (PK), pharmacodynamics (PD), and/or metabolism of PPIs in children and adults with obesity, as a step toward informing PPI dose selection. EXPERT OPINION Published PK data in adults and children are limited to first-generation PPIs and point toward reduced apparent oral drug clearance in obesity, with equipoise regarding obesity impact on drug absorption. Available PD data are sparse, conflicting, and limited to adults. No studies are available to inform the PPI PK→PD relationship in obesity and if/how it differs compared to individuals without obesity. In the absence of data, best practice may be to dose PPIs based on CYP2C19 genotype and lean body weight, so as to avoid systemic overexposure and potential toxicities, while monitoring closely for efficacy.
Collapse
Affiliation(s)
- Farwa Jafri
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO
| | - Zachary L. Taylor
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valentina Shakhnovich
- University of Missouri-Kansas City School of Medicine, Kansas City, MO
- Children’s Mercy Kansas City, Kansas City, MO
- Center for Children’s Healthy Lifestyles and Nutrition, Kansas City, MO
| |
Collapse
|
15
|
Zhou X, Dun J, Chen X, Xiang B, Dang Y, Cao D. Predicting the correct dose in children: Role of computational Pediatric Physiological-based pharmacokinetics modeling tools. CPT Pharmacometrics Syst Pharmacol 2022; 12:13-26. [PMID: 36330677 PMCID: PMC9835135 DOI: 10.1002/psp4.12883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
The pharmacokinetics (PKs) and safety of medications in particular groups can be predicted using the physiologically-based pharmacokinetic (PBPK) model. Using the PBPK model may enable safe pediatric clinical trials and speed up the process of new drug research and development, especially for children, a population in which it is relatively difficult to conduct clinical trials. This review summarizes the role of pediatric PBPK (P-PBPK) modeling software in dose prediction over the past 6 years and briefly introduces the process of general P-PBPK modeling. We summarized the theories and applications of this software and discussed the application trends and future perspectives in the area. The modeling software's extensive use will undoubtedly make it easier to predict dose prediction for young patients.
Collapse
Affiliation(s)
- Xu Zhou
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Jiening Dun
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Xiao Chen
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Bai Xiang
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Yunjie Dang
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Deying Cao
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| |
Collapse
|
16
|
Current Aspects of Pediatric Pharmacokinetics and Pharmacodynamics of Antimicrobials in Japan: Importance of the Promotion of Population PK/PD Analysis. Pediatr Infect Dis J 2022; 41:e418-e423. [PMID: 35763684 DOI: 10.1097/inf.0000000000003622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pharmacologic knowledge is important for pediatricians conducting feasible pharmacokinetic or pharmacodynamic (PK/PD) studies or applying effective antimicrobial therapies in children. Because of the difficulties in conducting PK/PD studies in children, antimicrobial PK/PD data in children are still limited. To fill in the lack of knowledge, promotion of population PK/PD analysis, which allows us to handle sparse sampling data from individual patients, is important because it is considered a suitable methodology to conduct PK/PD studies in children with limited blood drug concentration data for PK/PD analysis. Population PK/PD analysis is also useful in the clinical setting to provide individualized optimal dosage for each patient with various conditions. Here we summarized the current aspects of pediatric PK/PD studies of antimicrobials in Japan from clinical and research perspectives, specifically focusing on the importance of population PK/PD analysis.
Collapse
|
17
|
Gaeta F, Conti V, Pepe A, Vajro P, Filippelli A, Mandato C. Drug dosing in children with obesity: a narrative updated review. Ital J Pediatr 2022; 48:168. [PMID: 36076248 PMCID: PMC9454408 DOI: 10.1186/s13052-022-01361-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood obesity and its associated comorbidities are highly prevalent diseases that may add to any other possible health problem commonly affecting the pediatric age. Uncertainties may arise concerning drug dosing when children with obesity need pharmacologic therapies. In general, in pediatric practice, there is a tendency to adapt drug doses to a child's total body weight. However, this method does not consider the pharmacological impact that a specific drug can have under a two-fold point of view, that is, across various age and size groups as well. Moreover, there is a need for a therapeutic approach, as much as possible tailored considering relevant interacting aspects, such as modification in metabolomic profile, drug pharmacokinetics and pharmacodynamics. Taking into account the peculiar differences between children with overweight/obesity and those who are normal weight, the drug dosage in the case of obesity, cannot be empirically determined solely by the per kg criterion. In this narrative review, we examine the pros and cons of several drug dosing methods used when dealing with children who are affected also by obesity, focusing on specific aspects of some of the drugs most frequently prescribed in real-world practice by general pediatricians and pediatric subspecialists.
