1
|
Li X, Guo S, Sun Y, Ding J, Chen C, Wu Y, Li P, Sun T, Wang X. GABRG2 mutations in genetic epilepsy with febrile seizures plus: structure, roles, and molecular genetics. J Transl Med 2024; 22:767. [PMID: 39143639 PMCID: PMC11323400 DOI: 10.1186/s12967-024-05387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024] Open
Abstract
Genetic epilepsy with febrile seizures plus (GEFS+) is a genetic epilepsy syndrome characterized by a marked hereditary tendency inherited as an autosomal dominant trait. Patients with GEFS+ may develop typical febrile seizures (FS), while generalized tonic-clonic seizures (GTCSs) with fever commonly occur between 3 months and 6 years of age, which is generally followed by febrile seizure plus (FS+), with or without absence seizures, focal seizures, or GTCSs. GEFS+ exhibits significant genetic heterogeneity, with polymerase chain reaction, exon sequencing, and single nucleotide polymorphism analyses all showing that the occurrence of GEFS+ is mainly related to mutations in the gamma-aminobutyric acid type A receptor gamma 2 subunit (GABRG2) gene. The most common mutations in GABRG2 are separated in large autosomal dominant families, but their pathogenesis remains unclear. The predominant types of GABRG2 mutations include missense (c.983A → T, c.245G → A, p.Met199Val), nonsense (R136*, Q390*, W429*), frameshift (c.1329delC, p.Val462fs*33, p.Pro59fs*12), point (P83S), and splice site (IVS6+2T → G) mutations. All of these mutations types can reduce the function of ion channels on the cell membrane; however, the degree and mechanism underlying these dysfunctions are different and could be linked to the main mechanism of epilepsy. The γ2 subunit plays a special role in receptor trafficking and is closely related to its structural specificity. This review focused on investigating the relationship between GEFS+ and GABRG2 mutation types in recent years, discussing novel aspects deemed to be great significance for clinically accurate diagnosis, anti-epileptic treatment strategies, and new drug development.
Collapse
Affiliation(s)
- Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Shengnan Guo
- Department of Rehabilitative Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China
| | - Jiangwei Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yuehui Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peidong Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China.
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
2
|
Schoenen S, Verbeeck J, Koletzko L, Brambilla I, Kuchenbuch M, Dirani M, Zimmermann G, Dette H, Hilgers RD, Molenberghs G, Nabbout R. Istore: a project on innovative statistical methodologies to improve rare diseases clinical trials in limited populations. Orphanet J Rare Dis 2024; 19:96. [PMID: 38431612 PMCID: PMC10909280 DOI: 10.1186/s13023-024-03103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The conduct of rare disease clinical trials is still hampered by methodological problems. The number of patients suffering from a rare condition is variable, but may be very small and unfortunately statistical problems for small and finite populations have received less consideration. This paper describes the outline of the iSTORE project, its ambitions, and its methodological approaches. METHODS In very small populations, methodological challenges exacerbate. iSTORE's ambition is to develop a comprehensive perspective on natural history course modelling through multiple endpoint methodologies, subgroup similarity identification, and improving level of evidence. RESULTS The methodological approaches cover methods for sound scientific modeling of natural history course data, showing similarity between subgroups, defining, and analyzing multiple endpoints and quantifying the level of evidence in multiple endpoint trials that are often hampered by bias. CONCLUSION Through its expected results, iSTORE will contribute to the rare diseases research field by providing an approach to better inform about and thus being able to plan a clinical trial. The methodological derivations can be synchronized and transferability will be outlined.
Collapse
Affiliation(s)
- Stefanie Schoenen
- Institute of Medical Statistics, RWTH Aachen University, Pauwelsstrasse 19, 52074, Aachen, Germany
| | - Johan Verbeeck
- I-BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Lukas Koletzko
- Institute of Statistics, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Isabella Brambilla
- Dravet Italia Onlus - European Patient Advocacy Group (ePAG) EpiCARE, 37100, Verona, Italy
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Research Center for Pediatric Epilepsies, University of Verona, Via S. Francesco, 22, 37129, Verona, Italy
| | - Mathieu Kuchenbuch
- Institut des Maladies Gènètiques Imagine-Necker Enfants malades Hospital, 24 Boulevard du Montparnasse, 75015, Paris, France
- Necker Enfants malades Hospital, 149 Rue de Sèvre, 75015, Paris, France
| | - Maya Dirani
- Institut des Maladies Gènètiques Imagine-Necker Enfants malades Hospital, 24 Boulevard du Montparnasse, 75015, Paris, France
- Necker Enfants malades Hospital, 149 Rue de Sèvre, 75015, Paris, France
| | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
| | - Holger Dette
- Institute of Statistics, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Ralf-Dieter Hilgers
- Institute of Medical Statistics, RWTH Aachen University, Pauwelsstrasse 19, 52074, Aachen, Germany.
