1
|
Nadim N, Khan AA, Khan S, Parveen R, Ali J. A narrative review on potential applications of spanlastics for nose-to-brain delivery of therapeutically active agents. Adv Colloid Interface Sci 2025; 335:103341. [PMID: 39566150 DOI: 10.1016/j.cis.2024.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/28/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Spanlastics, which are commonly referred to as elastic niosomes, presents a modified advancement in the area of colloidal system based drug delivery carriers. They are different from niosomes, which are non-ionic surfactant vesicles in having an edge activator. Initially, they were described as ocular drug delivery systems in 2011 by Kakkar and Kaur. Spanlastics have discovered a wide range of applications via different routes of administration. The purpose of this article is to provide information about spanlastics, a newly developed drug delivery system for the management of diseases pertaining to the Central Nervous System (CNS) via intranasal route. The article begins with the details on spanlastics and their composition, their benefits over traditional niosomes, and the mechanism underlying their enhanced absorption. Their applications through various routes of administration in a variety of diseases for a variety of drugs have been discussed. Furthermore, the article explains the nose to brain delivery channels and the advantages that this route offers over conventional delivery routes. Finally, the article discusses the studies encompassing the drug candidates that have been formulated as intranasal spanlastics for the management of different diseased conditions along with the future prospects of this emerging drug delivery system.
Collapse
Affiliation(s)
- Noorain Nadim
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ayub Ahmad Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Akiyama N, Kanazawa M, Kasuga K, Hatakeyama M, Ikeuchi T, Onodera O. Utility of Cerebrospinal Fluid Transferrin Receptor per Ferritin Ratio in Progressive Supranuclear Palsy. Mov Disord Clin Pract 2024. [PMID: 39688304 DOI: 10.1002/mdc3.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a major atypical parkinsonism. Because diagnosis based on the cardinal clinical features is often difficult, misdiagnosis with Parkinson's disease (PD) and multiple system atrophy (MSA) is common in PSP patients. Iron metabolism genes are reportedly involved in tau-accumulating neuronal cell death and ferroptosis in PSP, which is more severe than PD and MSA. The validity of transferrin receptor (TfR) expression as a biomarker of ferroptosis was also demonstrated. OBJECTIVE We investigated whether TfR and the TfR to ferritin ratio in the cerebrospinal fluid (CSF) is a diagnostic biomarker of PSP. METHODS This study included 2 independent retrospective CSF cohorts comprising patients, respectively, from Niigata University and a multicenter memory clinic, consisting of patients with PSP, PD, and MSA. All patients were classified as clinically probable or higher based on the Society of Movement Disorders Criteria. TfR and ferritin levels in the CSF were measured using Luminex assay. RESULTS The levels of TfR in patients with PSP were higher than those in patients with PD and MSA in cohort 1 (PSP: N = 16, PD: N = 13, MSA: N = 20). The TfR to ferritin ratio in patients with PSP was significantly higher than that in patients with MSA. Subsequently, we validated these results in cohort 2 (PSP: N = 23, MSA: N = 6). The TfR to ferritin ratio was significantly higher in patients with PSP than in those with MSA. CONCLUSIONS The CSF TfR to transferrin ratio was elevated in patients with PSP. These results should be validated in a larger cohort of patients.
Collapse
Affiliation(s)
- Natsuki Akiyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Henke L, Ghorbani A, Mole SE. The use of nanocarriers in treating Batten disease: A systematic review. Int J Pharm 2024:125094. [PMID: 39694161 DOI: 10.1016/j.ijpharm.2024.125094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
The neuronal ceroid lipofuscinoses, commonly known as Batten disease, are a group of lysosomal storage disorders affecting children. There is extensive central nervous system and retinal degeneration, resulting in seizures, vision loss and a progressive cognitive and motor decline. Enzyme replacement and gene therapies are being developed, and mRNA and oligonucleotide therapies are more recently being considered. Overcoming the challenges of the blood-brain barrier and blood-ocular barrier is crucial for effectively targeting the brain and eye, whatever the therapeutic approach. Nanoparticles and extracellular vesicles are small carriers that can encapsulate a cargo and pass through these cell barriers. They have been investigated as drug carriers for other pathologies and could be a promising treatment strategy for Batten disease. Their use in gene, enzyme, or mRNA replacement therapy of all lysosomal storage disorders, including Mucopolysaccharidoses, Niemann-Pick diseases, and Fabry disease, is investigated in this systematic review. Different nanocarriers can efficiently target the lysosome and cross the barriers into the brain and eyes. This supports continued exploration of nanocarriers as potential future treatment options for Batten disease.
Collapse
Affiliation(s)
- Larissa Henke
- Division of Biosciences, University College London, London WC1E BT, UK
| | - Ali Ghorbani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Sara E Mole
- Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Cao PY, He Y, Cui MY, Zhang XM, Zhang Q, Zhang HY. Group graph: a molecular graph representation with enhanced performance, efficiency and interpretability. J Cheminform 2024; 16:133. [PMID: 39609909 PMCID: PMC11606038 DOI: 10.1186/s13321-024-00933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024] Open
Abstract
The exploration of chemical space holds promise for developing influential chemical entities. Molecular representations, which reflect features of molecular structure in silico, assist in navigating chemical space appropriately. Unlike atom-level molecular representations, such as SMILES and atom graph, which can sometimes lead to confusing interpretations about chemical substructures, substructure-level molecular representations encode important substructures into molecular features; they not only provide more information for predicting molecular properties and drug‒drug interactions but also help to interpret the correlations between molecular properties and substructures. However, it remains challenging to represent the entire molecular structure both intactly and simply with substructure-level molecular representations. In this study, we developed a novel substructure-level molecular representation and named it a group graph. The group graph offers three advantages: (a) the substructure of the group graph reflects the diversity and consistency of different molecular datasets; (b) the group graph retains molecular structural features with minimal information loss because the graph isomorphism network (GIN) of the group graph performs well in molecular properties and drug‒drug interactions prediction, showing higher accuracy and efficiency than the model of other molecular graphs, even without any pretraining; and (c) the molecular property may change when the substructure is substituted with another of differing importance in group graph, facilitating the detection of activity cliffs. In addition, we successfully predicted structural modifications to improve blood‒brain barrier permeability (BBBP) via the GIN of group graph. Therefore, the group graph takes advantages for simultaneously representing molecular local characteristics and global features.Scientific contribution The group graph, as a substructure-level molecular representation, has the ability to retain molecular structural features with minimal information loss. As a result, it shows superior performance in predicting molecular properties and drug‒drug interactions with enhanced efficiency and interpretability.
Collapse
Affiliation(s)
- Piao-Yang Cao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yang He
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ming-Yang Cui
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiao-Min Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qingye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
5
|
Butola M, Nainwal N. Non-Invasive Techniques of Nose to Brain Delivery Using Nanoparticulate Carriers: Hopes and Hurdles. AAPS PharmSciTech 2024; 25:256. [PMID: 39477829 DOI: 10.1208/s12249-024-02946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/15/2024] [Indexed: 12/12/2024] Open
Abstract
Intranasal drug delivery route has emerged as a promising non-invasive method of administering drugs directly to the brain, bypassing the blood-brain barrier (BBB) and blood-cerebrospinal fluid barriers (BCSF). BBB and BCSF prevent many therapeutic molecules from entering the brain. Intranasal drug delivery can transport drugs from the nasal mucosa to the brain, to treat a variety of Central nervous system (CNS) diseases. Intranasal drug delivery provides advantages over invasive drug delivery techniques such as intrathecal or intraparenchymal which can cause infection. Many strategies, including nanocarriers liposomes, solid-lipid NPs, nano-emulsion, nanostructured lipid carriers, dendrimers, exosomes, metal NPs, nano micelles, and quantum dots, are effective in nose-to-brain drug transport. However, the biggest obstacles to the nose-to-brain delivery of drugs include mucociliary clearance, poor drug retention, enzymatic degradation, poor permeability, bioavailability, and naso-mucosal toxicity. The current review aims to compile current approaches for drug delivery to the CNS via the nose, focusing on nanotherapeutics and nasal devices. Along with a brief overview of the related pathways or mechanisms, it also covers the advantages of nasal drug delivery as a potential method of drug administration. It also offers several possibilities to improve drug penetration across the nasal barrier. This article overviews various in-vitro, ex-vivo, and in-vivo techniques to assess drug transport from the nasal epithelium into the brain.
Collapse
Affiliation(s)
- Mansi Butola
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India
| | - Nidhi Nainwal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
6
|
Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L. Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024). Front Oncol 2024; 14:1431636. [PMID: 39534093 PMCID: PMC11555291 DOI: 10.3389/fonc.2024.1431636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Glioma represents the most prevalent primary malignant tumor in the central nervous system, a deeper understanding of the underlying molecular mechanisms driving glioma is imperative for guiding future treatment strategies. Emerging evidence has implicated a close relationship between glioma development and epigenetic regulation. However, there remains a significant lack of comprehensive summaries in this domain. This study aims to analyze epigenetic publications pertaining to gliomas from 2009 to 2024 using bibliometric methods, consolidate the extant research, and delineate future prospects for investigation in this critical area. Methods For the purpose of this study, publications spanning the years 2009 to 2024 were extracted from the esteemed Web of Science Core Collection (WoSCC) database. Utilizing advanced visualization tools such as CiteSpace and VOSviewer, comprehensive data pertaining to various aspects including countries, authors, author co-citations, countries/regions, institutions, journals, cited literature, and keywords were systematically visualized and analyzed. Results A thorough analysis was conducted on a comprehensive dataset consisting of 858 publications, which unveiled a discernible trend of steady annual growth in research output within this specific field. The nations of the United States, China, and Germany emerged as the foremost contributors to this research domain. It is noteworthy that von Deimling A and the Helmholtz Association were distinguished as prominent authors and institutions, respectively, in this corpus of literature. A rigorous keyword search and subsequent co-occurrence analysis were executed, ultimately leading to the identification of seven distinct clusters: "epigenetic regulation", "DNA repair", "DNA methylation", "brain tumors", "diffuse midline glioma (DMG)", "U-87 MG" and "epigenomics". Furthermore, an intricate cluster analysis revealed that the primary foci of research within this field were centered around the exploration of glioma pathogenesis and the development of corresponding treatment strategies. Conclusion This article underscores the prevailing trends and hotspots in glioma epigenetics, offering invaluable insights that can guide future research endeavors. The investigation of epigenetic mechanisms primarily centers on DNA modification, non-coding RNAs (ncRNAs), and histone modification. Furthermore, the pursuit of overcoming temozolomide (TMZ) resistance and the exploration of diverse emerging therapeutic strategies have emerged as pivotal avenues for future research within the field of glioma epigenetics.
