1
|
Lai H, Fan P, Wang H, Wang Z, Chen N. New perspective on central nervous system disorders: focus on mass spectrometry imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8080-8102. [PMID: 39508396 DOI: 10.1039/d4ay01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An abnormally organized brain spatial network is linked to the development of various central nervous system (CNS) disorders, including neurodegenerative diseases and neuropsychiatric disorders. However, the complicated molecular mechanisms of these diseases remain unresolved, making the development of treatment strategies difficult. A novel molecular imaging technique, called mass spectrometry imaging (MSI), captures molecular information on the surface of samples in situ. With MSI, multiple compounds can be simultaneously visualized in a single experiment. The high spatial resolution enables the simultaneous visualization of the spatial distribution and relative content of various compounds. The wide application of MSI in biomedicine has facilitated extensive studies on CNS disorders in recent years. This review provides a concise overview of the processes, applications, advantages, and disadvantages, as well as mechanisms of the main types of MSI. Meanwhile, this review summarizes the main applications of MSI in studying CNS diseases, including Alzheimer's disease (AD), CNS tumors, stroke, depression, Huntington's disease (HD), and Parkinson's disease (PD). Finally, this review comprehensively discusses the synergistic application of MSI with other advanced imaging modalities, its utilization in organoid models, its integration with spatial omics techniques, and provides an outlook on its future potential in single-cell analysis.
Collapse
Affiliation(s)
- Huaqing Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pinglong Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Huiqin Wang
- Hunan University of Chinese Medicine, Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Sun M, Zhang S, Wang J, Du G, Ji T. Synthesis of Novel Acetyl-11-keto-β-boswellic Acid Derivatives as Potential Anti-GBM Agents. Chem Biodivers 2024; 21:e202301979. [PMID: 38302832 DOI: 10.1002/cbdv.202301979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Acetyl-11-keto-β-boswellic acid (AKBA) is known to inhibit the growth of glioblastoma (GBM) cells and subcutaneous GBM. A series of acetyl-11-keto-β-boswellic acid (AKBA) derivatives containing the oxime-ester functionality or amide side chains were synthesized, and their anti-GBM activities were evaluated. Some of these compounds exhibited significant inhibitory activity against cell proliferation in U87 and U251 GBM cell lines, with IC50 values in the micromolar concentration range. Cellular thermal shift analysis showed that A-01 and A-10 improved the thermal stability of FOXM1, indicating that these highly active compounds may directly bind to FOXM1 in cells. Docking studies of the two most active compounds, A-01 and A-10, revealed key interactions between these compounds and the active site of FOXM1, in which the amide moiety at the C-24 position was essential for improving the activity. These results suggested that A-10 is a suitable lead molecule for the development of FOXM1 inhibitors. Thus, the rational design of AKBA derivatives with amide side chains holds significant potential for discovering of a new class of triterpenoids capable of inhibiting GBM cell proliferation.
Collapse
Affiliation(s)
- Mingxia Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinhua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
3
|
Pour ME, Moghadam SG, Shirkhani P, Sahebkar A, Mosaffa F. Therapeutic cell-based vaccines for glioblastoma multiforme. Med Oncol 2023; 40:354. [PMID: 37952224 DOI: 10.1007/s12032-023-02220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Glioblastoma multiforme (GBM), a highly aggressive tumor, poses significant challenges in achieving successful treatment outcomes. Conventional therapeutic modalities including surgery, radiation, and chemotherapy have demonstrated limited efficacy, primarily attributed to the complexities associated with drug delivery to the tumor site and tumor heterogeneity. To address this critical need for innovative therapies, the potential of cancer vaccines utilizing tumor cells and dendritic cells has been explored for GBM treatment. This article provides a comprehensive review of therapeutic vaccinations employing cell-based vaccine strategies for the management of GBM. A meticulous evaluation of 45 clinical trials involving more than 1500 participants revealed that cell-based vaccinations have exhibited favorable safety profiles with minimal toxicity. Moreover, these vaccines have demonstrated modest improvements in overall survival and progression-free survival among patients. However, certain limitations still persist. Notably, there is a need for advancements in the development of potent antigens to evoke immune responses, as well as the optimization of dosage regimens. Consequently, while cell-based vaccinations show promise as a potential therapeutic approach for GBM, further research is imperative to overcome the current limitations. The ultimate objective is to surmount these obstacles and establish cell-based vaccinations as a standard therapeutic modality for GBM.