| | - Geert Molenberghs
- I-BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
- I-BioStat, KU Leuven, Kapucijnenvoer 35, 3000, Leuven, Belgium
| | - Rima Nabbout
- Institut des Maladies Gènètiques Imagine-Necker Enfants malades Hospital, 24 Boulevard du Montparnasse, 75015, Paris, France
- Necker Enfants malades Hospital, 149 Rue de Sèvre, 75015, Paris, France
| |
Collapse
|
3
|
Lersch R, Jannadi R, Grosse L, Wagner M, Schneider MF, von Stülpnagel C, Heinen F, Potschka H, Borggraefe I. Targeted Molecular Strategies for Genetic Neurodevelopmental Disorders: Emerging Lessons from Dravet Syndrome. Neuroscientist 2023; 29:732-750. [PMID: 35414300 PMCID: PMC10623613 DOI: 10.1177/10738584221088244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dravet syndrome is a severe developmental and epileptic encephalopathy mostly caused by heterozygous mutation of the SCN1A gene encoding the voltage-gated sodium channel α subunit Nav1.1. Multiple seizure types, cognitive deterioration, behavioral disturbances, ataxia, and sudden unexpected death associated with epilepsy are a hallmark of the disease. Recently approved antiseizure medications such as fenfluramine and cannabidiol have been shown to reduce seizure burden. However, patients with Dravet syndrome are still medically refractory in the majority of cases, and there is a high demand for new therapies aiming to improve behavioral and cognitive outcome. Drug-repurposing approaches for SCN1A-related Dravet syndrome are currently under investigation (i.e., lorcaserin, clemizole, and ataluren). New therapeutic concepts also arise from the field of precision medicine by upregulating functional SCN1A or by activating Nav1.1. These include antisense nucleotides directed against the nonproductive transcript of SCN1A with the poison exon 20N and against an inhibitory noncoding antisense RNA of SCN1A. Gene therapy approaches such as adeno-associated virus-based upregulation of SCN1A using a transcriptional activator (ETX101) or CRISPR/dCas technologies show promising results in preclinical studies. Although these new treatment concepts still need further clinical research, they offer great potential for precise and disease modifying treatment of Dravet syndrome.
Collapse
Affiliation(s)
- Robert Lersch
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Rawan Jannadi
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Leonie Grosse
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Matias Wagner
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute for Neurogenomics, Helmholtz Centre Munich, German Research Center for Health and Environment (GmbH), Munich, Germany
| | - Marius Frederik Schneider
- Metabolic Biochemistry, Biomedical Center Munich, Medical Faculty, Ludwig Maximilians University, Munich, Germany
- International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Celina von Stülpnagel
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical Private University (PMU), Salzburg, Austria
| | - Florian Heinen
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilians University, Munich, Germany
| | - Ingo Borggraefe
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Comprehensive Epilepsy Center, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
4
|
Rivadulla C, Pardo-Vazquez JL, de Labra C, Aguilar J, Suarez E, Paz C, Álvarez-Dolado M, Cudeiro J. Transcranial static magnetic stimulation reduces seizures in a mouse model of Dravet syndrome. Exp Neurol 2023; 370:114581. [PMID: 37884190 DOI: 10.1016/j.expneurol.2023.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Dravet syndrome is a rare form of severe genetic epilepsy characterized by recurrent and long-lasting seizures. It appears around the first year of life, with a quick evolution toward an increase in the frequency of the seizures, accompanied by a delay in motor and cognitive development, and does not respond well to antiepileptic medication. Most patients carry a mutation in the gene SCN1A encoding the α subunit of the voltage-gated sodium channel Nav1.1, resulting in hyperexcitability of neural circuits and seizure onset. In this work, we applied transcranial static magnetic stimulation (tSMS), a non-invasive, safe, easy-to-use and affordable neuromodulatory tool that reduces neural excitability in a mouse model of Dravet syndrome. We demonstrate that tSMS dramatically reduced the number of crises. Furthermore, crises recorded in the presence of the tSMS were shorter and less intense than in the sham condition. Since tSMS has demonstrated its efficacy at reducing cortical excitability in humans without showing unwanted side effects, in an attempt to anticipate a possible use of tSMS for Dravet Syndrome patients, we performed a numerical simulation in which the magnetic field generated by the magnet was modeled to estimate the magnetic field intensity reached in the cerebral cortex, which could help to design stimulation strategies in these patients. Our results provide a proof of concept for nonpharmacological treatment of Dravet syndrome, which opens the door to the design of new protocols for treatment.
Collapse
Affiliation(s)
- C Rivadulla
- Universidade da Coruña, NEUROcom, Centro Interdisciplinar de Química e Bioloxía (CICA), Rúa as Carballeiras, A Coruña 15071, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. As Xubias, A Coruña 15006, Spain; Universidade da Coruña, NEUROcom, Facultade de Ciencias da Saúde, Campus de Oza, A Coruña, Spain.
| | - J L Pardo-Vazquez
- Universidade da Coruña, NEUROcom, Centro Interdisciplinar de Química e Bioloxía (CICA), Rúa as Carballeiras, A Coruña 15071, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. As Xubias, A Coruña 15006, Spain; Universidade da Coruña, NEUROcom, Facultade de Ciencias da Saúde, Campus de Oza, A Coruña, Spain
| | - C de Labra
- Universidade da Coruña, NEUROcom, Centro Interdisciplinar de Química e Bioloxía (CICA), Rúa as Carballeiras, A Coruña 15071, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. As Xubias, A Coruña 15006, Spain; Universidade da Coruña, NEUROcom, Facultade de Enfermería e Podoloxía, Campus de Esteiro, Ferrol, Spain
| | - J Aguilar
- Laboratorio de Neurofisiología Experimental, y Circuitos Neuronales Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
| | - E Suarez
- School of Industrial Engineering, University of Vigo, Campus Universitario Lagoas-Marcosende, Vigo 36310, Spain
| | - C Paz
- School of Industrial Engineering, University of Vigo, Campus Universitario Lagoas-Marcosende, Vigo 36310, Spain
| | - M Álvarez-Dolado
- Laboratorio de Terapia Celular en Neuropatologías, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spain
| | - J Cudeiro
- Universidade da Coruña, NEUROcom, Centro Interdisciplinar de Química e Bioloxía (CICA), Rúa as Carballeiras, A Coruña 15071, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. As Xubias, A Coruña 15006, Spain; Universidade da Coruña, NEUROcom, Facultade de Ciencias da Saúde, Campus de Oza, A Coruña, Spain; Centro de Estimulación Cerebral de Galicia, Enique Mariñas 32, 15009, A Coruña, Spain
| |
Collapse
|
5
|
Pisani F, Spagnoli C. What are the considerations when initiating treatment for epilepsy in children? Expert Rev Neurother 2023; 23:1081-1096. [PMID: 38032395 DOI: 10.1080/14737175.2023.2288107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION There is a very wide spectrum of epilepsies and developmental and epileptic encephalopathies that affect children, from self-limited forms, not necessarily requiring treatment, to severe drug-resistant ones. AREAS COVERED In this perspective, the authors discuss the main factors to consider before drug prescription in children, considering the most recent clinical research, including age, seizure type, epilepsy syndrome, etiology, efficacy and safety profile, comorbidities, gender, available formulations, costs and drug coverage, and regulatory issues. The literature search was conducted through a PubMed search on antiseizure medications for patients aged 0-18, with respect to each of the aforementioned factors, and by checking the reference lists of relevant papers. EXPERT OPINION The most expanding field of research and innovation for clinical practice is precision medicine, which addresses the holistic treatment of genetic epilepsies and developmental and epileptic encephalopathies. It achieves this by addressing their detrimental effects on synapses, neurotransmission, and cellular signaling pathways with the double aim to treat seizures and to rescue neurodevelopmental trajectories, but also the issue of adverse events and drug resistance through pharmacogenomics.