Collapse
Affiliation(s)
- Yijun Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Ge Tao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Jihong He
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Hui Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
7
|
Panghal A, Flora SJS. Nano-based approaches for the treatment of neuro-immunological disorders: a special emphasis on multiple sclerosis. DISCOVER NANO 2024; 19:171. [PMID: 39466516 PMCID: PMC11519283 DOI: 10.1186/s11671-024-04135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Multiple sclerosis (MS) is a neuroimmunological disorder which causes axonal damage, demyelination and paralysis. Although numerous therapeutics have been developed for the effective treatment of MS and a few have been approved in recent decades, complete remission and treatment of MS remain a matter of concern. Nanotechnology is a potential approach for manipulating the properties of materials at the molecular level to attain desired properties. This approach is effective in the treatment of several CNS disorders by enhancing drug delivery, bioavailability and efficacy. We have briefly discussed the neuroimmunological disorders with a particular emphasis on MS. We also explored nanoengineered drug delivery systems, describing several nano-formulations for the treatment of MS, challenges and future of nanotechnology.
Collapse
Affiliation(s)
- Archna Panghal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India
| | - S J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India.
- Era College of Pharmaceutical Sciences, Era Lucknow Medical University, Sarfarajgang, Lucknow, 226002, India.
| |
Collapse
|
8
|
Qu Z, Luo J, Li Z, Yang R, Zhao J, Chen X, Yu S, Shu H. Advancements in strategies for overcoming the blood-brain barrier to deliver brain-targeted drugs. Front Aging Neurosci 2024; 16:1353003. [PMID: 39253614 PMCID: PMC11381257 DOI: 10.3389/fnagi.2024.1353003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier is known to consist of a variety of cells and complex inter-cellular junctions that protect the vulnerable brain from neurotoxic compounds; however, it also complicates the pharmacological treatment of central nervous system disorders as most drugs are unable to penetrate the blood-brain barrier on the basis of their own structural properties. This dramatically diminished the therapeutic effect of the drug and compromised its biosafety. In response, a number of drugs are often delivered to brain lesions in invasive ways that bypass the obstruction of the blood-brain barrier, such as subdural administration, intrathecal administration, and convection-enhanced delivery. Nevertheless, these intrusive strategies introduce the risk of brain injury, limiting their clinical application. In recent years, the intensive development of nanomaterials science and the interdisciplinary convergence of medical engineering have brought light to the penetration of the blood-brain barrier for brain-targeted drugs. In this paper, we extensively discuss the limitations of the blood-brain barrier on drug delivery and non-invasive brain-targeted strategies such as nanomedicine and blood-brain barrier disruption. In the meantime, we analyze their strengths and limitations and provide outlooks on the further development of brain-targeted drug delivery systems.
Collapse
Affiliation(s)
- Zhichuang Qu
- Department of Neurosurgery, Meishan City People's Hospital, Meishan, China
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Juan Luo
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zheng Li
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Yang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiaxi Zhao
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Sixun Yu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| | - Haifeng Shu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
9
|
Barker SJ, Thayer MB, Kim C, Tatarakis D, Simon MJ, Dial R, Nilewski L, Wells RC, Zhou Y, Afetian M, Akkapeddi P, Chappell A, Chew KS, Chow J, Clemens A, Discenza CB, Dugas JC, Dwyer C, Earr T, Ha C, Ho YS, Huynh D, Lozano EI, Jayaraman S, Kwan W, Mahon C, Pizzo M, Robles-Colmenares Y, Roche E, Sanders L, Stergioulis A, Tong R, Tran H, Zuchero Y, Estrada AA, Gadkar K, Koth CMM, Sanchez PE, Thorne RG, Watts RJ, Sandmann T, Kane LA, Rigo F, Dennis MS, Lewcock JW, DeVos SL. Targeting the transferrin receptor to transport antisense oligonucleotides across the mammalian blood-brain barrier. Sci Transl Med 2024; 16:eadi2245. [PMID: 39141703 DOI: 10.1126/scitranslmed.adi2245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Antisense oligonucleotides (ASOs) are promising therapeutics for treating various neurological disorders. However, ASOs are unable to readily cross the mammalian blood-brain barrier (BBB) and therefore need to be delivered intrathecally to the central nervous system (CNS). Here, we engineered a human transferrin receptor 1 (TfR1) binding molecule, the oligonucleotide transport vehicle (OTV), to transport a tool ASO across the BBB in human TfR knockin (TfRmu/hu KI) mice and nonhuman primates. Intravenous injection and systemic delivery of OTV to TfRmu/hu KI mice resulted in sustained knockdown of the ASO target RNA, Malat1, across multiple mouse CNS regions and cell types, including endothelial cells, neurons, astrocytes, microglia, and oligodendrocytes. In addition, systemic delivery of OTV enabled Malat1 RNA knockdown in mouse quadriceps and cardiac muscles, which are difficult to target with oligonucleotides alone. Systemically delivered OTV enabled a more uniform ASO biodistribution profile in the CNS of TfRmu/hu KI mice and greater knockdown of Malat1 RNA compared with a bivalent, high-affinity TfR antibody. In cynomolgus macaques, an OTV directed against MALAT1 displayed robust ASO delivery to the primate CNS and enabled more uniform biodistribution and RNA target knockdown compared with intrathecal dosing of the same unconjugated ASO. Our data support systemically delivered OTV as a potential platform for delivering therapeutic ASOs across the BBB.
Collapse
Affiliation(s)
| | - Mai B Thayer
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Chaeyoung Kim
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Rebekah Dial
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Yinhan Zhou
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | | | - Kylie S Chew
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Johann Chow
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Jason C Dugas
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Timothy Earr
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Connie Ha
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Yvonne S Ho
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - David Huynh
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Wanda Kwan
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Cathal Mahon
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Elysia Roche
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Laura Sanders
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Raymond Tong
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Hai Tran
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Y Zuchero
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Kapil Gadkar
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | | | - Ryan J Watts
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Lesley A Kane
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Mark S Dennis
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Sarah L DeVos
- Denali Therapeutics Inc., South San Francisco, CA, USA
| |
Collapse
|
10
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
11
|
Zhao F, Wang J, Zhang Y, Hu J, Li C, Liu S, Li R, Du R. In vivo Fate of Targeted Drug Delivery Carriers. Int J Nanomedicine 2024; 19:6895-6929. [PMID: 39005963 PMCID: PMC11246094 DOI: 10.2147/ijn.s465959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
This review aimed to systematically investigate the intracellular and subcellular fate of various types of targeting carriers. Upon entering the body via intravenous injection or other routes, a targeting carrier that can deliver therapeutic agents initiates their journey. If administered intravenously, the carrier initially faces challenges presented by the blood circulation before reaching specific tissues and interacting with cells within the tissue. At the subcellular level, the car2rier undergoes processes, such as drug release, degradation, and metabolism, through specific pathways. While studies on the fate of 13 types of carriers have been relatively conclusive, these studies are incomplete and lack a comprehensive analysis. Furthermore, there are still carriers whose fate remains unclear, underscoring the need for continuous research. This study highlights the importance of comprehending the in vivo and intracellular fate of targeting carriers and provides valuable insights into the operational mechanisms of different carriers within the body. By doing so, researchers can effectively select appropriate carriers and enhance the successful clinical translation of new formulations.
Collapse
Affiliation(s)
- Fan Zhao
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jitong Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yu Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinru Hu
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruofei Du
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
12
|
Niazi SK, Mariam Z, Magoola M. Engineered Antibodies to Improve Efficacy against Neurodegenerative Disorders. Int J Mol Sci 2024; 25:6683. [PMID: 38928395 PMCID: PMC11203520 DOI: 10.3390/ijms25126683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Antibodies that can selectively remove rogue proteins in the brain are an obvious choice to treat neurodegenerative disorders (NDs), but after decades of efforts, only two antibodies to treat Alzheimer's disease are approved, dozens are in the testing phase, and one was withdrawn, and the other halted, likely due to efficacy issues. However, these outcomes should have been evident since these antibodies cannot enter the brain sufficiently due to the blood-brain barrier (BBB) protectant. However, all products can be rejuvenated by binding them with transferrin, preferably as smaller fragments. This model can be tested quickly and at a low cost and should be applied to bapineuzumab, solanezumab, crenezumab, gantenerumab, aducanumab, lecanemab, donanemab, cinpanemab, and gantenerumab, and their fragments. This paper demonstrates that conjugating with transferrin does not alter the binding to brain proteins such as amyloid-β (Aβ) and α-synuclein. We also present a selection of conjugate designs that will allow cleavage upon entering the brain to prevent their exocytosis while keeping the fragments connected to enable optimal binding to proteins. The identified products can be readily tested and returned to patients with the lowest regulatory cost and delays. These engineered antibodies can be manufactured by recombinant engineering, preferably by mRNA technology, as a more affordable solution to meet the dire need to treat neurodegenerative disorders effectively.
Collapse
Affiliation(s)
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry City CV1 5FB, UK;
| | | |
Collapse
|
13
|
Dosta P, Dion MZ, Prado M, Hurtado P, Riojas-Javelly CJ, Cryer AM, Soria Y, Andrews Interiano N, Muñoz-Taboada G, Artzi N. Matrix Metalloproteinase- and pH-Sensitive Nanoparticle System Enhances Drug Retention and Penetration in Glioblastoma. ACS NANO 2024; 18:14145-14160. [PMID: 38761153 DOI: 10.1021/acsnano.3c03409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Glioblastoma (GBM) is a primary malignant brain tumor with limited therapeutic options. One promising approach is local drug delivery, but the efficacy is hindered by limited diffusion and retention. To address this, we synthesized and developed a dual-sensitive nanoparticle (Dual-NP) system, formed between a dendrimer and dextran NPs, bound by a dual-sensitive [matrix metalloproteinase (MMP) and pH] linker designed to disassemble rapidly in the tumor microenvironment. The disassembly prompts the in situ formation of nanogels via a Schiff base reaction, prolonging Dual-NP retention and releasing small doxorubicin (Dox)-conjugated dendrimer NPs over time. The Dual-NPs were able to penetrate deep into 3D spheroid models and detected at the tumor site up to 6 days after a single intratumoral injection in an orthotopic mouse model of GBM. The prolonged presence of Dual-NPs in the tumor tissue resulted in a significant delay in tumor growth and an overall increase in survival compared to untreated or Dox-conjugated dendrimer NPs alone. This Dual-NP system has the potential to deliver a range of therapeutics for efficiently treating GBM and other solid tumors.