Collapse
Affiliation(s)
- Mehrshad Ebrahim Pour
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samin Ghorbani Moghadam
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parian Shirkhani
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Beyond Imaging and Genetic Signature in Glioblastoma: Radiogenomic Holistic Approach in Neuro-Oncology. Biomedicines 2022; 10:biomedicines10123205. [PMID: 36551961 PMCID: PMC9775324 DOI: 10.3390/biomedicines10123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor exhibiting rapid and infiltrative growth, with less than 10% of patients surviving over 5 years, despite aggressive and multimodal treatments. The poor prognosis and the lack of effective pharmacological treatments are imputable to a remarkable histological and molecular heterogeneity of GBM, which has led, to date, to the failure of precision oncology and targeted therapies. Identification of molecular biomarkers is a paradigm for comprehensive and tailored treatments; nevertheless, biopsy sampling has proved to be invasive and limited. Radiogenomics is an emerging translational field of research aiming to study the correlation between radiographic signature and underlying gene expression. Although a research field still under development, not yet incorporated into routine clinical practice, it promises to be a useful non-invasive tool for future personalized/adaptive neuro-oncology. This review provides an up-to-date summary of the recent advancements in the use of magnetic resonance imaging (MRI) radiogenomics for the assessment of molecular markers of interest in GBM regarding prognosis and response to treatments, for monitoring recurrence, also providing insights into the potential efficacy of such an approach for survival prognostication. Despite a high sensitivity and specificity in almost all studies, accuracy, reproducibility and clinical value of radiomic features are the Achilles heel of this newborn tool. Looking into the future, investigators' efforts should be directed towards standardization and a disciplined approach to data collection, algorithms, and statistical analysis.
Collapse
|
5
|
SREBP2/Rab11s/GLUT1/6 network regulates proliferation and migration of glioblastoma. Pathol Res Pract 2022; 240:154176. [PMID: 36327817 DOI: 10.1016/j.prp.2022.154176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Cholesterol serves a vital role in the occurrence and development of glioblastoma multiforme (GBM). Furthermore, cholesterol synthesis is regulated by sterol regulatory element-binding protein 2 (SREBP2), and certain glucose transporters (GLUTs) and Ras-related protein Rab11 (Rab11) small GTPase family members (Rab11s) may contribute to the process. The Cancer Genome Atlas was used to analyze the relationship between prognosis and GLUT gene expressions. To investigate the regulatory effect of Rab11s and SREBP2 on GLUTs during tumor progression, single cell RNA sequencing (scRNA-seq), western blotting and reverse transcription-quantitative PCR were performed on glioma tissues and the T98G GBM cell line. Cell viability and migration were assessed by performing MTT and wound healing assays, respectively. Moreover, the dual-luciferase reporter gene assay was conducted to predict the sterol regulatory elements in the promoter regions of the target genes. The results demonstrated that high SREBP2, GLUT1 and GLUT6 expression was associated with poor survival of patients with GBM. ScRNA-seq distinguished glioblastoma cells by EGFR and indicated the related lipid metabolism signaling pathways. Moreover, the results indicated that GLUT1 and GLUT6 were regulated by SREBP2 and Rab11s. Rab11s and SREBP2 also contributed to T98G cell viability and migration. Additionally, the results indicated that Rab11s, GLUT1 and GLUT6 were transcriptionally regulated by SREBP2. Therefore, the present study suggested that the SREBP2/Rab11/GLUT network promoted T98G cell growth, thus, identifying potential therapeutic targets for GBM.
Collapse
|
6
|
Clementino-Neto J, da Silva JKS, de Melo Bastos Cavalcante C, da Silva-Júnior PF, David CC, de Araújo MV, Mendes CB, de Queiroz AC, da Silva ECO, de Souza ST, da Silva Fonseca EJ, da Silva TMS, de Amorim Camara C, Moura-Neto V, de Araújo-Júnior JX, da Silva-Júnior EF, da-Silva AX, Alexandre-Moreira MS. In vitro antitumor activity of dialkylamine-1,4-naphthoquinones toward human glioblastoma multiforme cells. NEW J CHEM 2022. [DOI: 10.1039/d1nj05915g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we evaluated the in vitro antitumor activity of dialkylamino-1,4-naphthoquinones (1a–n) toward human glioblastoma multiforme cells (GBM02).
Collapse
Affiliation(s)
- José Clementino-Neto
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - João Kaycke Sarmento da Silva
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Cibelle de Melo Bastos Cavalcante
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Paulo Fernando da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Cibelle Cabral David
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Morgana Vital de Araújo
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Carmelita Bastos Mendes
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Aline Cavalcanti de Queiroz
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Microbiology, Immunology and Parasitology, Complex Of Medical Sciences And Nursing, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, AL, Brazil
| | - Elaine Cristina Oliveira da Silva
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Samuel Teixeira de Souza
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Eduardo Jorge da Silva Fonseca
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Tânia Maria Sarmento da Silva
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Celso de Amorim Camara
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Vivaldo Moura-Neto
- State Institute of Brain Paulo Niemeyer, Rezende Street, Rio de Janeiro 20231-092, RJ, Brazil