Collapse
Affiliation(s)
- Francesco Pisani
- Human Neurosciences Department, Sapienza University of Rome, Rome, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
6
|
Nordli DR, Nordli DR, Galan FN. Core Features Differentiate Dravet Syndrome from Febrile Seizures. J Pediatr 2023; 258:113416. [PMID: 37030608 DOI: 10.1016/j.jpeds.2023.113416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/07/2023] [Accepted: 03/19/2023] [Indexed: 04/10/2023]
Abstract
An 11-month-old girl with febrile seizures and first unprovoked seizures was evaluated in the hospital. Relevant history included developmental delay and strong family history of febrile seizures and migraines. A routine electroencephalogram was performed and was abnormal due to the presence of a slowed posterior dominant rhythm, generalized spike-wave discharges, and multifocal sharp waves. The findings were concerning for a developmental and epileptic encephalopathy. Given the concern for a developmental and epileptic encephalopathy, a next generation sequence epilepsy gene panel was ordered which identified a pathogenic variant in SCN1A. The clinical history, electroencephalogram, and pathogenic variant were compatible with a diagnosis of Dravet syndrome. This Grand Rounds manuscript highlights the thought process, evaluation, differential diagnosis, treatment, and prognosis in Dravet syndrome.
Collapse
Affiliation(s)
- Douglas R Nordli
- Department of Child and Adolescent Neurology, Mayo Clinic College of Medicine and Health Sciences, Jacksonville, FL.
| | - Douglas R Nordli
- Department of Child and Adolescent Neurology, University of Chicago, Chicago, IL
| | - Fernando N Galan
- Department of Child and Adolescent Neurology, Nemours Children's Health, Jacksonville, FL
| |
Collapse
|
7
|
Domaradzki J, Walkowiak D. Emotional experiences of family caregivers of children with Dravet syndrome. Epilepsy Behav 2023; 142:109193. [DOI: https:/doi.org/10.1016/j.yebeh.2023.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
|
8
|
Domaradzki J, Walkowiak D. Emotional experiences of family caregivers of children with Dravet syndrome. Epilepsy Behav 2023; 142:109193. [PMID: 37028149 DOI: 10.1016/j.yebeh.2023.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Since the psychosocial implications of Dravet syndrome (DS) are much more serious and far-reaching than in other types of epilepsy, caring for a DS child seriously affects the entire family. This study describes the emotional experiences of family caregivers of DS children and evaluates the way caregiving affects their perceived quality of life. METHODS An anonymous, self-administered online questionnaire was sent to family caregivers of DS children through the online patient advocacy organization the Association for People with Severe Refractory Epilepsy DRAVET.PL. It focussed on the psychosocial impact of caregiving for DS children, the perceived burden of caregiving, caregivers' emotional experiences and feelings related to caregiving, and the impact of DS on the perceived quality of life. RESULTS Caregivers stressed that caring for a DS child is associated with a significant psychosocial and emotional burden that affects the entire family. Although most caregivers reported that it was the child's health problems and behavioral and psychological disorders that were the most challenging aspects of caregiving, they were also burdened by the lack of emotional support. As caregivers were profoundly engaged in caregiving, they experienced a variety of distressing emotions, including feelings of helplessness, anxiety and fear, anticipated grief, depression, and impulsivity. Many caregivers also reported that their children's disease disrupted their relationships with their spouses, family, and healthy children. As caregivers reported experiencing role overload, physical fatigue, and mental exhaustion, they stressed the extent to which caregiving for DS children impaired their quality of life, their social and professional life, and was a source of financial burden. CONCLUSIONS As this study identified specific burden domains affecting DS caregivers' well-being family carers often need special attention, support, and help. To alleviate the humanistic burden of DS carers a bio-psychosocial approach focusing on physical, mental, and psychosocial interventions should include both DS children and their caregivers.