Collapse
Affiliation(s)
- Pere Dosta
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Michelle Z Dion
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- MIT-Harvard Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michaela Prado
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Pau Hurtado
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Cristobal J Riojas-Javelly
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Alexander M Cryer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yael Soria
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Nelly Andrews Interiano
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | | | - Natalie Artzi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- BioDevek Inc., Allston, Massachusetts 02134, United States
| |
Collapse
|
14
|
Ji W, Zhou H, Liang W, Zhang W, Gong B, Yin T, Chu J, Zhuang J, Zhang J, Luo Y, Liu Y, Gao J, Yin Y. SSK1-Loaded Neurotransmitter-Derived Nanoparticles for Alzheimer's Disease Therapy via Clearance of Senescent Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308574. [PMID: 38429234 DOI: 10.1002/smll.202308574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Age is a significant contributor to the onset of AD. Senolysis has been recently demonstrated to ameliorate aging-associated diseases that showing a great potential in AD therapy. However, due to the presence of BBB, the anti-AD activity of senolytics are significantly diminished. SSK1 is a prodrug that can be activated by β-gal, a lysosomal enzyme commonly upregulated in senescent cells, and thus selectively eliminates senescent cells. Furthermore, the level of β-gal is significantly correlated with conventional AD genes from clinical sequencing data. SSK1-loaded neurotransmitter -derived lipid nanoparticles are herein developed (SSK1-NPs) that revealing good BBB penetration and bioavailability of in the body. At the brain lesion, SSK1-NP treatment significantly reduces the expression of genes associated with senescence, induced senescent cells elimination, decreased amyloid-beta accumulation, and eventually improve cognitive function of aged AD mice. SSK1-NPs, a novel nanomedicine displaying potent anti-AD activity and excellent safety profile, provides a promising strategy for AD therapy.
Collapse
Affiliation(s)
- Wenbo Ji
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Changle Road, Qinhuai District, Nanjing, 210006, China
| | - Wendanqi Liang
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Jungong Road, Yangpu District, Shanghai, 200093, China
| | - Weicong Zhang
- School of Pharmacy, University College London, Gower Street, London, W12 8LP, UK
| | - Baofeng Gong
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Tong Yin
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jianjian Chu
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jianhua Zhuang
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Clinical Pharmacy Innovatton Instttute, Shanghai Jiao Tong University School of Medicine, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Yi Luo
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Clinical Pharmacy Innovatton Instttute, Shanghai Jiao Tong University School of Medicine, Kongjiang Road, Yangpu District, Shanghai, 200092, China
- New Drug Discovery and Development, Biotheus Inc, Keji 7th Road, TangjiawanTown, Zhuhai, 519080, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Clinical Pharmacy Innovatton Instttute, Shanghai Jiao Tong University School of Medicine, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - You Yin
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road, Pudong New District, Shanghai, 200120, China
| |
Collapse
|
15
|
Bian X, Yang L, Jiang D, Grippin AJ, Ma Y, Wu S, Wu L, Wang X, Tang Z, Tang K, Pan W, Dong S, Kim BYS, Jiang W, Yang Z, Li C. Regulation of cerebral blood flow boosts precise brain targeting of vinpocetine-derived ionizable-lipidoid nanoparticles. Nat Commun 2024; 15:3987. [PMID: 38734698 PMCID: PMC11088666 DOI: 10.1038/s41467-024-48461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Despite advances in active drug targeting for blood-brain barrier penetration, two key challenges persist: first, attachment of a targeting ligand to the drug or drug carrier does not enhance its brain biodistribution; and second, many brain diseases are intricately linked to microcirculation disorders that significantly impede drug accumulation within brain lesions even after they cross the barrier. Inspired by the neuroprotective properties of vinpocetine, which regulates cerebral blood flow, we propose a molecular library design centered on this class of cyclic tertiary amine compounds and develop a self-enhanced brain-targeted nucleic acid delivery system. Our findings reveal that: (i) vinpocetine-derived ionizable-lipidoid nanoparticles efficiently breach the blood-brain barrier; (ii) they have high gene-loading capacity, facilitating endosomal escape and intracellular transport; (iii) their administration is safe with minimal immunogenicity even with prolonged use; and (iv) they have potent pharmacologic brain-protective activity and may synergize with treatments for brain disorders as demonstrated in male APP/PS1 mice.
Collapse
Affiliation(s)
- Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, PR China
| | - Ling Yang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Dingxi Jiang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Ma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuang Wu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Linchong Wu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Xiaoyou Wang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, PR China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Kaicheng Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China
| | - Weidong Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, PR China
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, PR China.
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, PR China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, PR China.
| |
Collapse
|
16
|
Liu Y, Zhang B, Duan R, Liu Y. Mitochondrial DNA Leakage and cGas/STING Pathway in Microglia: Crosstalk Between Neuroinflammation and Neurodegeneration. Neuroscience 2024; 548:1-8. [PMID: 38685462 DOI: 10.1016/j.neuroscience.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Neurodegenerative diseases, characterized by abnormal deposition of misfolded proteins, often present with progressive loss of neurons. Chronic neuroinflammation is a striking hallmark of neurodegeneration. Microglia, as the primary immune cells in the brain, is the main type of cells that participate in the formation of inflammatory microenvironment. Cytoplasmic free mitochondrial DNA (mtDNA), a common component of damage-associated molecular patterns (DAMPs), can activate the cGas/stimulator of interferon genes (STING) signalling, which subsequently produces type I interferon and proinflammatory cytokines. There are various sources of free mtDNA in microglial cytoplasm, but mitochondrial oxidative stress accumulation plays the vital role. The upregulation of cGas/STING pathway in microglia contributes to the abnormal and persistent microglial activation, accompanied by excessive secretion of neurotoxic inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which exacerbates the damage of neurons and promotes the development of neurodegeneration. Currently, novel therapeutic approaches need to be found to delay the progression of neurodegenerative disorders, and regulation of the cGas/STING signaling in microglia may be a potential target.
Collapse
Affiliation(s)
- Yuqian Liu
- Qilu Hospital of Shandong University, Jinan, China
| | - Bohan Zhang
- Qilu Hospital of Shandong University, Jinan, China
| | - Ruonan Duan
- Qilu Hospital of Shandong University, Jinan, China.
| | - Yiming Liu
- Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
17
|
Li S, Xu S, Li L, Xue Z, He L. Efficacy and safety of EGFR-TKI combined with WBRT vs. WBRT alone in the treatment of brain metastases from NSCLC: a systematic review and meta-analysis. Front Neurol 2024; 15:1362061. [PMID: 38737351 PMCID: PMC11085739 DOI: 10.3389/fneur.2024.1362061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Background The efficacy and safety of combining epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with whole-brain radiotherapy (WBRT) for treating brain metastases in non-small cell lung cancer patients remains to be determined. Methods A systematic search was conducted using databases including PubMed, Embase, Web of Science, Cochrane, Wanfang, and China National Knowledge Infrastructure (CNKI), aiming to identify relevant clinical studies on the treatment of brain metastases originating from non-small cell lung cancer through the combination of EGFR-TKI and WBRT. Statistical analysis was performed utilizing Stata 17.0 software, covering clinical studies published until March 1, 2023. Results This analysis incorporated 23 randomized controlled trials (RCTs), involving a total of 2,025 patients. Of these, 1,011 were allocated to the group receiving both EGFR-TKI and WBRT, while 1,014 were assigned to the WBRT alone group. The findings reveal that the combination of EGFR-TKI and WBRT significantly improves the intracranial objective remission rate (RR = 1.57, 95% CI: 1.42-1.74, p < 0.001), increases the intracranial disease control rate (RR = 1.30, 95% CI: 1.23-1.37, p < 0.001), and enhances the 1-year survival rate (RR = 1.48, 95% CI: 1.26-1.73, p < 0.001). Additionally, this combined treatment was associated with a significant survival advantage (RR = 1.48, 95% CI: 1.26-1.73, p < 0.001) and a reduced incidence of adverse effects (RR = 0.65, 95% CI: 0.51-0.83, p < 0.001), particularly with respect to nausea and vomiting (RR = 0.54, 95% CI: 0.37-0.81, p = 0.002) and myelosuppression (RR = 0.59, 95% CI: 0.40-0.87, p = 0.008). However, no statistically significant differences were observed for diarrhea (RR = 1.15, 95% CI: 0.82-1.62, p = 0.418), and skin rash (RR = 1.35, 95% CI: 0.88-2.07, p = 0.164). Conclusion In contrast to WBRT alone, the combination of EGFR-TKI and WBRT significantly improves intracranial response, enhancing the objective response rate, disease control rate, and 1-year survival rate in NSCLC patients with brain metastases. Moreover, aside from mild cases of rash and diarrhea, there is no statistically significant increase in the incidence of additional adverse effects. Based on the comprehensive evidence collected, the use of third-generation EGFR-TKI combined with WBRT is recommended as the preferred treatment for NSCLC patients with brain metastases, offering superior management of metastatic brain lesions. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#, CRD42023415566.
Collapse
Affiliation(s)
- Shuai Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shumei Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Luwei Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhihong Xue
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College), Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lang He
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College), Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Seo K, Hwang K, Nam KM, Kim MJ, Song YK, Kim CY. Nucleolin-Targeting AS1411 Aptamer-Conjugated Nanospheres for Targeted Treatment of Glioblastoma. Pharmaceutics 2024; 16:566. [PMID: 38675227 PMCID: PMC11055028 DOI: 10.3390/pharmaceutics16040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Post-operative chemotherapy is still required for the treatment of glioblastoma (GBM), for which nanocarrier-based drug delivery has been identified as one of the most effective methods. However, the blood-brain barrier (BBB) and non-specific delivery to non-tumor tissues can significantly limit drug accumulation in tumor tissues and cause damage to nearby normal tissues. This study describes a targeted cancer therapy approach that uses AS1411 aptamer-conjugated nanospheres (100-300 nm in size) loaded with doxorubicin (Dox) to selectively identify tumor cells overexpressing nucleolin (NCL) proteins. The study demonstrates that the active target model, which employs aptamer-mediated drug delivery, is more effective than non-specific enhanced permeability and maintenance (EPR)-mediated delivery and passive drug delivery in improving drug penetration and maintenance in tumor cells. Additionally, the study reveals the potential for anti-cancer effects through 3D spheroidal and in vivo GBM xenograft models. The DNA-protein hybrid nanospheres utilized in this study offer numerous benefits, such as efficient synthesis, structural stability, high drug loading, dye labeling, biocompatibility, and biodegradability. When combined with nanospheres, the 1411 aptamer has been shown to be an effective drug delivery carrier allowing for the precise targeting of tumors. This combination has the potential to produce anti-tumor effects in the active targeted therapy of GBM.
Collapse
Affiliation(s)
- Kyeongjin Seo
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (K.S.); (K.H.); (K.M.N.)
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (K.S.); (K.H.); (K.M.N.)
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyung Mi Nam
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (K.S.); (K.H.); (K.M.N.)
| | - Min Ju Kim
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea;
| | - Yoon-Kyu Song
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (K.S.); (K.H.); (K.M.N.)