Collapse
Affiliation(s)
- Francesca Gaeta
- Pediatrics Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Valeria Conti
- Pharmacology Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Angela Pepe
- Pediatrics Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Amelia Filippelli
- Pharmacology Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Claudia Mandato
- Pediatrics Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy.
| |
Collapse
|
18
|
Gerhart JG, Carreño FO, Loop MS, Lee CR, Edginton AN, Sinha J, Kumar KR, Kirkpatrick CM, Hornik CP, Gonzalez D. Use of Real-World Data and Physiologically-Based Pharmacokinetic Modeling to Characterize Enoxaparin Disposition in Children With Obesity. Clin Pharmacol Ther 2022; 112:391-403. [PMID: 35451072 PMCID: PMC9504927 DOI: 10.1002/cpt.2618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/13/2022] [Indexed: 01/02/2023]
Abstract
Dosing guidance for children with obesity is often unknown despite the fact that nearly 20% of US children are classified as obese. Enoxaparin, a commonly prescribed low-molecular-weight heparin, is dosed based on body weight irrespective of obesity status to achieve maximum concentration within a narrow therapeutic or prophylactic target range. However, whether children with and without obesity experience equivalent enoxaparin exposure remains unclear. To address this clinical question, 2,825 anti-activated factor X (anti-Xa) surrogate concentrations were collected from the electronic health records of 596 children, including those with obesity. Using linear mixed-effects regression models, we observed that 4-hour anti-Xa concentrations were statistically significantly different in children with and without obesity, even for children with the same absolute dose (P = 0.004). To further mechanistically explore obesity-associated differences in anti-Xa concentration, a pediatric physiologically-based pharmacokinetic (PBPK) model was developed in adults, and then scaled to children with and without obesity. This PBPK model incorporated binding of enoxaparin to antithrombin to form anti-Xa and elimination via heparinase-mediated metabolism and glomerular filtration. Following scaling, the PBPK model predicted real-world pediatric concentrations well, with an average fold error (standard deviation of the fold error) of 0.82 (0.23) and 0.87 (0.26) in children with and without obesity, respectively. PBPK model simulations revealed that children with obesity have at most 20% higher 4-hour anti-Xa concentrations under recommended, total body weight-based dosing compared to children without obesity owing to reduced weight-normalized clearance. Enoxaparin exposure was better matched across age groups and obesity status using fat-free mass weight-based dosing.
Collapse
Affiliation(s)
- Jacqueline G. Gerhart
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Fernando O. Carreño
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Matthew Shane Loop
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | - Jaydeep Sinha
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of PediatricsUniversity of North Carolina School of MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Karan R. Kumar
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Carl M. Kirkpatrick
- Centre for Medicine Use and SafetyMonash UniversityMelbourneVictoriaAustralia
| | - Christoph P. Hornik
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
19
|
Gerhart JG, Carreño FO, Ford JL, Edginton A, Perrin EM, Watt KM, Muller WJ, Atz AM, Al‐Uzri A, Delmore P, Gonzalez D, Benjamin DK, Hornik C, Zimmerman K, Kennel P, Beci R, Dang Hornik C, Kearns GL, Laughon M, Paul IM, Sullivan J, Wade K, Delmore P, Taylor‐Zapata P, Lee J, Anand R, Sharma G, Simone G, Kaneshige K, Taylor L, Al‐Uzri A, Hornik C, Sokol G, Speicher D, Sullivan J, Mourani P, Mendley S, Meyer M, Atkins R, Flynn J, Vaughns J, Sherwin C, Delmore P, Goldstein S, Rathore M, Melloni C, Muller W, Delmore P, Tremoulet A, James L, Mendley S, Blackford M, Atz A, Adu‐Darko M, Mourani P, Watt K, Hornik C, Al‐Uzri A, Sullivan J, Laughon M, Brian Smith P, Watt K, Cheifetz I, Atz A, Bhatt‐Mehta V, Fernandez A, Lowry J. Use of
physiologically‐based
pharmacokinetic modeling to inform dosing of the opioid analgesics fentanyl and methadone in children with obesity. CPT Pharmacometrics Syst Pharmacol 2022; 11:778-791. [PMID: 35491971 PMCID: PMC9197535 DOI: 10.1002/psp4.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Obesity is an increasingly alarming public health threat, with nearly 20% of children classified as obese in the United States today. Children with obesity are commonly prescribed the opioids fentanyl and methadone, and accurate dosing is critical to reducing the risk of serious adverse events associated with overexposure. However, pharmacokinetic studies in children with obesity are challenging to conduct, so there is limited information to guide fentanyl and methadone dosing in these children. To address this clinical knowledge gap, physiologically‐based pharmacokinetic models of fentanyl and methadone were developed in adults and scaled to children with and without obesity to explore the interplay of obesity, age, and pharmacogenomics. These models included key obesity‐induced changes in physiology and pharmacogenomic effects. Model predictions captured observed concentrations in children with obesity well, with an overall average fold error of 0.72 and 1.08 for fentanyl and methadone, respectively. Model simulations support a reduced fentanyl dose (1 vs. 2 μg/kg/h) starting at an earlier age (6 years) in virtual children with obesity, highlighting the importance of considering both age and obesity status when selecting an infusion rate most likely to achieve steady‐state concentrations within the target range. Methadone dosing simulations highlight the importance of considering genotype in addition to obesity status when possible, as cytochrome P450 (CYP)2B6*6/*6 virtual children with obesity required half the dose to match the exposure of wildtype children without obesity. This physiologically‐based pharmacokinetic modeling approach can be applied to explore dosing of other critical drugs in children with obesity.