Collapse
Affiliation(s)
- Jan Domaradzki
- Department of Social Sciences and Humanities, Poznan University of Medical Sciences, Poznań, Poland.
| | - Dariusz Walkowiak
- Department of Organization and Management in Health Care, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
9
|
Anwar SAM, Elsakka EE, Khalil M, Ibrahim AAG, ElBeheiry A, Mohammed SF, Omar TEI, Amer YS. Adapted Evidence-Based Clinical Practice Guidelines for Diagnosis and Treatment of Epilepsies in Children: A Tertiary Children's Hospital Update. Pediatr Neurol 2023; 141:87-92. [PMID: 36774685 DOI: 10.1016/j.pediatrneurol.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS AND/OR BACKGROUND We recently updated and merged the adapted clinical practice guidelines (CPGs) for the diagnosis and treatment of children with epilepsy of a tertiary-level hospital. Medical knowledge is always evolving. As a result, it is critical to revisit the clinical standards on a frequent basis to ensure that the best services are offered to the target receivers. The purpose of this article was to update and merge the CPGs at Alexandria University Children Hospital (AUCH) for the diagnosis (2014) and treatment (2016) of children with epilepsy to unify and standardize the practice for better care and outcome. METHODS This review and update CPG project was initiated by assembling a Guideline Review Group (GRG). The GRG conducted focus group discussions and decided to search any published updates of the recommendations of the previously identified high-quality and evidence-based CPG developed by the SIGN (Scottish Intercollegiate Guidelines Network) and to merge the two previous local CPGs under one comprehensive CPG for full management of epilepsy in children. The high quality of the selected source CPG from SIGN was based on quality assessment of CPGs undertaken previously using the Appraisal of Guidelines for Research and Evaluation II Instrument. The GRG followed the Checklist for the Reporting of Updated Guidelines (CheckUp), which is the CPG tool recommended by the Enhancing the Quality and Transparency of health Research Network for reporting of updated CPGs in addition to the RIGHT-Ad@pt Checklist for Adapted CPGs. The finalized updated CPG draft was sent to the external reviewer group topic experts. RESULTS The group updated 10 main categories of recommendations from one source CPG (SIGN). The recommendations included (1) epilepsy diagnosis; (2) recognition, identification, and referral; (3) pharmacological treatment of epilepsy and epilepsy syndromes; (4) nonpharmacological treatment of epilepsy and epilepsy syndromes; (5) managing pharmacoresistant epilepsy; (6) management of epilepsy in special groups; (7) medications; (8) children and caregiver education and support; (9) comorbidities and mortality; and (10) transitional care from pediatric to adult care services. CONCLUSIONS The finalized CPG provides evidence-based guidance to health care providers in AUCH for the diagnosis and management of epilepsy in children. The study also established the significance of a collaborative clinical and methodological expert group for the update of CPGs, as well as the usability of the "CheckUp" and "RIGHT-Ad@pt" CPG Tools.
Collapse
Affiliation(s)
- Shimaa A M Anwar
- Paediatric Neurology Unit, Faculty of Medicine, Paediatrics Department, Alexandria University, Alexandria, Egypt
| | - Elham E Elsakka
- Paediatric Neurology Unit, Faculty of Medicine, Paediatrics Department, Alexandria University, Alexandria, Egypt
| | - Mona Khalil
- Paediatric Neurology Unit, Faculty of Medicine, Paediatrics Department, Alexandria University, Alexandria, Egypt
| | - Afaf A G Ibrahim
- Faculty of Medicine, Community Medicine Department, Alexandria University, Alexandria, Egypt
| | - Ahmed ElBeheiry
- Faculty of Medicine, Diagnostic Radiology and Medical Imaging Department, Alexandria University, Alexandria, Egypt
| | | | - Tarek E I Omar
- Paediatric Neurology Unit, Faculty of Medicine, Paediatrics Department, Alexandria University, Alexandria, Egypt
| | - Yasser S Amer
- Paediatrics Department, Quality Management, King Saud University Medical City, Riyadh, Saudi Arabia; Alexandria Center for Evidence-Based Clinical Practice Guidelines, Alexandria University, Alexandria, Egypt; Adaptation Working Group, Guidelines International Network, Perth, Scotland, UK.
| |
Collapse
|
10
|
Chang YT, Hong SY, Lin WD, Lin CH, Lin SS, Tsai FJ, Chou IC. Genetic Testing in Children with Developmental and Epileptic Encephalopathies: A Review of Advances in Epilepsy Genomics. CHILDREN 2023; 10:children10030556. [PMID: 36980114 PMCID: PMC10047509 DOI: 10.3390/children10030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Advances in disease-related gene discovery have led to tremendous innovations in the field of epilepsy genetics. Identification of genetic mutations that cause epileptic encephalopathies has opened new avenues for the development of targeted therapies. Clinical testing using extensive gene panels, exomes, and genomes is currently accessible and has resulted in higher rates of diagnosis and better comprehension of the disease mechanisms underlying the condition. Children with developmental disabilities have a higher risk of developing epilepsy. As our understanding of the mechanisms underlying encephalopathies and epilepsies improves, there may be greater potential to develop innovative therapies tailored to an individual’s genotype. This article provides an overview of the significant progress in epilepsy genomics in recent years, with a focus on developmental and epileptic encephalopathies in children. The aim of this review is to enhance comprehension of the clinical utilization of genetic testing in this particular patient population. The development of effective and precise therapeutic strategies for epileptic encephalopathies may be facilitated by a comprehensive understanding of their molecular pathogenesis.
Collapse
Affiliation(s)
- Yu-Tzu Chang
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung 40447, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan
| | - Wei-De Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chien-Heng Lin
- Division of Pediatric Pulmonology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medial University, Taichung 40447, Taiwan
| | - Sheng-Shing Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Division of Genetics and Metabolism, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 40447, Taiwan
| | - I-Ching Chou
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-4-22052121
| |
Collapse
|
11
|
Patient profile, management, and quality of life associated with Dravet syndrome: a cross-sectional, multicentre study of 80 patients in Spain. Sci Rep 2023; 13:3355. [PMID: 36849632 PMCID: PMC9971205 DOI: 10.1038/s41598-023-30273-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
The aim of this study was to describe the profile of patients diagnosed with Dravet syndrome (DS), their clinical management, and the impact of DS on their quality of life (QoL) and family. Data of 80 patients from 11 centres in Spain was collected. Patients (47.5% female) were 12.7 (9.6) years on average (SD, standard deviation). Despite the first episode occurred when patients were a mean (SD) of 0.4 (0.2) years, DS was not diagnosed until they were 6.9 (10.1) years old. The majority (86.7%) had SCN1A gene mutations and 73.4% had seizures during the last year (mostly generalized motor seizures [47.8%]). The mean (SD) number of status epilepticus episodes was 3.6 (8.0) since diagnosis and 0.1 (0.5) in the last year. On the Health Utilities Index Mark (HUI) multi-attribute scale, the mean global score (SD) was 0.56 (0.24) in HUI2 and 0.32 (0.37) in HUI3. The impact of the disease was severe in most patients (HUI2, 81%; HUI3, 83.5%). In the Care-related QoL (CarerQol) the mean (SD) well-being score was 7.2 (2.1). Most caregivers (90%) were satisfied with their caregiving tasks, although 75% had difficulties combining these tasks with daily activities, 68.8% reported mental health problems and 61.2% physical problems.