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
19
|
Sharma I, Kataria P, Das J. Cerebral malaria pathogenesis: Dissecting the role of CD4 + and CD8 + T-cells as major effectors in disease pathology. Int Rev Immunol 2024; 43:309-325. [PMID: 38618863 DOI: 10.1080/08830185.2024.2336539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum (P. falciparum) infection, with complex pathogenesis involving multiple factors, including the host's immunological response. T lymphocytes, specifically CD4+ T helper cells and CD8+ cytotoxic T cells, are crucial in controlling parasite growth and activating cells for parasite clearance via cytokine secretion. Contrary to this, reports also suggest the pathogenic nature of T lymphocytes as they are often involved in disease progression and severity. CD8+ cytotoxic T cells migrate to the host's brain vasculature, disrupting the blood-brain barrier and causing neurological manifestations. CD4+ T helper cells on the other hand play a variety of functions as they differentiate into different subtypes which may function as pro-inflammatory or anti-inflammatory. The excessive pro-inflammatory response in CM can lead to multi-organ failure, necessitating a check mechanism to maintain immune homeostasis. This is achieved by regulatory T cells and their characteristic cytokines, which counterbalance the pro-inflammatory immune response. Maintaining a critical balance between pro and anti-inflammatory responses is crucial for determining disease outcomes in CM. A slight change in this balance may contribute to a disease severity owing to an extreme inflammatory response or unrestricted parasite growth, a potential target for designing immunotherapeutic treatment approaches. The review briefly discusses the pathogenesis of CM and various mechanisms responsible for the disruption of the blood-brain barrier. It also highlights the role of different T cell subsets during infection and emphasizes the importance of balance between pro and anti-inflammatory T cells that ultimately decides the outcome of the disease.
Collapse
Affiliation(s)
- Indu Sharma
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Poonam Kataria
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Jyoti Das
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
20
|
Fang Q, Tang M. Oxidative stress-induced neurotoxicity of quantum dots and influencing factors. Nanomedicine (Lond) 2024; 19:1013-1028. [PMID: 38606672 PMCID: PMC11225328 DOI: 10.2217/nnm-2023-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024] Open
Abstract
Quantum dots (QDs) have significant potential for treating and diagnosing CNS diseases. Meanwhile, the neurotoxicity of QDs has garnered attention. In this review, we focus on elucidating the mechanisms and consequences of CNS oxidative stress induced by QDs. First, we discussed the pathway of QDs transit into the brain. We then elucidate the relationship between QDs and oxidative stress from in vivo and in vitro studies. Furthermore, the main reasons and adverse outcomes of QDs leading to oxidative stress are discussed. In addition, the primary factors that may affect the neurotoxicity of QDs are analyzed. Finally, we propose potential strategies for mitigating QDs neurotoxicity and outline future perspectives for their development.
Collapse
Affiliation(s)
- Qing Fang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
21
|
Singh S, Paul D, Nath V, A R. Exosomes: current knowledge and future perspectives. Tissue Barriers 2024; 12:2232248. [PMID: 37439246 PMCID: PMC11042064 DOI: 10.1080/21688370.2023.2232248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Exosomes are membrane-bound micro-vesicles that possess endless therapeutic potential for treatment of numerous pathologies including autoimmune, cardiovascular, ocular, and nervous disorders. Despite considerable knowledge about exosome biogenesis and secretion, still, there is a lack of information regarding exosome uptake by cell types and internal signaling pathways through which these exosomes process cellular response. Exosomes are key components of cell signaling and intercellular communication. In central nervous system (CNS), exosomes can penetrate BBB and maintain homeostasis by myelin sheath regulation and the waste products elimination. Therefore, the current review summarizes role of exosomes and their use as biomarkers in cardiovascular, nervous and ocular disorders. This aspect of exosomes provides positive hope to monitor disease development and enable early diagnosis and treatment optimization. In this review, we have summarized recent findings on physiological and therapeutic effects of exosomes and also attempt to provide insights about stress-preconditioned exosomes and stem cell-derived exosomes.
Collapse
Affiliation(s)
- Swati Singh
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Deepraj Paul
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Virendra Nath
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Rohini A
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| |
Collapse
|
22
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
23
|
Nie X, Yuan T, Yu T, Yun Z, Yu T, Liu Q. Non-stem cell-derived exosomes: a novel therapeutics for neurotrauma. J Nanobiotechnology 2024; 22:108. [PMID: 38475766 DOI: 10.1186/s12951-024-02380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Neurotrauma, encompassing traumatic brain injuries (TBI) and spinal cord injuries (SCI) impacts a significant portion of the global population. While spontaneous recovery post-TBI or SCI is possible, recent advancements in cell-based therapies aim to bolster these natural reparative mechanisms. Emerging research indicates that the beneficial outcomes of such therapies might be largely mediated by exosomes secreted from the administered cells. While stem cells have garnered much attention, exosomes derived from non-stem cells, including neurons, Schwann cells, microglia, and vascular endothelial cells, have shown notable therapeutic potential. These exosomes contribute to angiogenesis, neurogenesis, and axon remodeling, and display anti-inflammatory properties, marking them as promising agents for neurorestorative treatments. This review provides an in-depth exploration of the current methodologies, challenges, and future directions regarding the therapeutic role of non-stem cell-derived exosomes in neurotrauma.
Collapse
Affiliation(s)
- Xinyu Nie
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Tianyang Yuan
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Tong Yu
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Zhihe Yun
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Tao Yu
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Qinyi Liu
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China.
| |
Collapse
|
24
|
Memari E, Khan D, Alkins R, Helfield B. Focused ultrasound-assisted delivery of immunomodulating agents in brain cancer. J Control Release 2024; 367:283-299. [PMID: 38266715 DOI: 10.1016/j.jconrel.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Focused ultrasound (FUS) combined with intravascularly circulating microbubbles can transiently increase the permeability of the blood-brain barrier (BBB) to enable targeted therapeutic delivery to the brain, the clinical testing of which is currently underway in both adult and pediatric patients. Aside from traditional cancer drugs, this technique is being extended to promote the delivery of immunomodulating therapeutics to the brain, including antibodies, immune cells, and cytokines. In this manner, FUS approaches are being explored as a tool to improve and amplify the effectiveness of immunotherapy for both primary and metastatic brain cancer, a particularly challenging solid tumor to treat. Here, we present an overview of the latest groundbreaking research in FUS-assisted delivery of immunomodulating agents to the brain in pre-clinical models of brain cancer, and place it within the context of the current immunotherapy approaches. We follow this up with a discussion on new developments and emerging strategies for this rapidly evolving approach.
Collapse
Affiliation(s)
- Elahe Memari
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada
| | - Dure Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Brandon Helfield
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada; Department of Biology, Concordia University, Montreal H4B 1R6, Canada.
| |
Collapse
|
25
|
Shah H, Paul G, Yadav AK. Surface-Tailored Nanoplatform for the Diagnosis and Management of Stroke: Current Strategies and Future Outlook. Mol Neurobiol 2024; 61:1383-1403. [PMID: 37707740 DOI: 10.1007/s12035-023-03635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Stroke accounts for one of the top leading reasons for neurological mortality and morbidity around the globe. Both ischemic and hemorrhagic strokes lead to local hypoxia and are brought about by the occlusion or rupturing of the blood vessels. The events taking place after the onset of a stroke include membrane ion pump failure, calcium and glutamate-mediated excitotoxicity, increased ROS production causing DNA damage, mitochondrial dysfunction, oxidative stress, development of brain edema, and microvascular dysfunction. To date, tissue plasminogen activator (tPA) therapy and mechanical removal of blood clots are the only clinically available stroke therapies, approved by Food and Drug Administration (FDA). But because of the narrow therapeutic window of around 4.5 h for tPA therapy and complications like systemic bleeding and anaphylaxis, more clinical trials are ongoing in the same field. Therefore, using nanocarriers with diverse physicochemical properties is a promising strategy in treating and diagnosing stroke as they can efficiently bypass the tight blood-brain barrier (BBB) through mechanisms like receptor-mediated transcytosis and help achieve controlled and targeted drug delivery. In this review, we will mainly focus on the pathophysiology of stroke, BBB alterations following stroke, strategies to target BBB for stroke therapies, different types of nanocarriers currently being used for therapeutic intervention of stroke, and biomarkers as well as imaging techniques used for the detection and diagnosis of stroke.
Collapse
Affiliation(s)
- Hinal Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER) Raebareli (An Institute of National Importance Under Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Gajanan Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER) Raebareli (An Institute of National Importance Under Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER) Raebareli (An Institute of National Importance Under Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
26
|
Odom TL, LeBroc HD, Callmann CE. Biomacromolecule-tagged nanoscale constructs for crossing the blood-brain barrier. NANOSCALE 2024; 16:3969-3976. [PMID: 38305381 DOI: 10.1039/d3nr06154j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Access to the brain is restricted by the low permeability of the blood-brain barrier (BBB), greatly hampering modern drug delivery efforts. A promising approach to overcome this boundary is to utilize biomacromolecules (peptides, nucleic acids, carbohydrates) as targeting ligands on nanoscale delivery vehicles to shuttle cargo across the BBB. In this mini-review, we highlight the most recent approaches for crossing the BBB using synthetic nanoscale constructs decorated with members of these general classes of biomacromolecules to safely and selectively deliver therapeutic materials to the brain.
Collapse
Affiliation(s)
- Tyler L Odom
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| | - Hayden D LeBroc
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| | - Cassandra E Callmann
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| |
Collapse
|
27
|
Lan G, Song Q, Luan Y, Cheng Y. Targeted strategies to deliver boron agents across the blood-brain barrier for neutron capture therapy of brain tumors. Int J Pharm 2024; 650:123747. [PMID: 38151104 DOI: 10.1016/j.ijpharm.2023.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Boron neutron capture therapy (BNCT), as an innovative radiotherapy technology, has demonstrated remarkable outcomes when compared to conventional treatments in the management of recurrent and refractory brain tumors. However, in BNCT of brain tumors, the blood-brain barrier is a main stumbling block for restricting the transport of boron drugs to brain tumors, while the tumor targeting and retention of boron drugs also affect the BNCT effect. This review focuses on the recent development of strategies for delivering boron drugs crossing the blood-brain barrier and targeting brain tumors, providing new insights for the development of efficient boron drugs for the treatment of brain tumors.