| | - João Xavier de Araújo-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Adriana Ximenes da-Silva
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Magna Suzana Alexandre-Moreira
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| |
Collapse
|
7
|
Gatto L, Franceschi E, Di Nunno V, Tosoni A, Lodi R, Brandes AA. Liquid Biopsy in Glioblastoma Management: From Current Research to Future Perspectives. Oncologist 2021; 26:865-878. [PMID: 34105205 PMCID: PMC8488799 DOI: 10.1002/onco.13858] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary tumor of the central nervous system. Arising from neuroepithelial glial cells, GBM is characterized by invasive behavior, extensive angiogenesis, and genetic heterogeneity that contributes to poor prognosis and treatment failure. Currently, there are several molecular biomarkers available to aid in diagnosis, prognosis, and predicting treatment outcomes; however, all require the biopsy of tumor tissue. Nevertheless, a tissue sample from a single location has its own limitations, including the risk related to the procedure and the difficulty of obtaining longitudinal samples to monitor treatment response and to fully capture the intratumoral heterogeneity of GBM. To date, there are no biomarkers in blood or cerebrospinal fluid for detection, follow-up, or prognostication of GBM. Liquid biopsy offers an attractive and minimally invasive solution to support different stages of GBM management, assess the molecular biology of the tumor, identify early recurrence and longitudinal genomic evolution, predict both prognosis and potential resistance to chemotherapy or radiotherapy, and allow patient selection for targeted therapies. The aim of this review is to describe the current knowledge regarding the application of liquid biopsy in glioblastoma, highlighting both benefits and obstacles to translation into clinical care. IMPLICATIONS FOR PRACTICE: To translate liquid biopsy into clinical practice, further prospective studies are required with larger cohorts to increase specificity and sensitivity. With the ever-growing interest in RNA nanotechnology, microRNAs may have a therapeutic role in brain tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Enrico Franceschi
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Vincenzo Di Nunno
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Alicia Tosoni
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Raffaele Lodi
- Istituto delle Scienze Neurologiche di Bologna, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)BolognaItaly
| | - Alba Ariela Brandes
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| |
Collapse
|
8
|
Oasa S, Krmpot AJ, Nikolić SN, Clayton AHA, Tsigelny IF, Changeux JP, Terenius L, Rigler R, Vukojević V. Dynamic Cellular Cartography: Mapping the Local Determinants of Oligodendrocyte Transcription Factor 2 (OLIG2) Function in Live Cells Using Massively Parallel Fluorescence Correlation Spectroscopy Integrated with Fluorescence Lifetime Imaging Microscopy (mpFCS/FLIM). Anal Chem 2021; 93:12011-12021. [PMID: 34428029 PMCID: PMC8427561 DOI: 10.1021/acs.analchem.1c02144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Compartmentalization
and integration of molecular
processes through diffusion are basic mechanisms through which cells
perform biological functions. To characterize these mechanisms in
live cells, quantitative and ultrasensitive analytical methods with
high spatial and temporal resolution are needed. Here, we present
quantitative scanning-free confocal microscopy with single-molecule
sensitivity, high temporal resolution (∼10 μs/frame),
and fluorescence lifetime imaging capacity, developed by integrating
massively parallel fluorescence correlation spectroscopy with fluorescence
lifetime imaging microscopy (mpFCS/FLIM); we validate the method,
use it to map in live cell location-specific variations in the concentration,
diffusion, homodimerization, DNA binding, and local environment of
the oligodendrocyte transcription factor 2 fused with the enhanced
Green Fluorescent Protein (OLIG2-eGFP), and characterize the effects
of an allosteric inhibitor of OLIG2 dimerization on these determinants
of OLIG2 function. In particular, we show that cytoplasmic OLIG2-eGFP
is largely monomeric and freely diffusing, with the fraction of freely
diffusing OLIG2-eGFP molecules being fD,freecyt = (0.75
± 0.10) and the diffusion time τD,freecyt = (0.5 ± 0.3) ms. In contrast,
OLIG2-eGFP homodimers are abundant in the cell nucleus, constituting
∼25% of the nuclear pool, some fD,boundnuc = (0.65
± 0.10) of nuclear OLIG2-eGFP is bound to chromatin DNA, whereas
freely moving OLIG2-eGFP molecules diffuse at the same rate as those
in the cytoplasm, as evident from the lateral diffusion times τD,freenuc = τD,freecyt = (0.5
± 0.3) ms. OLIG2-eGFP interactions with chromatin DNA, revealed
through their influence on the apparent diffusion behavior of OLIG2-eGFP,
τD,boundnuc (850 ± 500) ms, are characterized by an apparent dissociation
constant Kd,appOLIG2-DNA = (45 ± 30) nM. The apparent
dissociation constant of OLIG2-eGFP homodimers was estimated to be Kd,app(OLIG2-eGFP)2 ≈ 560 nM. The allosteric inhibitor of OLIG2 dimerization,
compound NSC 50467, neither affects OLIG2-eGFP properties in the cytoplasm
nor does it alter the overall cytoplasmic environment. In contrast,
it significantly impedes OLIG2-eGFP homodimerization in the cell nucleus,
increasing five-fold the apparent dissociation constant, Kd,app,NSC50467(OLIG2-eGFP)2 ≈ 3 μM, thus reducing homodimer levels to below 7%
and effectively abolishing OLIG2-eGFP specific binding to chromatin
DNA. The mpFCS/FLIM methodology has a myriad of applications in biomedical
research and pharmaceutical industry. For example, it is indispensable
for understanding how biological functions emerge through the dynamic
integration of location-specific molecular processes and invaluable
for drug development, as it allows us to quantitatively characterize
the interactions of drugs with drug targets in live cells.