Collapse
Affiliation(s)
- Jacqueline G. Gerhart
- Division of Pharmacotherapy and Experimental Therapeutics, The University of North Carolina Eshelman School of Pharmacy The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Fernando O. Carreño
- Division of Pharmacotherapy and Experimental Therapeutics, The University of North Carolina Eshelman School of Pharmacy The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Jennifer L. Ford
- Division of Pharmacotherapy and Experimental Therapeutics, The University of North Carolina Eshelman School of Pharmacy The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | | | - Eliana M. Perrin
- Department of Pediatrics, School of Medicine and School of Nursing Johns Hopkins University Baltimore Maryland USA
| | - Kevin M. Watt
- Division of Pediatric Clinical Pharmacology, School of Medicine University of Utah Salt Lake City Utah USA
| | - William J. Muller
- Ann and Robert H. Lurie Children's Hospital of Chicago Chicago Illinois USA
| | - Andrew M. Atz
- Medical University of South Carolina Children's Hospital Charleston South Carolina USA
| | - Amira Al‐Uzri
- Oregon Health and Science University Portland Oregon USA
| | | | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, The University of North Carolina Eshelman School of Pharmacy The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Estradé O, Vozmediano V, Carral N, Isla A, González M, Poole R, Suarez E. Key Factors in Effective Patient-Tailored Dosing of Fluoroquinolones in Urological Infections: Interindividual Pharmacokinetic and Pharmacodynamic Variability. Antibiotics (Basel) 2022; 11:antibiotics11050641. [PMID: 35625285 PMCID: PMC9137891 DOI: 10.3390/antibiotics11050641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fluoroquinolones (FQs) are a critical group of antimicrobials prescribed in urological infections as they have a broad antimicrobial spectrum of activity and a favorable tissue penetration at the site of infection. However, their clinical practice is not problem-free of treatment failure, risk of emergence of resistance, and rare but important adverse effects. Due to their critical role in clinical improvement, understanding the dose-response relation is necessary to optimize the effectiveness of FQs therapy, as it is essential to select the right antibiotic at the right dose for the right duration in urological infections. The aim of this study was to review the published literature about inter-individual variability in pharmacological processes that can be responsible for the clinical response after empiric dose for the most commonly prescribed urological FQs: ciprofloxacin, levofloxacin, and moxifloxacin. Interindividual pharmacokinetic (PK) variability, particularly in elimination, may contribute to treatment failure. Clearance related to creatinine clearance should be specifically considered for ciprofloxacin and levofloxacin. Likewise, today, undesired interregional variability in FQs antimicrobial activity against certain microorganisms exists. FQs pharmacology, patient-specific characteristics, and the identity of the local infecting organism are key factors in determining clinical outcomes in FQs use.
Collapse
Affiliation(s)
- Oskar Estradé
- Department of Urology, Cruces University Hospital, 48903 Barakaldo, Spain;
| | - Valvanera Vozmediano
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Gainesville, FL 32612, USA; (V.V.); (M.G.); (R.P.)
| | - Nerea Carral
- Department of Pharmacology, Faculty of Medicine and Nursey, University of Basque Country UPV/EHU, 48940 Leioa, Spain;
- Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Arantxa Isla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain;
- Instituto de Investigación Sanitaria Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Margarita González
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Gainesville, FL 32612, USA; (V.V.); (M.G.); (R.P.)
| | - Rachel Poole
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Gainesville, FL 32612, USA; (V.V.); (M.G.); (R.P.)