Collapse
Affiliation(s)
- Gongde Lan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qingxu Song
- Department of Radiation Oncology, Boron Neutron Capture Therapy Medical Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Boron Neutron Capture Therapy Medical Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
28
|
Liu H, Qu D, Cao Y, Li H, Wu X, Zhu Y, Tao J, Li Y, Cao C. TAT-Modified Martentoxin Displays Intravenous Antiseizure Activities. ACS Chem Neurosci 2024; 15:205-214. [PMID: 38112732 DOI: 10.1021/acschemneuro.3c00744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Epilepsy is a chronic disease of brain dysfunction, which arises from imbalance between excitatory and inhibitory activities in neural circuits. Previously, we reported that peptide Martentoxin (MarTX), from scorpion Buthus martensii Karsch, displayed antiseizure activities by specifically inhibiting BK(α + β4) channel currents. Injection of MarTX into the hippocampal region of mice significantly alleviated convulsive seizures. However, intravenous injection of MarTX had no antiepileptic efficacy due to the blood-brain barrier (BBB). To address this, here, we designed cell-penetrating peptide TAT-modified MarTX, in which the linker containing three glycines was put between TAT and the N-terminus of MarTX (forming MTX-N-TAT) or between TAT and the C-terminus of MarTX (forming MTX-C-TAT), respectively. We prepared them in a large amount through Escherichia coli overexpression system and then probed their antiseizure activities. Our results indicated that intravenous injection of MTX-C-TAT showed significant therapeutic efficacy of antiseizure. It increased seizure latency, reduced the total seizure duration and the number of seizures at stages 3, 4, and 5, inhibited hippocampal neuronal hyperexcitability, and exhibited neuroprotective effects on hippocampal neurons. These studies implied that MTX-C-TAT displayed intravenous antiseizure activities properly through crossing BBB and would be a potential antiepileptic drug in the future.
Collapse
Affiliation(s)
- Huan Liu
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongxiao Qu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yunzhu Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Nanjing Fenglin Biotechnology Co., 2 Taixi Road, Pukou District, Nanjing 210031, China
| | - Haiting Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yudan Zhu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Tao
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yiming Li
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyang Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
29
|
Varshney S, Alam MA, Kaur A, Dhoundiyal S. Niosomes: A Smart Drug Delivery System for Brain Targeting. Pharm Nanotechnol 2024; 12:108-125. [PMID: 37226788 DOI: 10.2174/2211738511666230524143832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Niosomes are lipid-based nanovesicles that have the potential to act as drug-delivery vehicles for a variety of agents. They are effective drug delivery systems for both ASOs and AAV vectors, with advantages such as improved stability, bioavailability, and targeted administration. In the context of brain-targeted drug delivery, niosomes have been investigated as a drug delivery system for brain targeting, but more research is needed to optimize their formulation to improve their stability and release profile and address the challenges of scale-up and commercialization. Despite these challenges, several applications of niosomes have demonstrated the potential of novel nanocarriers for targeted drug delivery to the brain. This review briefly overviews the current use of niosomes in treating brain disorders and diseases.
Collapse
Affiliation(s)
- Sandesh Varshney
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
30
|
Ahmed W, Huang S, Chen L. Engineered exosomes derived from stem cells: a new brain-targeted strategy. Expert Opin Drug Deliv 2024; 21:91-110. [PMID: 38258509 DOI: 10.1080/17425247.2024.2306877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION Using engineered exosomes produced from stem cells is an experimental therapeutic approach for treating brain diseases. According to reports, preclinical research has demonstrated notable neurogenesis and angiogenesis effects using modified stem cell-derived exosomes. These biological nanoparticles have a variety of anti-apoptotic, anti-inflammatory, and antioxidant properties that make them very promising for treating nervous system disorders. AREAS COVERED This review examines different ways to enhance the delivery of modified stem cell-derived exosomes, how they infiltrate the blood-brain barrier (BBB), and how they facilitate their access to the brain. We would also like to determine whether these nanoparticles have the most significant transmission rates through BBB when targeting brain lesions. EXPERT OPINION Using engineered stem cell-derived exosomes for treating brain disorders has generated considerable attention toward clinical research and application. However, stem cell-derived exosomes lack consistency, and their mechanisms of action are uncertain. Therefore, upcoming research needs to prioritize examining the underlying mechanisms and strategies via which these nanoparticles combat neurological disorders.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Songze Huang
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Li D, Wang L, Jiang B, Jing Y, Li X. Improving cancer immunotherapy by preventing cancer stem cell and immune cell linking in the tumor microenvironment. Biomed Pharmacother 2024; 170:116043. [PMID: 38128186 DOI: 10.1016/j.biopha.2023.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer stem cells are the key link between malignant tumor progression and drug resistance. This cell population has special properties that are different from those of conventional tumor cells, and the role of cancer stem cell-related exosomes in progression of tumor malignancy is becoming increasingly clear. Cancer stem cell-derived exosomes carry a variety of functional molecules involved in regulation of the microenvironment, especially with regard to immune cells, but how these exosomes exert their functions and the specific mechanisms need to be further clarified. Here, we summarize the role of cancer stem cell exosomes in regulating immune cells in detail, aiming to provide new insights for subsequent targeted drug development and clinical strategy formulation.
Collapse
Affiliation(s)
- Dongyu Li
- Department of General Surgery & VIP In-Patient Ward, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Yuchen Jing
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Xuan Li
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China.
| |
Collapse
|
32
|
Dhanawat M, Garima, Wilson K, Gupta S, Chalotra R, Gupta N. Convection-enhanced Diffusion: A Novel Tactics to Crack the BBB. Curr Drug Deliv 2024; 21:1515-1528. [PMID: 38275045 DOI: 10.2174/0115672018266501231207095127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Although the brain is very accessible to nutrition and oxygen, it can be difficult to deliver medications to malignant brain tumours. To get around some of these issues and enable the use of therapeutic pharmacological substances that wouldn't typically cross the blood-brain barrier (BBB), convection-enhanced delivery (CED) has been developed. It is a cutting-edge strategy that gets beyond the blood-brain barrier and enables targeted drug administration to treat different neurological conditions such as brain tumours, Parkinson's disease, and epilepsy. Utilizing pressure gradients to spread the medicine across the target area is the main idea behind this diffusion mechanism. Through one to several catheters positioned stereotactically directly within the tumour mass, around the tumour, or in the cavity created by the resection, drugs are given. This method can be used in a variety of drug classes, including traditional chemotherapeutics and cutting-edge investigational targeted medications by using positive-pressure techniques. The drug delivery volume must be optimized for an effective infusion while minimizing backflow, which causes side effects and lowers therapeutic efficacy. Therefore, this technique provides a promising approach for treating disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Meenakshi Dhanawat
- Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Garima
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Kashish Wilson
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Sumeet Gupta
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Nidhi Gupta
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| |
Collapse
|
33
|
Singh D, Nagdev S. Novel Biomaterials Based Strategies for Neurodegeneration: Recent Advancements and Future Prospects. Curr Drug Deliv 2024; 21:1037-1049. [PMID: 38310440 DOI: 10.2174/0115672018275382231215063052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 02/05/2024]
Abstract
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant challenges for effective treatment due to the complex nature of the central nervous system and the limited delivery of therapeutic agents to the brain. Biomaterial-based drug delivery systems offer promising strategies to overcome these challenges and improve therapeutic outcomes. These systems utilize various biomaterials, such as nanoparticles, hydrogels, and implants, to deliver drugs, genes, or cells to the affected regions of the brain. They provide advantages such as targeted delivery, controlled release, and protection of therapeutic agents. This review examines the role of biomaterials in drug delivery for neurodegeneration, discussing different biomaterialbased approaches, including surface modification, encapsulation, and functionalization techniques. Furthermore, it explores the challenges, future perspectives, and potential impact of biomaterialbased drug delivery systems in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali (140413), India
| | - Sanjay Nagdev
- Department of Quality Assurance, Shri. Prakashchand Jain College of Pharmacy and Research, Jamner, Maharashtra, India
| |
Collapse
|
34
|
León-Moreno LC, Reza-Zaldívar EE, Hernández-Sapiéns MA, Villafaña-Estarrón E, García-Martin M, Ojeda-Hernández DD, Matias-Guiu JA, Gomez-Pinedo U, Matias-Guiu J, Canales-Aguirre AA. Mesenchymal Stem Cell-Based Therapies in the Post-Acute Neurological COVID Syndrome: Current Landscape and Opportunities. Biomolecules 2023; 14:8. [PMID: 38275749 PMCID: PMC10813738 DOI: 10.3390/biom14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
One of the main concerns related to SARS-CoV-2 infection is the symptoms that could be developed by survivors, known as long COVID, a syndrome characterized by persistent symptoms beyond the acute phase of the infection. This syndrome has emerged as a complex and debilitating condition with a diverse range of manifestations affecting multiple organ systems. It is increasingly recognized for affecting the Central Nervous System, in which one of the most prevalent manifestations is cognitive impairment. The search for effective therapeutic interventions has led to growing interest in Mesenchymal Stem Cell (MSC)-based therapies due to their immunomodulatory, anti-inflammatory, and tissue regenerative properties. This review provides a comprehensive analysis of the current understanding and potential applications of MSC-based interventions in the context of post-acute neurological COVID-19 syndrome, exploring the underlying mechanisms by which MSCs exert their effects on neuroinflammation, neuroprotection, and neural tissue repair. Moreover, we discuss the challenges and considerations specific to employing MSC-based therapies, including optimal delivery methods, and functional treatment enhancements.
Collapse
Affiliation(s)
- Lilia Carolina León-Moreno
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | | | - Mercedes Azucena Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Erika Villafaña-Estarrón
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Marina García-Martin
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Doddy Denise Ojeda-Hernández
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jordi A. Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Ulises Gomez-Pinedo
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jorge Matias-Guiu
- Departamento de Neurología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Arturo Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| |
Collapse
|
35
|
Malik JR, Podany AT, Khan P, Shaffer CL, Siddiqui JA, Baranowska‐Kortylewicz J, Le J, Fletcher CV, Ether SA, Avedissian SN. Chemotherapy in pediatric brain tumor and the challenge of the blood-brain barrier. Cancer Med 2023; 12:21075-21096. [PMID: 37997517 PMCID: PMC10726873 DOI: 10.1002/cam4.6647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pediatric brain tumors (PBT) stand as the leading cause of cancer-related deaths in children. Chemoradiation protocols have improved survival rates, even for non-resectable tumors. Nonetheless, radiation therapy carries the risk of numerous adverse effects that can have long-lasting, detrimental effects on the quality of life for survivors. The pursuit of chemotherapeutics that could obviate the need for radiotherapy remains ongoing. Several anti-tumor agents, including sunitinib, valproic acid, carboplatin, and panobinostat, have shown effectiveness in various malignancies but have not proven effective in treating PBT. The presence of the blood-brain barrier (BBB) plays a pivotal role in maintaining suboptimal concentrations of anti-cancer drugs in the central nervous system (CNS). Ongoing research aims to modulate the integrity of the BBB to attain clinically effective drug concentrations in the CNS. However, current findings on the interaction of exogenous chemical agents with the BBB remain limited and do not provide a comprehensive explanation for the ineffectiveness of established anti-cancer drugs in PBT. METHODS We conducted our search for chemotherapeutic agents associated with the blood-brain barrier (BBB) using the following keywords: Chemotherapy in Cancer, Chemotherapy in Brain Cancer, Chemotherapy in PBT, BBB Inhibition of Drugs into CNS, Suboptimal Concentration of CNS Drugs, PBT Drugs and BBB, and Potential PBT Drugs. We reviewed each relevant article before compiling the information in our manuscript. For the generation of figures, we utilized BioRender software. FOCUS We focused our article search on chemical agents for PBT and subsequently investigated the role of the BBB in this context. Our search criteria included clinical trials, both randomized and non-randomized studies, preclinical research, review articles, and research papers. FINDING Our research suggests that, despite the availability of potent chemotherapeutic agents for several types of cancer, the effectiveness of these chemical agents in treating PBT has not been comprehensively explored. Additionally, there is a scarcity of studies examining the role of the BBB in the suboptimal outcomes of PBT treatment, despite the effectiveness of these drugs for other types of tumors.