Collapse
Affiliation(s)
- Sho Oasa
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden
| | - Aleksandar J Krmpot
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden.,Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
| | - Stanko N Nikolić
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden.,Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
| | - Andrew H A Clayton
- Optical Sciences Centre, Department of Physics and Astronomy, School of Science, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Igor F Tsigelny
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0819, United States
| | - Jean-Pierre Changeux
- Department of Neuroscience, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Institut Pasteur, F-75724 Paris 15, France
| | - Lars Terenius
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden
| | - Rudolf Rigler
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vladana Vukojević
- Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden
| |
Collapse
|
9
|
Maggio I, Franceschi E, Gatto L, Tosoni A, Di Nunno V, Tonon C, Brandes AA. Radiomics, mirnomics, and radiomirRNomics in glioblastoma: defining tumor biology from shadow to light. Expert Rev Anticancer Ther 2021; 21:1265-1272. [PMID: 34433354 DOI: 10.1080/14737140.2021.1971518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Glioblastoma is a highly aggressive brain tumor with an extremely poor prognosis. Genetic characterization of this tumor has identified alterations with prognostic and therapeutic impact, and many efforts are being made to improve molecular knowledge on glioblastoma. Invasive procedures, such as tumor biopsy or radical resection, are needed to characterize the tumor. AREAS COVERED The role of microRNA in cancer is an expanding field of research as many microRNAs have been shown to correlate with patient prognosis and treatment response. Novel methodologies like radiomics, radiogenomics, and radiomiRNomics are under evaluation to improve the amount of prognostic and predictive biomarkers available. EXPERT OPINION The role of radiomics, radiogenomics, and radiomiRNomic for the characterization of glioblastoma will further improve in the coming years.
Collapse
Affiliation(s)
- Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | | | - Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Alicia Tosoni
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | | | - Caterina Tonon
- Ircss Istituto di Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba A Brandes
- Medical Oncology Department, Azienda USL, Bologna, Italy
| |
Collapse
|
10
|
Chen J, Wang F, Lu Y, Yang S, Chen X, Huang Y, Lin X. CLC-3 and SOX2 regulate the cell cycle in DU145 cells. Oncol Lett 2020; 20:372. [PMID: 33154770 PMCID: PMC7608052 DOI: 10.3892/ol.2020.12235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Sex determining region Y-box 2 (SOX2) is a transcription factor that serves a role in numerous different types of malignant cancer. Altered expression of chloride channel proteins has been described in a variety of malignancies. However, the association between SOX2 and chloride channel proteins is not yet fully understood. The present study investigated the association between SOX2 and chloride voltage-gated channel 3 (CLC-3) in prostate cancer. Flow cytometry demonstrated that the inactivation of CLC-3 or SOX2 arrested cell cycle progression in the G0/G1 phase. Furthermore, CLC-3 was observed to bind to SOX2, and vice versa, by co-immunoprecipitation. SOX2 appears to initiate and maintain prostate cancer tumorigenesis, in part, by modulating the cell cycle. These findings indicate the potential of SOX2 and CLC-3 as targets for the development of multi-targeted therapeutics.
Collapse
Affiliation(s)
- Jiahong Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fang Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yuli Lu
- Department of Epidemiology and Health Statistics, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shangqi Yang
- Department of Epidemiology and Health Statistics, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xueqin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Youwei Huang
- Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Key Laboratory for Environmental Exposure and Health, Environment College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
11
|
Li W, Ren L, Zheng X, Liu J, Wang J, Ji T, Du G. 3- O-Acetyl-11-keto- β -boswellic acid ameliorated aberrant metabolic landscape and inhibited autophagy in glioblastoma. Acta Pharm Sin B 2020; 10:301-312. [PMID: 32082975 PMCID: PMC7016292 DOI: 10.1016/j.apsb.2019.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/02/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma is the most common and aggressive primary tumor in the central nervous system, accounting for 12%-15% of all brain tumors. 3-O-Acetyl-11-keto-β-boswellic acid (AKBA), one of the most active ingredients of gum resin from Boswellia carteri Birdw., was reported to inhibit the growth of glioblastoma cells and subcutaneous glioblastoma. However, whether AKBA has antitumor effects on orthotopic glioblastoma and the underlying mechanisms are still unclear. An orthotopic mouse model was used to evaluate the anti-glioblastoma effects of AKBA. The effects of AKBA on tumor growth were evaluated using MRI. The effects on the alteration of metabolic landscape were detected by MALDI-MSI. The underlying mechanisms of autophagy reducing by AKBA treatment were determined by immunoblotting and immunofluorescence, respectively. Transmission electron microscope was used to check morphology of cells treated by AKBA. Our results showed that AKBA (100 mg/kg) significantly inhibited the growth of orthotopic U87-MG gliomas. Results from MALDI-MSI showed that AKBA improved the metabolic profile of mice with glioblastoma, while immunoblot assays revealed that AKBA suppressed the expression of ATG5, p62, LC3B, p-ERK/ERK, and P53, and increased the ratio of p-mTOR/mTOR. Taken together, these results suggested that the antitumor effects of AKBA were related to the normalization of aberrant metabolism in the glioblastoma and the inhibition of autophagy. AKBA could be a promising chemotherapy drug for glioblastoma.