| | - Elena Suarez
- Department of Pharmacology, Faculty of Medicine and Nursey, University of Basque Country UPV/EHU, 48940 Leioa, Spain;
- Biocruces Health Research Institute, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
21
|
Gerhart JG, Balevic S, Sinha J, Perrin EM, Wang J, Edginton AN, Gonzalez D. Characterizing Pharmacokinetics in Children With Obesity-Physiological, Drug, Patient, and Methodological Considerations. Front Pharmacol 2022; 13:818726. [PMID: 35359853 PMCID: PMC8960278 DOI: 10.3389/fphar.2022.818726] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Childhood obesity is an alarming public health problem. The pediatric obesity rate has quadrupled in the past 30 years, and currently nearly 20% of United States children and 9% of children worldwide are classified as obese. Drug distribution and elimination processes, which determine drug exposure (and thus dosing), can vary significantly between patients with and without obesity. Obesity-related physiological changes, such as increased tissue volume and perfusion, altered blood protein concentrations, and tissue composition can greatly affect a drug's volume of distribution, which might necessitate adjustment in loading doses. Obesity-related changes in the drug eliminating organs, such as altered enzyme activity in the liver and glomerular filtration rate, can affect the rate of drug elimination, which may warrant an adjustment in the maintenance dosing rate. Although weight-based dosing (i.e., in mg/kg) is commonly practiced in pediatrics, choice of the right body size metric (e.g., total body weight, lean body weight, body surface area, etc.) for dosing children with obesity still remains a question. To address this gap, the interplay between obesity-related physiological changes (e.g., altered organ size, composition, and function), and drug-specific properties (e.g., lipophilicity and elimination pathway) needs to be characterized in a quantitative framework. Additionally, methodological considerations, such as adequate sample size and optimal sampling scheme, should also be considered to ensure accurate and precise top-down covariate selection, particularly when designing opportunistic studies in pediatric drug development. Further factors affecting dosing, including existing dosing recommendations, target therapeutic ranges, dose capping, and formulations constraints, are also important to consider when undergoing dose selection for children with obesity. Opportunities to bridge the dosing knowledge gap in children with obesity include modeling and simulating techniques (i.e., population pharmacokinetic and physiologically-based pharmacokinetic [PBPK] modeling), opportunistic clinical data, and real world data. In this review, key considerations related to physiology, drug parameters, patient factors, and methodology that need to be accounted for while studying the influence of obesity on pharmacokinetics in children are highlighted and discussed. Future studies will need to leverage these modeling opportunities to better describe drug exposure in children with obesity as the childhood obesity epidemic continues.
Collapse
Affiliation(s)
- Jacqueline G. Gerhart
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen Balevic
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Duke Clinical Research Institute, Durham, NC, United States
| | - Jaydeep Sinha
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eliana M. Perrin
- Department of Pediatrics, Johns Hopkins University Schools of Medicine and School of Nursing, Baltimore, MD, United States
| | - Jian Wang
- Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | | | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
22
|
Ford JL, Gerhart JG, Edginton AN, Yanovski JA, Hon YY, Gonzalez D. Physiologically Based Pharmacokinetic Modeling of Metformin in Children and Adolescents with Obesity. J Clin Pharmacol 2022; 62:960-969. [PMID: 35119103 PMCID: PMC9288496 DOI: 10.1002/jcph.2034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/30/2022] [Indexed: 11/06/2022]
Abstract
Childhood obesity continues to rise in the United States, and with it the off-label use of metformin for weight loss. The influence of age and obesity on the drug's disposition and exposure has not previously been studied using a mechanistic framework. Here, an adult physiologically based pharmacokinetic (PBPK) model of metformin was scaled to pediatric populations without obesity, with overweight / obesity, and with severe obesity; a published virtual population of children and adolescents with obesity was leveraged during model evaluation. When the pediatric model was simulated in groups 10 - 18 y of age, oral clearance (CL/F) following 1,000 mg of metformin was higher (∼1200 mL/min) in those with obesity and severe obesity compared to the groups without and with overweight (∼1000 mL/min). In addition, simulated AUC in older children and adolescents with obesity and severe obesity was comparable to that in adults with a similar dose-exposure relationship. Overall, simulations using the pediatric PBPK model support the use of adult doses of metformin in older children and adolescents with obesity. Moreover, the virtual population of children and adolescents with obesity offers a valuable tool to facilitate development of pediatric PBPK models for studying populations with obesity and, in turn, contribute information to inform drug labeling in this special population. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jennifer Lynn Ford
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline G Gerhart
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea N Edginton
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Jack A Yanovski
- Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yuen Yi Hon
- Division of Rare Diseases and Medical Genetics, Office of Rare Diseases, Pediatrics, Urologic and Reproductive Medicine, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|