Collapse
Affiliation(s)
- Johid Reza Malik
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Anthony T. Podany
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Parvez Khan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Christopher L. Shaffer
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jawed A. Siddiqui
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Jennifer Le
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical SciencesSan DiegoCaliforniaUSA
| | - Courtney V. Fletcher
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sadia Afruz Ether
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sean N. Avedissian
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
36
|
Long F, Pan Y, Li J, Sha S, Shi X, Guo H, Huang C, Xiao Q, Fan C, Zhang X, Fan JB, Wang Y. Orange-derived extracellular vesicles nanodrugs for efficient treatment of ovarian cancer assisted by transcytosis effect. Acta Pharm Sin B 2023; 13:5121-5134. [PMID: 38045062 PMCID: PMC10692363 DOI: 10.1016/j.apsb.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 12/05/2023] Open
Abstract
Extracellular vesicles (EVs) have recently received much attention about the application of drug carriers due to their desirable properties such as nano-size, biocompatibility, and high stability. Herein, we demonstrate orange-derived extracellular vesicles (OEV) nanodrugs (DN@OEV) by modifying cRGD-targeted doxorubicin (DOX) nanoparticles (DN) onto the surface of OEV, enabling significantly enhancing tumor accumulation and penetration, thereby efficiently inhibiting the growth of ovarian cancer. The obtained DN@OEV enabled to inducement of greater transcytosis capability in ovarian cancer cells, which presented the average above 10-fold transcytosis effect compared with individual DN. It was found that DN@OEV could trigger receptor-mediated endocytosis to promote early endosome/recycling endosomes pathway for exocytosis and simultaneously reduce degradation in the early endosomes-late endosomes-lysosome pathway, thereby inducing the enhanced transcytosis. In particular, the zombie mouse model bearing orthotopic ovarian cancer further validated DN@OEV presented high accumulation and penetration in tumor tissue by the transcytosis process. Our study indicated the strategy in enhancing transcytosis has significant implications for improving the therapeutic efficacy of the drug delivery system.
Collapse
Affiliation(s)
- Feng Long
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Pan
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinheng Li
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Suinan Sha
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiubo Shi
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haoyan Guo
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chuanqing Huang
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian Xiao
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chao Fan
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingmei Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun-Bing Fan
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Wang
- Cancer Research Institute, Experimental Education/Administration Center, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
37
|
Umlauf BJ, Frampton G, Cooper A, Greene HF. A novel strategy to increase the therapeutic potency of GBM chemotherapy via altering parenchymal/cerebral spinal fluid clearance rate. J Control Release 2023; 364:195-205. [PMID: 37865172 DOI: 10.1016/j.jconrel.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Patients with glioblastoma (GBM) face a poor prognosis with a median survival of less than two years. Escalating the dose of chemotherapy is often impossible due to patient comorbidities; thus, we focused on modulating brain clearance as a mechanism to enhance drug accumulation. Given the recently identified interconnectivity between brain parenchymal fluid and cerebral spinal fluid (CSF), we reasoned enhancing drug concentration in the CSF also increases drug concentration in the parenchyma where a GBM resides. To improve drug accumulation in the CSF, we impair the motility of ependymal cell cilia. We identified FDA-approved therapeutics that interact with cilia as a "side effect." Therapeutics that inhibit airway cilia also inhibit ependymal cilia. Multiple cilia-inhibiting drugs, when administered in combination with GBM chemotherapy temozolomide (TMZ), significantly improved the overall survival of mice bearing orthotopic GBM. Combining TMZ with lidocaine results in 100% of animals surviving tumor-free to the study endpoint. This treatment results in a ~ 40-fold increase in brain TMZ levels and is well-tolerated. Mice bearing MGMT methylated, human PDX orthotopic GBM also responded with 100% of animals surviving tumor-free to the study endpoint. Finally, even mice bearing TMZ-resistant, orthotopic GBM responded to the combination treatment with 40% of animals surviving tumor-free to the study endpoint, implying this strategy can sensitize TMZ-resistant GBM. These studies offer a new concept for treating malignant brain tumors by improving the accumulation of TMZ in the CNS. In the future, this regimen may also improve the treatment of additional encephalopathies treated by brain-penetrating therapeutics. SIGNIFICANCE: We exploit the interconnectivity of parenchymal and cerebral spinal fluid to enhance the amount of temozolomide that accumulates in the central nervous system to improve the survival of mice bearing brain tumors.
Collapse
Affiliation(s)
- Benjamin J Umlauf
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA; Mulva Clinic for the Neurosciences, The University of Texas at Austin, 1601 Trinity St. Bldg A., Austin, USA.
| | - Gabriel Frampton
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| | - Alexis Cooper
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| | - Hannah-Faith Greene
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| |
Collapse
|
38
|
Borbolla-Jiménez FV, García-Aguirre IA, Del Prado-Audelo ML, Hernández-Hernández O, Cisneros B, Leyva-Gómez G, Magaña JJ. Development of a Polymeric Pharmacological Nanocarrier System as a Potential Therapy for Spinocerebellar Ataxia Type 7. Cells 2023; 12:2735. [PMID: 38067163 PMCID: PMC10706302 DOI: 10.3390/cells12232735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant inherited disease characterized by progressive ataxia and retinal degeneration. SCA7 belongs to a group of neurodegenerative diseases caused by an expanded CAG repeat in the disease-causing gene, resulting in aberrant polyglutamine (polyQ) protein synthesis. PolyQ ataxin-7 is prone to aggregate in intracellular inclusions, perturbing cellular processes leading to neuronal death in specific regions of the central nervous system (CNS). Currently, there is no treatment for SCA7; however, a promising approach successfully applied to other polyQ diseases involves the clearance of polyQ protein aggregates through pharmacological activation of autophagy. Nonetheless, the blood-brain barrier (BBB) poses a challenge for delivering drugs to the CNS, limiting treatment effectiveness. This study aimed to develop a polymeric nanocarrier system to deliver therapeutic agents across the BBB into the CNS. We prepared poly(lactic-co-glycolic acid) nanoparticles (NPs) modified with Poloxamer188 and loaded with rapamycin to enable NPs to activate autophagy. We demonstrated that these rapamycin-loaded NPs were successfully taken up by neuronal and glial cells, demonstrating high biocompatibility without adverse effects. Remarkably, rapamycin-loaded NPs effectively cleared mutant ataxin-7 aggregates in a SCA7 glial cell model, highlighting their potential as a therapeutic approach to fight SCA7 and other polyQ diseases.
Collapse
Affiliation(s)
- Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (O.H.-H.)
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Ian A. García-Aguirre
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México 14380, Mexico; (I.A.G.-A.); (M.L.D.P.-A.)
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México 07360, Mexico;
| | - María Luisa Del Prado-Audelo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México 14380, Mexico; (I.A.G.-A.); (M.L.D.P.-A.)
| | - Oscar Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (O.H.-H.)
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México 07360, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (O.H.-H.)
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México 14380, Mexico; (I.A.G.-A.); (M.L.D.P.-A.)
| |
Collapse
|
39
|
Zeng X, Yang M, Liu H, Zhang Z, Hu Y, Shi J, Wang ZH. Light-driven micro/nanomotors in biomedical applications. NANOSCALE 2023; 15:18550-18570. [PMID: 37962424 DOI: 10.1039/d3nr03760f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanotechnology brings hope for targeted drug delivery. However, most current drug delivery systems use passive delivery strategies with limited therapeutic efficiency. Over the past two decades, research on micro/nanomotors (MNMs) has flourished in the biomedical field. Compared with other driven methods, light-driven MNMs have the advantages of being reversible, simple to control, clean, and efficient. Under light irradiation, the MNMs can overcome several barriers in the body and show great potential in the treatment of various diseases, such as tumors, and gastrointestinal, cardiovascular and cerebrovascular diseases. Herein, the classification and mechanism of light-driven MNMs are introduced briefly. Subsequently, the applications of light-driven MNMs in overcoming physiological and pathological barriers in the past five years are highlighted. Finally, the future prospects and challenges of light-driven MNMs are discussed as well. This review will provide inspiration and direction for light-driven MNMs to overcome biological barriers in vivo and promote the clinical application of light-driven MNMs in the biomedical field.
Collapse
Affiliation(s)
- Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| |
Collapse
|
40
|
Jiang K, Yu Y, Qiu W, Tian K, Guo Z, Qian J, Lu H, Zhan C. Protein corona on brain targeted nanocarriers: Challenges and prospects. Adv Drug Deliv Rev 2023; 202:115114. [PMID: 37827336 DOI: 10.1016/j.addr.2023.115114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Safe and efficient medical therapy for brain diseases is still an unmet clinical need due to various barriers represented by the blood-brain barrier. Well-designed brain targeted nanocarriers are potential solutions for enhanced brain drug delivery; however, the complicated in vivo process attenuates performance of nanocarriers, which severely hampers clinical translation. The formation of protein corona (PC) is inevitable for nanocarriers circulation and transport in biofluids, acting as an important factor to regulate in vivo performance of nanocarriers. In this review, the reported strategies have been retrospected for better understanding current situation in developing brain targeted nanocarriers. The interplay between brain targeted nanocarriers and plasma proteins is emphasized to comprehend how the nanocarriers adsorb proteins by certain synthetic identity, and following regulations on in vivo performance of nanocarriers. More importantly, the mainstream methods to promote efficiency of nanocarriers by regulating PC, defined as in vitro functionalization and in vivo functionalization strategies, are also discussed. Finally, viewpoints about future development of brain targeted nanocarriers according to the understanding on nanocarriers-PC interaction are proposed.