Collapse
Key Words
- AKBA
- AKBA, 3-O-acetyl-11-keto-β-boswellic acid
- Autophagy
- DAPI, 4′,-6-diamidino-2-phenylindole
- G3P, glycerol-3-phosphate
- G6P, glucose-6-phosphate
- GBM, glioblastomas
- GL/FFA, glycerolipid/free fatty acid
- Glioblastoma
- IDH1/2, isocitrate dehydrogenases 1/2
- ITO, indium tin oxide
- LA, linoleic acid
- MALDI-MSI
- MALDI-MSI, matrix-assisted laser desorption ionization-mass spectrometry imaging
- NAA, N-acetyl-l-aspartic acid
- NEDC, N-(1-naphthyl) ethylenediamine dihydrochloride
- OA, oleic acid
- PA, phosphatidic acid
- PE, phosphatidylethanolamine
- PG, phosphatidylglycerols
- PI, phosphatidylinositol
- PS, phosphatidylserine
- Phospholipids
- TIC, total ion current
- TMZ, temozolomide
Collapse
Affiliation(s)
- Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Tengfei Ji
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Teixeira FC, Bruxel F, Azambuja JH, Berenguer AM, Stefani MA, Sévigny J, Spanevello RM, Battastini AMO, Teixeira HF, Braganhol E. Development and characterization of CD73-siRNA-loaded nanoemulsion: effect on C6 glioma cells and primary astrocytes. Pharm Dev Technol 2019; 25:408-415. [DOI: 10.1080/10837450.2019.1705485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Fernanda C. Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPEL, Pelotas, Brazil
| | - Fernanda Bruxel
- Grupo de Pesquisa em Nanobiotecnologia e Nanotoxicologia, UNIPAMPA, Uruguaiana, Brazil
| | - Juliana H. Azambuja
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPEL, Pelotas, Brazil
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | | | - Marco A. Stefani
- Departamento de Morfologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Roselia M. Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPEL, Pelotas, Brazil
| | - Ana M. O. Battastini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Brazil
| | - Helder F. Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPEL, Pelotas, Brazil
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
13
|
Whitehead CA, Kaye AH, Drummond KJ, Widodo SS, Mantamadiotis T, Vella LJ, Stylli SS. Extracellular vesicles and their role in glioblastoma. Crit Rev Clin Lab Sci 2019:1-26. [PMID: 31865806 DOI: 10.1080/10408363.2019.1700208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Research on the role of extracellular vesicles (EVs) in disease pathogenesis has been rapidly growing over the last two decades. As EVs can mediate intercellular communication, they can ultimately facilitate both normal and pathological processes through the delivery of their bioactive cargo, which may include nucleic acids, proteins and lipids. EVs have emerged as important regulators of brain tumors, capable of transferring oncogenic proteins, receptors, and small RNAs that may support brain tumor progression, including in the most common type of brain cancer, glioma. Investigating the role of EVs in glioma is crucial, as the most malignant glioma, glioblastoma (GBM), is incurable with a dismal median survival of 12-15 months. EV research in GBM has primarily focused on circulating brain tumor-derived vesicles in biofluids, such as blood and cerebrospinal fluid (CSF), investigating their potential as diagnostic and prognostic biomarkers. Gaining a greater understanding of the role of EVs and their cargo in brain tumor progression may contribute to the discovery of novel diagnostics and therapeutics. In this review, we summarize the known and emerging functions of EVs in glioma biology and pathogenesis, as well as their emerging biomarker potential.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Andrew H Kaye
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Katharine J Drummond
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Australia
| | - Samuel S Widodo
- Department of Microbiology & Immunology, School of Biomedical Sciences, The University of Melbourne, Parkville, Australia
| | - Theo Mantamadiotis
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Microbiology & Immunology, School of Biomedical Sciences, The University of Melbourne, Parkville, Australia
| | - Laura J Vella
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Stanley S Stylli
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| |
Collapse
|
14
|
Luo X, Xu S, Zhong Y, Tu T, Xu Y, Li X, Wang B, Yang F. High gene expression levels of VEGFA and CXCL8 in the peritumoral brain zone are associated with the recurrence of glioblastoma: A bioinformatics analysis. Oncol Lett 2019; 18:6171-6179. [PMID: 31788092 PMCID: PMC6865749 DOI: 10.3892/ol.2019.10988] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to identify differentially regulated genes between the peritumoral brain zone (PBZ) and tumor core (TC) of glioblastoma (GBM), to elucidate the underlying molecular mechanisms and provide a target for the treatment of tumors. The GSE13276 and GSE116520 datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) for the PBZ and TC were obtained using the GEO2R tool. The bioinformatics and evolutionary genomics online tool Venn was used to identify common DEGs between the two datasets. The Database for Annotation, Visualization, and Integrated Discovery online tool was used to analyze enriched pathways of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The Search Tool for the Retrieval of Interacting Genes/Proteins online tool was used to construct a protein-protein interaction (PPI) network of DEGs. Hub genes were identified using Cytohubba, a plug-in for Cytoscape. The Gene Expression Profiling Interactive Analysis (GEPIA) database was utilized to perform survival analysis. In total, 75 DEGs, including 12 upregulated and 63 downregulated genes, were identified. In the GO term analysis, these DEGs were mainly enriched in ‘regulation of angiogenesis’ and ‘central nervous system development’. Furthermore, in the KEGG pathway analysis, the DEGs were mainly enriched in ‘bladder cancer’ and ‘endocytosis’. When filtering the results of the PPI network analysis using Cytohubba, a total of 10 hub genes, including proteolipid protein 1, myelin associated oligodendrocyte basic protein, contactin 2, myelin oligodendrocyte glycoprotein, myelin basic protein, myelin associated glycoprotein, SRY-box transcription factor 10, C-X-C motif chemokine ligand 8 (CXCL8), vascular endothelial growth factor A (VEGFA) and plasmolipin, were identified. These hub genes were further subjected to GO term and KEGG pathway analysis, and were revealed to be enriched in ‘central nervous system development’, ‘bladder cancer’ and ‘rheumatoid arthritis’. These hub genes were used to perform survival analysis using the GEPIA database, and it was determined that VEGFA and CXCL8 were significantly associated with a reduction in the overall survival of patients with GBM. In conclusion, the results suggest that the recurrence of GBM is associated with high gene expression levels VEGFA and CXCL8, and the development of the central nervous system.