Collapse
|
12
|
Macdonald‐Laurs E, Corlette S, Davidson A, Howell KB. Anesthetic considerations in Dravet syndrome. Paediatr Anaesth 2022; 32:1166-1168. [PMID: 35816396 PMCID: PMC9543092 DOI: 10.1111/pan.14525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
We describe a two-year-old boy with Dravet syndrome, a severe genetic epilepsy, who developed a generalized tonic-clonic seizure immediately following an intravenous bolus of lidocaine given for propofol pain amelioration during induction of anesthesia for emergency gastroscopy. Although lidocaine has not specifically been reported as potentiating seizures in Dravet syndrome, it is well-established that sodium channel blockers can worsen seizures in this population.
Collapse
Affiliation(s)
- Emma Macdonald‐Laurs
- Department of NeurologyThe Royal Children's HospitalParkvilleVictoriaAustralia,Murdoch Children's Research InstituteParkvilleVictoriaAustralia,Department of PaediatricsThe University of MelbourneParkvilleVictoriaAustralia
| | - Sebastian Corlette
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia,Department of PaediatricsThe University of MelbourneParkvilleVictoriaAustralia,Department of AnesthesiaThe Royal Children's HospitalParkvilleVictoriaAustralia
| | - Andrew Davidson
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia,Department of PaediatricsThe University of MelbourneParkvilleVictoriaAustralia,Department of AnesthesiaThe Royal Children's HospitalParkvilleVictoriaAustralia
| | - Katherine B. Howell
- Department of NeurologyThe Royal Children's HospitalParkvilleVictoriaAustralia,Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| |
Collapse
|
13
|
Utility of genetic testing in children with developmental and epileptic encephalopathy (DEE) at a tertiary hospital in South Africa: A prospective study. Seizure 2022; 101:197-204. [DOI: 10.1016/j.seizure.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
|
14
|
Lu Q, Wang YY, Chen HM, Wang QH, Yang XY, Zou LP. A rise in saliva and urine pH in children with SCN1A-related epilepsy: An exploratory prospective controlled study. Front Neurol 2022; 13:982050. [PMID: 36237607 PMCID: PMC9552845 DOI: 10.3389/fneur.2022.982050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Objective SCN1A, encoding the alpha 1 subunit of the sodium channel, is associated with a range of related epilepsy. This study aims to assess saliva and urine pH in children with SCN1A-related epilepsy. Methods A prospective controlled observational study with a 1:1 ratio was conducted on seven patients with SCN1A-related epilepsy and seven healthy children of the same family, gender, and age but without a history of seizures. The pH of saliva and urine was measured by pH test paper. Parents of patients with epilepsy recorded seizures to compare the relationship between pH and seizures. Results The fourteen participants were all males, aged 1 to 14 years. Seven patients had different pathogenic SCN1A variants. The pH of saliva and urine was monitored for 21–95 days. The pH of saliva and urine was higher in patients with SCN1A-related epilepsy than in the healthy group. The urine pH in Dravet syndrome patients was high compared with other epilepsy patients. The urine pH in patients with seizures was higher than that in patients without seizures, which occurred during the study. Conclusions The pH of saliva and urine was chronically high in patients with SCN1A-related epilepsy, and urine pH was higher in patients with seizures and with Dravet syndrome.
Collapse
Affiliation(s)
- Qian Lu
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang-Yang Wang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui-Min Chen
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiu-Hong Wang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yan Yang
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li-Ping Zou
- Senior Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
- *Correspondence: Li-Ping Zou
| |
Collapse
|
15
|
Specchio N, Pietrafusa N, Perucca E, Cross JH. New paradigms for the treatment of pediatric monogenic epilepsies: Progressing toward precision medicine. Epilepsy Behav 2022; 131:107961. [PMID: 33867301 DOI: 10.1016/j.yebeh.2021.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022]
Abstract
Despite the availability of 28 antiseizure medications (ASMs), one-third of people with epilepsy fail to achieve sustained freedom from seizures. Clinical outcome is even poorer for children with developmental and epileptic encephalopathies (DEEs), many of which are due to single-gene mutations. Discovery of causative genes, however, has paved the way to understanding the molecular mechanism underlying these epilepsies, and to the rational application, or development, of precision treatments aimed at correcting the specific functional defects or their consequences. This article provides an overview of current progress toward precision medicine (PM) in the management of monogenic pediatric epilepsies, by focusing on four different scenarios, namely (a) rational selection of ASMs targeting specifically the underlying pathogenetic mechanisms; (b) development of targeted therapies based on novel molecules; (c) use of dietary treatments or food constituents aimed at correcting specific metabolic defects; and (d) repurposing of medications originally approved for other indications. This article is part of the Special Issue "Severe Infantile Epilepsies".