Collapse
Affiliation(s)
- Kuan Jiang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Yifei Yu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Wei Qiu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Kaisong Tian
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Zhiwei Guo
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Jun Qian
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201399, PR China
| | - Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201399, PR China.
| | - Changyou Zhan
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201399, PR China.
| |
Collapse
|
41
|
Banks WA. Viktor Mutt lecture: Peptides can cross the blood-brain barrier. Peptides 2023; 169:171079. [PMID: 37598757 DOI: 10.1016/j.peptides.2023.171079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
The field of peptides exploded in the 1970's and has continued to be a major area of discovery. Among the early discoveries was that peptides administered peripherally could affect brain functions. This led Kastin to propose that peptides could cross the blood-brain barrier (BBB). Although initially very controversial, Kastin, I, and others demonstrated not only that peptides can cross the BBB, but elucidated many fundamental characteristics of that passage. That work was in large part the basis of the 2022 Viktor Mutt Lectureship. Here, we review some of the early work with current updates on topics related to the penetration of peptides across the BBB. We briefly review mechanisms by which peripherally administered peptides can affect brain function without crossing the BBB, and then review the major mechanisms by which peptides and their analogs have been show to cross the BBB: transmembrane diffusion, saturable transport, and adsorptive transcytosis. Saturable transport systems are adaptable to physiologic changes and can be altered by disease states. In particular, the transport across the BBB of insulin and of pituitary adenylate cyclase activating polypeptide (PACAP) illustrate many of the concepts regarding peptide transport across the BBB.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle 98108, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
42
|
Ulanova M, Gloag L, Bongers A, Kim CK, Duong HTK, Kim HN, Gooding JJ, Tilley RD, Biazik J, Wen W, Sachdev PS, Braidy N. Evaluation of Dimercaptosuccinic Acid-Coated Iron Nanoparticles Immunotargeted to Amyloid Beta as MRI Contrast Agents for the Diagnosis of Alzheimer's Disease. Cells 2023; 12:2279. [PMID: 37759500 PMCID: PMC10527350 DOI: 10.3390/cells12182279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nanoparticle-based magnetic contrast agents have opened the potential for magnetic resonance imaging (MRI) to be used for early non-invasive diagnosis of Alzheimer's disease (AD). Accumulation of amyloid pathology in the brain has shown association with cognitive decline and tauopathy; hence, it is an effective biomarker for the early detection of AD. The aim of this study was to develop a biocompatible magnetic nanoparticle targeted to amyloid beta (Aβ) plaques to increase the sensitivity of T2-weighted MRI for imaging of amyloid pathology in AD. We presented novel iron core-iron oxide nanoparticles stabilized with a dimercaptosuccinic acid coating and functionalized with an anti-Aβ antibody. Nanoparticle biocompatibility and cellular internalization were evaluated in vitro in U-251 glioblastoma cells using cellular assays, proteomics, and transmission electron microscopy. Iron nanoparticles demonstrated no significant in vitro cytotoxicity, and electron microscopy results showed their movement through the endocytic cycle within the cell over a 24 h period. In addition, immunostaining and bio-layer interferometry confirmed the targeted nanoparticle's binding affinity to amyloid species. The iron nanoparticles demonstrated favourable MRI contrast enhancement; however, the addition of the antibody resulted in a reduction in the relaxivity of the particles. The present work shows promising preliminary results in the development of a targeted non-invasive method of early AD diagnosis using contrast-enhanced MRI.
Collapse
Affiliation(s)
- Marina Ulanova
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Lucy Gloag
- Faculty of Science, School of Mathematical and Physical Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Andre Bongers
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
- Faculty of Medicine, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chul-Kyu Kim
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Hong Thien Kim Duong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia;
| | - John Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D. Tilley
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joanna Biazik
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
| | - Wei Wen
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| |
Collapse
|
43
|
Yu S, Wang X, Lv L, Liu T, Guan Q. Borneol-modified PEGylated graphene oxide as a nanocarrier for brain-targeted delivery of ginsenoside Rg1 against depression. Int J Pharm 2023; 643:123284. [PMID: 37527732 DOI: 10.1016/j.ijpharm.2023.123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Depression is a chronic mental disorder which threatens human health and lives. However, the treatment of depression remains challenging largely due to blood brain barrier (BBB), which restricts drugs from entering the brain, resulting in a poor distribution of antidepressants in the brain. In this work, a novel brain-targeted drug delivery system was developed based on borneol-modified PEGylated graphene oxide (GO-PEG-BO). GO-PEG-BO was characterized and proved to possess excellent biocompatibility. By incorporating borneol, GO-PEG-BO could penetrate BBB efficiently by opening tight junctions and inhibiting the efflux system of BBB. The targeted distribution of GO-PEG-BO in the brain was observed by an in vivo biodistribution study. Moreover, GO-PEG-BO exhibited a neuroprotective effect, which is beneficial to the treatment of depression. Ginsenoside Rg1 (GRg1), which can relieve depressive symptoms but difficult to cross BBB, was loaded to GO-PEG-BO for the therapy of depression. In depressive rats, GRg1/GO-PEG-BO improved stress-induced anhedonia, despair and anxiety, and comprehensively relieved the depressive symptoms. In conclusion, GO-PEG-BO could serve as a promising nanocarrier for brain-targeted drug delivery, and provide a new strategy for the therapy of depression.
Collapse
Affiliation(s)
- Shangmin Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China; Department of Pharmaceutics, School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui 233000, China
| | - Xinying Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Linlin Lv
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Tongyan Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Qingxiang Guan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
44
|
Manimaran V, Nivetha RP, Tamilanban T, Narayanan J, Vetriselvan S, Fuloria NK, Chinni SV, Sekar M, Fuloria S, Wong LS, Biswas A, Ramachawolran G, Selvaraj S. Nanogels as novel drug nanocarriers for CNS drug delivery. Front Mol Biosci 2023; 10:1232109. [PMID: 37621994 PMCID: PMC10446842 DOI: 10.3389/fmolb.2023.1232109] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Nanogels are highly recognized as adaptable drug delivery systems that significantly contribute to improving various therapies and diagnostic examinations for different human diseases. These three-dimensional, hydrophilic cross-linked polymers have the ability to absorb large amounts of water or biological fluids. Due to the growing demand for enhancing current therapies, nanogels have emerged as the next-generation drug delivery system. They effectively address the limitations of conventional drug therapy, such as poor stability, large particle size, and low drug loading efficiency. Nanogels find extensive use in the controlled delivery of therapeutic agents, reducing adverse drug effects and enabling lower therapeutic doses while maintaining enhanced efficacy and patient compliance. They are considered an innovative drug delivery system that highlights the shortcomings of traditional methods. This article covers several topics, including the involvement of nanogels in the nanomedicine sector, their advantages and limitations, ideal properties like biocompatibility, biodegradability, drug loading capacity, particle size, permeability, non-immunological response, and colloidal stability. Additionally, it provides information on nanogel classification, synthesis, drug release mechanisms, and various biological applications. The article also discusses barriers associated with brain targeting and the progress of nanogels as nanocarriers for delivering therapeutic agents to the central nervous system.
Collapse
Affiliation(s)
- V. Manimaran
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - R. P. Nivetha
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - T. Tamilanban
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - J. Narayanan
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Subramaniyan Vetriselvan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | | | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | | | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Anupam Biswas
- Faculty of Medicine, AIMST University, Kedah, Malaysia
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, Georgetown, Pulau Pinang, Malaysia
| | | |
Collapse
|
45
|
Grabska-Kobyłecka I, Szpakowski P, Król A, Książek-Winiarek D, Kobyłecki A, Głąbiński A, Nowak D. Polyphenols and Their Impact on the Prevention of Neurodegenerative Diseases and Development. Nutrients 2023; 15:3454. [PMID: 37571391 PMCID: PMC10420887 DOI: 10.3390/nu15153454] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
It is well known that neurodegenerative diseases' development and progression are accelerated due to oxidative stress and inflammation, which result in impairment of mitochondrial function, cellular damage, and dysfunction of DNA repair systems. The increased consumption of antioxidants can postpone the development of these disorders and improve the quality of patients' lives who have already been diagnosed with neurodegenerative diseases. Prolonging life span in developed countries contributes to an increase in the incidence ratio of chronic age-related neurodegenerative disorders, such as PD (Parkinson's disease), AD (Alzheimer's disease), or numerous forms of age-related dementias. Dietary supplementation with neuroprotective plant-derived polyphenols might be considered an important element of healthy aging. Some polyphenols improve cognition, mood, visual functions, language, and verbal memory functions. Polyphenols bioavailability differs greatly from one compound to another and is determined by solubility, degree of polymerization, conjugation, or glycosylation resulting from chemical structure. It is still unclear which polyphenols are beneficial because their potential depends on efficient transport across the BBB (blood-brain barrier), bioavailability, and stability in the CNS (central nervous system). Polyphenols improve brain functions by having a direct impact on cells and processes in the CNS. For a direct effect, polyphenolic compounds must be able to overcome the BBB and accumulate in brain tissue. In this review, the latest achievements in studies (animal models and clinical trials) on the effect of polyphenols on brain activity and function are described. The beneficial impact of plant polyphenols on the brain may be summarized by their role in increasing brain plasticity and related cognition improvement. As reversible MAO (monoamine oxidase) inhibitors, polyphenols are mood modulators and improve neuronal self-being through an increase in dopamine, serotonin, and noradrenaline amounts in the brain tissue. After analyzing the prohealth effects of various eating patterns, it was postulated that their beneficial effects result from synergistic interactions between individual dietary components. Polyphenols act on the brain endothelial cells and improve the BBB's integrity and reduce inflammation, thus protecting the brain from additional injury during stroke or autoimmune diseases. Polyphenolic compounds are capable of lowering blood pressure and improving cerebral blood flow. Many studies have revealed that a nutritional model based on increased consumption of antioxidants has the potential to ameliorate the cognitive impairment associated with neurodegenerative disorders. Randomized clinical trials have also shown that the improvement of cognitive functions resulting from the consumption of foods rich in flavonoids is independent of age and health conditions. For therapeutic use, sufficient quantities of polyphenols must cross the BBB and reach the brain tissue in active form. An important issue in the direct action of polyphenols on the CNS is not only their penetration through the BBB, but also their brain metabolism and localization. The bioavailability of polyphenols is low. The most usual oral administration also conflicts with bioavailability. The main factors that limit this process and have an effect on therapeutic efficacy are: selective permeability across BBB, gastrointestinal transformations, poor absorption, rapid hepatic and colonic metabolism, and systemic elimination. Thus, phenolic compounds have inadequate bioavailability for human applications to have any beneficial effects. In recent years, new strategies have been attempted in order to exert cognitive benefits and neuroprotective effects. Converting polyphenols into nanostructures is one of the theories proposed to enhance their bioavailability. The following nanoscale delivery systems can be used to encapsulate polyphenols: nanocapsules, nanospheres, micelles, cyclodextrins, solid lipid nanoparticles, and liposomes. It results in great expectations for the wide-scale and effective use of polyphenols in the prevention of neurodegenerative diseases. Thus far, only natural polyphenols have been studied as neuroprotectors. Perhaps some modification of the chemical structure of a given polyphenol may increase its neuroprotective activity and transportation through the BBB. However, numerous questions should be answered before developing neuroprotective medications based on plant polyphenols.