Collapse
Affiliation(s)
- Xiaobin Luo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shangyi Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yali Zhong
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, P.R. China
| | - Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Youlin Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xianglong Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bin Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fubing Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
15
|
Lassman AB, van den Bent MJ, Gan HK, Reardon DA, Kumthekar P, Butowski N, Lwin Z, Mikkelsen T, Nabors LB, Papadopoulos KP, Penas-Prado M, Simes J, Wheeler H, Walbert T, Scott AM, Gomez E, Lee HJ, Roberts-Rapp L, Xiong H, Ansell PJ, Bain E, Holen KD, Maag D, Merrell R. Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: results from an international phase I multicenter trial. Neuro Oncol 2019; 21:106-114. [PMID: 29982805 PMCID: PMC6303422 DOI: 10.1093/neuonc/noy091] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Patients with glioblastoma (GBM) have a dismal prognosis. Nearly all will relapse with no clear standard of care for recurrent disease (rGBM). Approximately 50% of patients have tumors harboring epidermal growth factor receptor (EGFR) amplification. The antibody-drug conjugate depatuxizumab mafodotin (depatux-m) binds cells with EGFR amplification, is internalized, and releases a microtubule toxin, killing the cell. Here we report efficacy, safety and pharmacokinetics (PK) of depatux-m + temozolomide (TMZ) in patients with EGFR-amplified rGBM. Methods M12-356 (NCT01800695) was an open-label study encompassing patients with newly diagnosed or rGBM across 3 treatment arms. Results are reported for adults with EGFR-amplified, measurable rGBM who received depatux-m (0.5-1.5 mg/kg) on days 1 and 15, and TMZ (150-200 mg/m2) on days 1-5 in a 28-day cycle. Patients were bevacizumab and nitrosourea naïve. Results There were 60 patients, median age 56 years (range, 20-79). Fifty-nine patients previously received TMZ. Common adverse events (AEs) were blurred vision (63%), fatigue (38%), and photophobia (35%). Grades 3/4 AEs were split between ocular and non-ocular AEs, occurring in 22% of patients each. Systemic PK exposure of depatux-m was dose proportional. The objective response rate was 14.3%, the 6-month progression-free survival rate was 25.2%, and the 6-month overall survival rate was 69.1%. Conclusions Depatux-m + TMZ displayed an AE profile similar to what was described previously. Antitumor activity in this TMZ-refractory population was encouraging. Continued study of depatux-m in patients with EGFR-amplified, newly diagnosed, or recurrent GBM is ongoing in 2 global, randomized trials (NCT02573324, NCT02343406).