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy.
| | - Nicola Pietrafusa
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
16
|
de Witte P. Antiseizure activity by opioid receptor antagonism, new evidence. Epilepsia Open 2022; 7:229-230. [PMID: 35531951 PMCID: PMC9159240 DOI: 10.1002/epi4.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, , O&N II Herestraat 49-Box 824, 3000, Leuven, Belgium
| |
Collapse
|
17
|
The clinical, economic, and humanistic burden of Dravet syndrome - A systematic literature review. Epilepsy Behav 2022; 130:108661. [PMID: 35334258 DOI: 10.1016/j.yebeh.2022.108661] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Dravet syndrome (DS) is a developmental and epileptic encephalopathy with evolving disease course as individuals age. In recent years, the treatment landscape of DS has changed considerably, and a comprehensive systematic review of the contemporary literature is lacking. Here we synthesized published evidence on the occurrence of clinical impacts by age, the economic and humanistic (health-related quality-of-life [HRQoL]) burden, and health state utility. We provide an evidence-based, contemporary visualization of the clinical manifestations, highlighting that DS is not limited to seizures; non-seizure manifestations appear early in life and increase over time, contributing significantly to the economic and humanistic burden of disease. The primary drivers of HRQoL in DS include seizure severity, cognition, and motor and behavioral problems; in turn, these directly affect caregivers through the extent of assistance required and consequent impact on activities of daily living. Unsurprisingly, costs are driven by seizure-related events, hospitalizations, and in-home medical care visits. This systematic review highlights a paucity of longitudinal data; most studies meeting inclusion criteria were cross-sectional or had short follow-up. Nonetheless, available data illustrate the substantial impact on individuals, their families, and healthcare systems and establish the need for novel therapies to address the complex spectrum of DS manifestations.
Collapse
|
18
|
Shao E, Chang CW, Li Z, Yu X, Ho K, Zhang M, Wang X, Simms J, Lo I, Speckart J, Holtzman J, Yu GQ, Roberson ED, Mucke L. TAU ablation in excitatory neurons and postnatal TAU knockdown reduce epilepsy, SUDEP, and autism behaviors in a Dravet syndrome model. Sci Transl Med 2022; 14:eabm5527. [PMID: 35476595 DOI: 10.1126/scitranslmed.abm5527] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular accumulation of TAU aggregates is a hallmark of several neurodegenerative diseases. However, global genetic reduction of TAU is beneficial also in models of other brain disorders that lack such TAU pathology, suggesting a pathogenic role of nonaggregated TAU. Here, conditional ablation of TAU in excitatory, but not inhibitory, neurons reduced epilepsy, sudden unexpected death in epilepsy, overactivation of the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway, brain overgrowth (megalencephaly), and autism-like behaviors in a mouse model of Dravet syndrome, a severe epileptic encephalopathy of early childhood. Furthermore, treatment with a TAU-lowering antisense oligonucleotide, initiated on postnatal day 10, had similar therapeutic effects in this mouse model. Our findings suggest that excitatory neurons are the critical cell type in which TAU has to be reduced to counteract brain dysfunctions associated with Dravet syndrome and that overall cerebral TAU reduction could have similar benefits, even when initiated postnatally.
Collapse
Affiliation(s)
- Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zhiyong Li
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michelle Zhang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xin Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jessica Speckart
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia Holtzman
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
19
|
Ding J, Wang L, Li W, Wang Y, Jiang S, Xiao L, Zhu C, Hao X, Zhao J, Kong X, Wang Z, Lu G, Wang F, Sun T. Up to What Extent Does Dravet Syndrome Benefit From Neurostimulation Techniques? Front Neurol 2022; 13:843975. [PMID: 35493838 PMCID: PMC9044920 DOI: 10.3389/fneur.2022.843975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Dravet syndrome (DS) is a refractory developmental and epileptic encephalopathy (EE) with a variety of comorbidities, including cognitive impairment, autism-like behavior, speech dysfunction, and ataxia, which can seriously affect the quality of life of patients and impose a great burden on society and their families. Currently, the pharmacological therapy is patient dependent and may work or not. Neuromodulation techniques, including vagus nerve stimulation (VNS), deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), responsive neurostimulation (RNS), and chronic subthreshold cortical stimulation (CSCS), have become common adjuvant therapies for neurological diseases, but their efficacy in the treatment of DS is unknown. Methods We searched Web of Science, PubMed, and SpringerLink for all published cases related to the neuromodulation techniques of DS until January 15, 2022. The systematic review was supplemented with relevant articles from the references. The results reported by each study were summarized narratively. Results The Web of science, PubMed and SpringerLink search yielded 258 items. A total of 16 studies published between 2016 and 2021 met the final inclusion criteria. Overall, 16 articles (109 cases) were included in this study, among which fifteen (107 patients) were involved VNS, and one (2 patients) was involved DBS. After VNS implantation, seizures were reduced to ≥50% in 60 cases (56%), seizure free were found in 8 cases (7.5%). Only two DS patients received DBS treatment, and the initial outcomes of DBS implantation were unsatisfactory. The seizures significantly improved over time for both DBS patients after the addition of antiepileptic drugs. Conclusion More than half of the DS patients benefited from VNS, and VNS may be effective in the treatment of DS. However, it is important to note that VNS does not guarantee improvement of seizures, and there is a risk of infection and subsequent device failure. Although DBS is a safe and effective strategy for the treatment of refractory epilepsy, the role of DBS in DS needs further study, as the sample size was small. Thus far, there is no strong evidence for the role of DBS in DS.