Collapse
Affiliation(s)
- Izabela Grabska-Kobyłecka
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Aleksandra Król
- Department of Experimental Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland;
| | - Dominika Książek-Winiarek
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Andrzej Kobyłecki
- Interventional Cardiology Lab, Copernicus Hospital, Pabianicka Str. 62, 93-513 Łódź, Poland;
| | - Andrzej Głąbiński
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland
| |
Collapse
|
46
|
Piris P, Buric D, Yamasaki T, Huchedé P, Rossi M, Matteudi M, Montero MP, Rodallec A, Appay R, Roux C, Combes S, Pasquier E, Castets M, André N, Brémond P, Carré M. Conditional generation of free radicals by selective activation of alkoxyamines: towards more effective and less toxic targeting of brain tumors. Chem Sci 2023; 14:7988-7998. [PMID: 37502321 PMCID: PMC10370576 DOI: 10.1039/d3sc01315d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Brain tumors are an important cause of suffering and death. Glioblastoma are the most frequent primary tumors of the central nervous system in adults. They are associated with a very poor prognosis, since only 10% of GBM patients survive 5 years after diagnosis. Medulloblastoma are the most frequent brain malignancies in childhood; they affect the cerebellum in children under 10 years of age in 75% of cases. The current multimodal treatment comes at the expense of serious and often long-lasting side effects. Herein, we propose the synthesis of a library of novel alkoxyamines as anticancer drug candidates. The most efficient molecule, ALK4, was selected based on its ability to inhibit both survival and migration of GBM and MB cells in 2D cultures and in 3D tumor spheroids. A fluorescent derivative was used to show the early cytosolic accumulation of ALK4 in tumor cells. Spontaneous homolysis of ALK4 led to the release of alkyl radicals, which triggered the generation of reactive oxygen species, fragmentation of the mitochondrial network and ultimately apoptosis. To control its homolytic process, the selected alkoxyamine was bioconjugated to a peptide selectively recognized by matrix metalloproteases. This bioconjugate, named ALK4-MMPp, successfully inhibited survival, proliferation, and invasion of GBM and MB tumor micromasses. We further developed innovative brain and cerebellum organotypic models to monitor treatment response over time. It confirmed that ALK4-MMPp significantly impaired tumor progression, while no significant damage was observed on normal brain tissue. Lastly, we showed that ALK4-MMPp was well-tolerated in vivo by zebrafish embryos. This study provides a new strategy to control the activation of alkoxyamines, and revealed the bioconjugate ALK4-MMPp bioconjugate as a good anticancer drug candidate.
Collapse
Affiliation(s)
- Patricia Piris
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Duje Buric
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Toshihide Yamasaki
- Institut de Chimie Radicalaire, CNRS UMR7273, Aix-Marseille Université - Faculté des Sciences Marseille France
| | - Paul Huchedé
- Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard Lyon France
| | - Maïlys Rossi
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Mélanie Matteudi
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Marie-Pierre Montero
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Anne Rodallec
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Romain Appay
- Service D'anatomie Pathologique et de Neuropathologie, Hôpital de La Timone, Assistance Publique-Hôpitaux de Marseille (APHM) Marseille France
| | - Christine Roux
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Sébastien Combes
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
- DOSynth Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Faculté de Pharmacie Marseille France
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Marie Castets
- Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard Lyon France
| | - Nicolas André
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
- Service D'Hématologie & Oncologie Pédiatrique, Hôpital de La Timone, Assistance Publique-Hôpitaux de Marseille (APHM) Marseille France
| | - Paul Brémond
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
- DOSynth Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Faculté de Pharmacie Marseille France
| | - Manon Carré
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| |
Collapse
|
47
|
Lu Y, Wang JTW, Li N, Zhu X, Li Y, Bansal S, Wang Y, Al-Jamal KT. Intranasal administration of edaravone nanoparticles improves its stability and brain bioavailability. J Control Release 2023; 359:257-267. [PMID: 37290723 DOI: 10.1016/j.jconrel.2023.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
The clinical application of EDV, a potent antioxidant drug approved for amyotrophic lateral sclerosis (ALS), is limited by its short biological half-life and poor water solubility necessitating hospitalization during intravenous infusion. Nanotechnology-based drug delivery constitutes a powerful tool through inferring drug stability and targeted drug delivery improving drug bioavailability at the diseased site. Nose-to-brain drug delivery offers direct access to the brain bypassing the blood brain barrier and reducing systemic biodistribution. In this study, we designed EDV-loaded poly(lactic-co-glycolic acid) (PLGA)-based polymeric nanoparticles (NP-EDV) for intranasal administration. NPs were formulated by the nanoprecipitation method. Morphology, EDV loading, physicochemical properties, shelf-life stability, in vitro release and pharmacokinetic assessment in mice were conducted. EDV was efficiently loaded into ∼90 nm NPs, stable up to 30 days of storage, at ∼3% drug loading. NP-EDV reduced H2O2-induced oxidative stress toxicity in mouse microglial cell line BV-2. Optical imaging and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) showed that intranasal delivery of NP-EDV offered higher and more sustained brain uptake of EDV compared to intravenous administration. This study is the first of its kind to develop an ALS drug in a nanoparticulate formulation for nose-to-brain delivery raising hope to ALS patients where currently treatment options are limited to two clinically approved drugs only.
Collapse
Affiliation(s)
- Yuan Lu
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, UK; Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang 550004, China
| | - Julie Tzu-Wen Wang
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, UK
| | - Na Li
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang 550004, China
| | - Xiaoqin Zhu
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang 550004, China
| | - Yongjun Li
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang 550004, China
| | - Sukhi Bansal
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, UK
| | - Yonglin Wang
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang 550004, China
| | - Khuloud T Al-Jamal
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, UK.
| |
Collapse
|
48
|
Bao Y, Lu W. Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1681-1698. [PMID: 36945117 DOI: 10.1080/17425247.2023.2193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cerebral diseases have been threatening public physical and psychological health in the recent years. With the existence of the blood-brain barrier (BBB), it is particularly hard for therapeutic proteins like peptides, enzymes, antibodies, etc. to enter the central nervous system (CNS) and function in diagnosis and treatment in cerebral diseases. Fortunately, the past decade has witnessed some emerging strategies of delivering macromolecular therapeutic proteins across the BBB. AREAS COVERED Based on the structure, functions, and substances transport mechanisms, various enhanced delivery strategies of therapeutic proteins were reviewed, categorized by molecule-mediated delivery strategies, carrier-mediated delivery strategies, and other delivery strategies. EXPERT OPINION As for molecule-mediated delivery strategies, development of genetic engineering technology, optimization of protein expression and purification techniques, and mature of quality control systems all help to realize large-scale production of recombinant antibodies, making it possible to apply to the clinical practice. In terms of carrier-mediated delivery strategies and others, although nano-carriers/adeno-associated virus (AAV) are also promising candidates for delivering therapeutic proteins or genes across the BBB, some issues still remain to be further investigated, including safety concerns related to applied materials, large-scale production costs, quality control standards, combination therapies with auxiliary delivery strategies like focused ultrasound, etc.
Collapse
Affiliation(s)
- Yanning Bao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
- Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd. Lingang of Shanghai, China
| |
Collapse
|
49
|
Skovbjerg G, Roostalu U, Salinas CG, Skytte JL, Perens J, Clemmensen C, Elster L, Frich CK, Hansen HH, Hecksher-Sørensen J. Uncovering CNS access of lipidated exendin-4 analogues by quantitative whole-brain 3D light sheet imaging. Neuropharmacology 2023:109637. [PMID: 37391028 DOI: 10.1016/j.neuropharm.2023.109637] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023]
Abstract
Peptide-based drug development for CNS disorders is challenged by poor blood-brain barrier (BBB) penetrability of peptides. While acylation protractions (lipidation) have been successfully applied to increase circulating half-life of therapeutic peptides, little is known about the CNS accessibility of lipidated peptide drugs. Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful method to visualize whole-brain 3D distribution of fluorescently labelled therapeutic peptides at single-cell resolution. Here, we applied LSFM to map CNS distribution of the clinically relevant GLP-1 receptor agonist (GLP-1RA) exendin-4 (Ex4) and lipidated analogues following peripheral administration. Mice received an intravenous dose (100 nmol/kg) of IR800 fluorophore-labelled Ex4 (Ex4), Ex4 acylated with a C16-monoacid (Ex4_C16MA) or C18-diacid (Ex4_C18DA). Other mice were administered C16MA-acylated exendin 9-39 (Ex9-39_C16MA), a selective GLP-1R antagonist, serving as negative control for GLP-1R mediated agonist internalization. Two hours post-dosing, brain distribution of Ex4 and analogues was predominantly restricted to the circumventricular organs, notably area postrema and nucleus of the solitary tract. Ex4_C16MA and Ex9-39_C16MA also distributed to the paraventricular hypothalamic nucleus and medial habenula. Notably, Ex4_C18DA was detected in deeper-lying brain structures such as dorsomedial/ventromedial hypothalamic nuclei and the dentate gyrus. Similar CNS distribution maps of Ex4-C16MA and Ex9-39_C16MA suggest that brain access of lipidated Ex4 analogues is independent on GLP-1 receptor internalization. The cerebrovasculature was devoid of specific labelling, hence not supporting a direct role of GLP-1 RAs in BBB function. In conclusion, peptide lipidation increases CNS accessibility of Ex4. Our fully automated LSFM pipeline is suitable for mapping whole-brain distribution of fluorescently labelled drugs.
Collapse
Affiliation(s)
- Grethe Skovbjerg
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Urmas Roostalu
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | | | - Jacob L Skytte
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Johanna Perens
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Lisbeth Elster
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | | | | | | |
Collapse
|
50
|
Yang J, Teng Y. Harnessing cancer stem cell-derived exosomes to improve cancer therapy. J Exp Clin Cancer Res 2023; 42:131. [PMID: 37217932 DOI: 10.1186/s13046-023-02717-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer stem cells (CSCs) are the key "seeds" for tumor initiation and development, metastasis, and recurrence. Because of the function of CSCs in tumor development and progression, research in this field has intensified and CSCs are viewed as a new therapeutic target. Exosomes carrying a wide range of DNA, RNA, lipids, metabolites, and cytosolic and cell-surface proteins are released outside of the originating cells through the fusion of multivesicular endosomes or multivesicular bodies with the plasma membrane. It has become evident that CSC-derived exosomes play a significant role in almost all "hallmarks" of cancer. For example, exosomes from CSCs can maintain a steady state of self-renewal in the tumor microenvironment and regulate microenvironmental cells or distant cells to help cancer cells escape immune surveillance and induce immune tolerance. However, the function and therapeutic value of CSC-derived exosomes and the underlying molecular mechanisms are still largely undefined. To provide an overview of the possible role of CSC-derived exosomes and targeting strategies, we summarize relevant research progress, highlight the potential impact of detecting or targeting CSC-derived exosomes on cancer treatment, and discuss opportunities and challenges based on our experience and insights in this research area. A more thorough understanding of the characteristics and function of CSC-derived exosomes may open new avenues to the development of new clinical diagnostic/prognostic tools and therapies to prevent tumor resistance and relapse.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|