Collapse
Affiliation(s)
- Andrew B Lassman
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Hui K Gan
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Zarnie Lwin
- Department of Medical Oncology, University of Queensland School of Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | | | - Louis B Nabors
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Marta Penas-Prado
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Helen Wheeler
- Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | | | - Andrew M Scott
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Austin Health and Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
| | | | - Ho-Jin Lee
- AbbVie Inc., North Chicago, Illinois, USA
| | | | - Hao Xiong
- AbbVie Inc., North Chicago, Illinois, USA
| | | | - Earle Bain
- AbbVie Inc., North Chicago, Illinois, USA
| | | | - David Maag
- AbbVie Inc., North Chicago, Illinois, USA
| | - Ryan Merrell
- NorthShore University Health System, Evanston, Illinois, USA
| |
Collapse
|
16
|
Plasma and brain pharmacokinetics of letrozole and drug interaction studies with temozolomide in NOD-scid gamma mice and sprague dawley rats. Cancer Chemother Pharmacol 2018; 83:81-89. [PMID: 30357450 DOI: 10.1007/s00280-018-3705-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/15/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE The aromatase inhibitor, letrozole, is being investigated in experimental animal models as a novel treatment for high-grade gliomas (HGGs). To facilitate optimal dosing for such studies, we evaluated the plasma and brain pharmacokinetics (PK) of letrozole in NOD-scid gamma (NSG) mice, which are frequently employed for assessing efficacy against patient-derived tumor cells. Furthermore, we evaluated the potential PK interactions between letrozole and temozolomide (TMZ) in Sprague-Dawley rats. METHODS NSG mice were administered letrozole (8 mg/kg; i.p) as a single or multiple dose (b.i.d, 10 days). Brain tissue and blood samples were collected over 24 h. Letrozole and TMZ interaction study employed jugular vein-cannulated rats (three groups; TMZ alone, letrozole alone and TMZ + letrozole). Intracerebral microdialysis was performed for brain extracellular fluid (ECF) collection simultaneously with venous blood sampling. Drug levels were measured employing HPLC and PK analysis was conducted using Phoenix WinNonlin®. RESULTS In NSG mice, peak plasma and brain tissue letrozole concentrations (Cmax) were 3-4 and 0.8-0.9 µg/ml, respectively. The elimination half-life was 2.6 h with minimal accumulation following multiple dosing. In the drug interaction study, no PK changes were evident when TMZ and letrozole were given in combination. For instance, peak plasma and brain ECF TMZ levels when given alone were 14.7 ± 1.1 and 4.6 ± 0.6 µg/ml, respectively, and 12.6 ± 2.4 and 3.4 ± 0.8 µg/ml, respectively, when given with letrozole. CONCLUSIONS These results will guide the optimization of dosing regimen for further development of letrozole for HGG treatment.
Collapse
|
17
|
Li W, Liu J, Fu W, Zheng X, Ren L, Liu S, Wang J, Ji T, Du G. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:132. [PMID: 29970196 PMCID: PMC6029111 DOI: 10.1186/s13046-018-0805-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
Background Glioblastoma (GBM) is the most common, malignant, and lethal primary brain tumor in adults accounting for about 50% of all gliomas. Up to now, the chemotherapy approaches for GBM were limited. 3-O-acetyl-11-keto-β-boswellic acid (AKBA), the major active ingredient of the gum resin from Boswellia serrata and Boswellia carteri Birdw., was reported to inhibit the growth of many types of cancer cells; however, the underlying mechanism of its anticancer effects are still unclear. Methods The effects of AKBA on cell viability and its cytotoxicity were determined using CCK8 and LDH kits respectively. The EdU-DNA synthesis assay was used to evaluate inhibition of cell proliferation by AKBA. The role of AKBA in glioblastoma cell functions such as migration/invasion, and colony formation was evaluated using transwell chambers and soft agar, respectively. Flow cytometry and western blotting were used to detect AKBA-induced apoptosis. Potential mechanisms of AKBA action were explored by RNA sequencing and the identified hub genes were validated by real-time quantitative PCR and western blotting. Finally, the in vivo anti-tumor activity of AKBA was evaluated against a human glioblastoma cell line, U87-MG, in a xenograft mouse model. Results AKBA inhibited cell proliferation, caused the release of LDH, decreased DNA synthesis, and inhibited the migration, invasion, and colony formation of U251 and U87-MG human glioblastoma cell lines. AKBA increased apoptosis as well as the activity of caspase 3/7 and the protein expression of cleaved-caspase 3 and cleaved PARP, while decreasing mitochondrial membrane potential. RNA-sequencing analyses showed that AKBA suppressed the expression of pRB, FOXM1, Aurora A, PLK1, CDC25C, p-CDK1, cyclinB1, Aurora B, and TOP2A while increasing the expression of p21 and GADD45A. These findings were validated by qRT-PCR and western blotting. The data are consistent with a mechanism in which AKBA arrested the cell cycle in glioblastoma cells at the G2/M phase by regulating the p21/FOXM1/cyclin B1 pathway, inhibited mitosis by downregulating the Aurora B/TOP2A pathway, and induced mitochondrial-dependent apoptosis. Oral administration of AKBA (100 mg/kg) significantly suppressed the tumorigenicity of U87-MG cells in a xenograft mouse model. Conclusions Taken together, these results suggest that AKBA (molecular weight, 512.7 Da) might be a promising chemotherapy drug in the treatment of GBM. Electronic supplementary material The online version of this article (10.1186/s13046-018-0805-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinyi Liu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.,Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650500, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Shiwei Liu
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China. .,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Tengfei Ji
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China. .,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
18
|