Collapse
Affiliation(s)
- Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Wenchao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Shucai Jiang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Changliang Zhu
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoyan Hao
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jiali Zhao
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xuerui Kong
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Ziqin Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Guangyuan Lu
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
20
|
Vasquez A, Buraniqi E, Wirrell EC. New and emerging pharmacologic treatments for developmental and epileptic encephalopathies. Curr Opin Neurol 2022; 35:145-154. [PMID: 35102126 DOI: 10.1097/wco.0000000000001029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Summarize evidence on Developmental and Epileptic Encephalopathies (DEEs) treatments focusing on new and emerging pharmacologic therapies (see Video, http://links.lww.com/CONR/A61, Supplementary Digital Content 1, which provides an overview of the review). RECENT FINDINGS Advances in the fields of molecular genetics and neurobiology have led to the recognition of underlying pathophysiologic mechanisms involved in an increasing number of DEEs that could be targeted with precision therapies or repurposed drugs, some of which are currently being evaluated in clinical trials. Prompt, optimal therapy is critical, and promising therapies approved or in clinical trials for tuberous sclerosis complex, Dravet and Lennox-Gastaut Syndromes including mammalian target of rapamycin inhibitors, selective membrane channel and antisense oligonucleotide modulation, and repurposed drugs such as fenfluramine, stiripentol and cannabidiol, among others, may improve seizure burden and neurological outcomes. There is an urgent need for collaborative efforts to evaluate the efficacy and safety of emerging DEEs therapies. SUMMARY Development of new therapies promise to address unmet needs for patients with DEEs, including improvement of neurocognitive function and quality of life.
Collapse
Affiliation(s)
- Alejandra Vasquez
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
21
|
Schubert-Bast S, Kay L, Simon A, Wyatt G, Holland R, Rosenow F, Strzelczyk A. Epidemiology, healthcare resource use, and mortality in patients with probable Dravet syndrome: A population-based study on German health insurance data. Epilepsy Behav 2022; 126:108442. [PMID: 34864381 DOI: 10.1016/j.yebeh.2021.108442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Ten-year retrospective study to assess burden of illness in patients with probable Dravet syndrome (DS) identified from German healthcare data. METHODS In the absence of an International Classification of Diseases code, patients with probable DS were identified using a selection algorithm considering diagnoses and drug prescriptions. Primary analyses were prevalence and demographics; secondary analyses included healthcare costs, annual hospitalization rate (AHR) and length of stay (LOS), medication use, and mortality. RESULTS In the final study year, 64 patients with probable DS (mean [range] age: 33.2 [3-82] years; male: 48%) were identified. Prevalence: 4.7 per 100,000 people. During the study, 160 patients with probable DS were identified and followed up for 1,261 patient-years. Mean cost of healthcare was €11,048 per patient-year (PPY), mostly attributable to inpatient care (47%), medication (26%), and services and devices (19%). Annual healthcare costs were significantly greater for those with prescribed rescue medication (15% of patient-years) vs. without (€16,123 vs. €10,125 PPY, p < 0.001). Mean (standard deviation [SD]) AHR and LOS were 1.1 (1.7) and 17.5 (33.5) days PPY. AHR was significantly greater in patients with prescribed rescue medication vs. without (1.6 [2.0] vs. 1.0 [1.6] PPY, p < 0.001). Mean (SD) number of antiseizure medications prescribed was 2.6 (1.2) PPY and 5.0 (2.5) over the entire observable time for each patient. Mortality rate was significantly higher for probable DS vs. matched controls (11.88% [19 events] vs. 1.19% [172 events], p < 0.001). CONCLUSION Probable DS is associated with substantial healthcare costs in Germany.
Collapse
Affiliation(s)
- Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital and Frankfurt and Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany; Department of Neuropediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Lara Kay
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital and Frankfurt and Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | | | - Geoffrey Wyatt
- Market Access and Health Economics and Outcomes Research, GW Pharma Ltd, London, UK.
| | - Rowena Holland
- Market Access and Health Economics and Outcomes Research, GW Pharma Ltd, London, UK.
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital and Frankfurt and Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital and Frankfurt and Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Strzelczyk A, Schubert-Bast S. A Practical Guide to the Treatment of Dravet Syndrome with Anti-Seizure Medication. CNS Drugs 2022; 36:217-237. [PMID: 35156171 PMCID: PMC8927048 DOI: 10.1007/s40263-022-00898-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 01/14/2023]
Abstract
Dravet syndrome is a severe developmental and epileptic encephalopathy characterised by refractory seizures and cognitive dysfunction. The treatment is challenging, not least because the seizures are highly drug resistant, requiring multiple anti-seizure medications (ASMs), while some ASMs can exacerbate seizures. Initial treatments include the broad-spectrum ASMs valproate (VPA), and clobazam (CLB) in some regions; however, they are generally insufficient to control seizures. With this in mind, three adjunct ASMs have been approved specifically for the treatment of seizures in patients with Dravet syndrome: stiripentol (STP) in 2007 in the European Union and 2018 in the USA, cannabidiol (CBD) in 2018/2019 (in combination with CLB in the European Union) and fenfluramine (FFA) in 2020. These "add-on" therapies (mostly to VPA/CLB) are used as escalation therapies, with the choice dependent on availability in different countries, patient characteristics and caregiver preferences. Topiramate is also frequently used, with evidence of efficacy in Dravet syndrome, and there is anecdotal evidence of efficacy with bromide, which is frequently used in Germany and Japan. With a growing treatment landscape for Dravet syndrome, there can be practical challenges for clinicians, particularly with issues associated with polypharmacy. This practical guide provides an overview of these main ASMs including their indications/contraindications, mechanism of action, efficacy, safety and tolerability profile, dosage requirements, and laboratory and clinical parameters to be evaluated. Standard laboratory and clinical parameters include blood counts, liver function tests, serum concentrations of ASMs, monitoring the growth of children, as well as weight loss and acceleration of behavioural problems. Regular cardiac monitoring is also important with FFA as it has previously been associated with cases of cardiac valve disease when used in adults at high doses (up to 120 mg/day) in combination with phentermine as a therapy for obesity. Importantly, no signs of heart valve disease have been documented to date at the low doses used in patients with developmental and epileptic encephalopathies. In addition, potential drug-drug interactions and their consequences are a key consideration in everyday practice. Interactions that potentially require dosage adjustments to alleviate adverse events include the following: STP + CLB resulting in increased plasma concentrations of CLB and its active metabolite norclobazam may increase somnolence, and an interaction with STP and VPA may increase gastrointestinal adverse events. Cannabidiol has a bi-directional interaction with CLB producing an increase in plasma concentrations of 7-OH-CBD and norclobazam resulting in the potential for increased somnolence and sedation. In addition, CBD is associated with elevations of liver transaminases particularly in patients taking concomitant VPA. The interaction between FFA and STP requires a dose reduction of FFA. Furthermore, concomitant administration of VPA with topiramate has been associated with encephalopathy and/or hyperammonaemia. Finally, we briefly describe other ASMs used in Dravet syndrome, and current key clinical trials.