Franzese O, Battaini F, Graziani G, Tentori L, Barbaccia ML, Aquino A, Roselli M, Fuggetta MP, Bonmassar E, Torino F. Drug-induced xenogenization of tumors: A possible role in the immune control of malignant cell growth in the brain? Pharmacol Res 2018. [DOI: 10.1016/j.phrs.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Patel RA, Neil E, Maiser S. Palliative Care Issues in Glioblastoma #350. J Palliat Med 2018. [DOI: 10.1089/jpm.2018.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Lamberti G, Franceschi E, Brandes AA. The burden of oncology promises not kept in glioblastoma. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2017-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Giuseppe Lamberti
- Department of Medical Oncology, Azienda USL, Bellaria Hospital – IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Enrico Franceschi
- Department of Medical Oncology, Azienda USL, Bellaria Hospital – IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Alba A Brandes
- Department of Medical Oncology, Azienda USL, Bellaria Hospital – IRCCS Institute of Neurological Sciences, Bologna, Italy
| |
Collapse
|
21
|
Sun Q, Pei C, Li Q, Dong T, Dong Y, Xing W, Zhou P, Gong Y, Zhen Z, Gao Y, Xiao Y, Su J, Ren H. Up-regulation of MSH6 is associated with temozolomide resistance in human glioblastoma. Biochem Biophys Res Commun 2018; 496:1040-1046. [PMID: 29366782 DOI: 10.1016/j.bbrc.2018.01.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 01/13/2023]
Abstract
The impact of DNA mismatch repair (MMR) on resistance to temozolomide (TMZ) therapy in patients with glioblastoma (GBM) is recently reported but the mechanisms are not understood. We aim to analyze the correlation between MMR function and the acquired TMZ resistance in GBM using both relevant clinical samples and TMZ resistant cells. First we found increased expression of MSH6, one of key components of MMR, in recurrent GBM patients' samples who underwent TMZ chemotherapy, comparing with those matched samples collected at the time of diagnosis. Using the cellular models of acquired resistance to TMZ, we further confirmed the up-regulation of MSH6 in TMZ resistant cells. Moreover, a TCGA dataset contains a large cohort of GBM clinical samples with or without TMZ treatment reinforced the increased expression of MSH6 and other MMR genes after long-term TMZ chemotherapy, which may resulted in MMR dysfunction and acquired TMZ resistance. Our results suggest that increased expression of MSH6, or other MMR, may be a new mechanism contributing to the acquired resistance during TMZ therapy; and may serve as an indicator to the resistance in GBM.
Collapse
Affiliation(s)
- Quanye Sun
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Chunying Pei
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Qiuyuan Li
- Fundamental Medicine Institute, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Tianxiu Dong
- Department of Abdominal Ultrasound, The 1st Affiliated Hospital to Harbin Medical University, Harbin 150081, China
| | - Yucui Dong
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Peng Zhou
- Department of Neurosurgery, The 4th Hospital Affiliated to Harbin Medical University, Harbin 150081, China
| | - Yujiao Gong
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Ziqi Zhen
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Yifan Gao
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Yun Xiao
- Department of Bioinformatics, College of Bioinformatics and Technology, Harbin Medical University, Harbin 150081, China.
| | - Jun Su
- Department of Neurosurgery, The 3rd Hospital Affiliated to Harbin Medical University, Harbin 150086, China.
| | - Huan Ren
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China.
| |
Collapse
|
22
|
Reactive Astrocytes in Glioblastoma Multiforme. Mol Neurobiol 2018; 55:6927-6938. [PMID: 29363044 DOI: 10.1007/s12035-018-0880-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/07/2018] [Indexed: 12/17/2022]
Abstract
Despite the multidisciplinary integration in the therapeutic management of glioblastoma multiforme (GBM), the prognosis of GBM patients is poor. There is growing recognition that the cells in the tumor microenvironment play a vital role in regulating the progression of glioma. Astrocytes are an important component of the blood-brain barrier (BBB) as well as the tripartite synapse neural network to promote bidirectional communication with neurons under physiological conditions. Emerging evidence shows that tumor-associated reactive astrocytes interact with glioma cells and facilitate the progression, aggression, and survival of tumors by releasing different cytokines. Communication between reactive astrocytes and glioma cells is further promoted through ion channels and ion transporters, which augment the migratory capacity and invasiveness of tumor cells by modifying H+ and Ca2+ concentrations and stimulating volume changes in the cell. This in part contributes to the loss of epithelial polarization, initiating epithelial-mesenchymal transition. Therefore, this review will summarize the recent findings on the role of reactive astrocytes in the progression of GBM and in the development of treatment-resistant glioma. In addition, the involvement of ion channels and transporters in bridging the interactions between tumor cells and astrocytes and their potential as new therapeutic anti-tumor targets will be discussed.
Collapse
|
23
|
Zebrafish in Translational Cancer Research: Insight into Leukemia, Melanoma, Glioma and Endocrine Tumor Biology. Genes (Basel) 2017; 8:genes8090236. [PMID: 28930163 PMCID: PMC5615369 DOI: 10.3390/genes8090236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past 15 years, zebrafish have emerged as a powerful tool for studying human cancers. Transgenic techniques have been employed to model different types of tumors, including leukemia, melanoma, glioblastoma and endocrine tumors. These models present histopathological and molecular conservation with their human cancer counterparts and have been fundamental for understanding mechanisms of tumor initiation and progression. Moreover, xenotransplantation of human cancer cells in embryos or adult zebrafish offers the advantage of studying the behavior of human cancer cells in a live organism. Chemical-genetic screens using zebrafish embryos have uncovered novel druggable pathways and new therapeutic strategies, some of which are now tested in clinical trials. In this review, we will report on recent advances in using zebrafish as a model in cancer studies—with specific focus on four cancer types—where zebrafish has contributed to novel discoveries or approaches to novel therapies.
Collapse
|