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528, Frankfurt am Main, Germany. .,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Susanne Schubert-Bast
- grid.7839.50000 0004 1936 9721Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528 Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany ,grid.7839.50000 0004 1936 9721Department of Neuropediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Marini C, Giardino M. Novel treatments in epilepsy guided by genetic diagnosis. Br J Clin Pharmacol 2021; 88:2539-2551. [PMID: 34778987 DOI: 10.1111/bcp.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, precision medicine has emerged as a new paradigm for improved and more individualized patient care. Its key objective is to provide the right treatment, to the right patient at the right time, by basing medical decisions on individual characteristics, including specific genetic biomarkers. In order to realize this objective researchers and physicians must first identify the underlying genetic cause; over the last 10 years, advances in genetics have made this possible for several monogenic epilepsies. Through next generation techniques, a precise genetic aetiology is attainable in 30-50% of genetic epilepsies beginning in the paediatric age. While committed in such search for novel genes carrying disease-causing variants, progress in the study of experimental models of epilepsy has also provided a better understanding of the mechanisms underlying the condition. Such advances are already being translated into improving care, management and treatment of some patients. Identification of a precise genetic aetiology can already direct physicians to prescribe treatments correcting specific metabolic defects, avoid antiseizure medicines that might aggravate functional consequences of the disease-causing variant or select the drugs that counteract the underlying, genetically determined, functional disturbance. Personalized, tailored treatments should not just focus on how to stop seizures but possibly prevent their onset and cure the disorder, often consisting of seizures and its comorbidities including cognitive, motor and behaviour deficiencies. This review discusses the therapeutic implications following a specific genetic diagnosis and the correlation between genetic findings, pathophysiological mechanisms and tailored seizure treatment, emphasizing the impact on current clinical practice.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| | - Maria Giardino
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| |
Collapse
|
24
|
Pejčić A, Janković SM, Đešević M, Gojak R, Lukić S, Marković N, Milosavljević M. Novel and emerging therapeutics for genetic epilepsies. Expert Rev Neurother 2021; 21:1283-1301. [PMID: 34633254 DOI: 10.1080/14737175.2021.1992275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Disease-specific treatments are available only for a minority of patients with genetic epilepsies, while the rest are treated with anticonvulsants, which are ineffective in almost one-third of patients. AREAS COVERED Recently approved and the most effective emerging therapeutics under development for the treatment of genetic epilepsies are overviewed after systematic search and analysis of relevant literature. EXPERT OPINION New and emerging drugs for genetic epilepsies exploit one of the two approaches: inhibiting hyperactive brain foci through blocking excitatory or augmenting inhibitory neurotransmission, or correcting the underlying genetic defect. The first is limited by insufficient selectivity of available compounds, and the second by imperfection of currently used vectors of genetic material, unselective and transient transgene expression. Besides, the treatment may come too late, after structural abnormalities and epilepsy deterioration takes place. However, with recent improvements, we can expect to see soon gradual decline in the number of patients with therapy-resistant genetic epilepsies.
Collapse
Affiliation(s)
- Ana Pejčić
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | | | - Miralem Đešević
- Private Policlinic Center Eurofar Sarajevo, Cardiology Department, Sarajevo, Bosnia and Herzegovina
| | - Refet Gojak
- Infectious diseases Clinic, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Snežana Lukić
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | - Nenad Marković
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | | |
Collapse
|
25
|
Huang CH, Hung PL, Fan PC, Lin KL, Hsu TR, Chou IJ, Ho CS, Chou IC, Lin WS, Lee IC, Fan HC, Chen SJ, Liang JS, Tu YF, Chang TM, Hu SC, Wong LC, Hung KL, Lee WT. Clinical spectrum and the comorbidities of Dravet syndrome in Taiwan and the possible molecular mechanisms. Sci Rep 2021; 11:20242. [PMID: 34642351 PMCID: PMC8511137 DOI: 10.1038/s41598-021-98517-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022] Open
Abstract
Dravet syndrome (DS) is an uncommon epilepsy syndrome that may negatively affect the patients and their caregivers. However, reliable and valid measures of its impact on caregivers and the characteristics of patients with DS in Taiwan are lacking. This study aimed to describe the characteristics of patients with DS and concerns of their caregivers and establish a baseline frequency of disease characteristics using a cross-sectional survey in Taiwan. We assessed the caregivers of patients with DS using an online anonymous questionnaire. The seizure frequency decreased with age, although lacking statistical significance. Vaccines show no influence on the condition of patients with DS. Our findings revealed the highest impact on the domains affecting the caregivers’ daily life, including additional household tasks, symptom observation, further medical plan, and financial issues. Caregivers also expressed concerns regarding the lack of independence/constant care, seizure control, speech/communication, and impacts on siblings because of long-term care of the patients in parents’ absence. Our findings highlight the significant effects of caring for a child with DS on the lives of their caregivers in Taiwan; these findings will help raise awareness regarding the needs of these families. Furthermore, we discussed the possible pathophysiological mechanisms of associated comorbidities.
Collapse
Affiliation(s)
- Chia-Hsuan Huang
- Division of Pediatric Neurology, Department of Pediatrics, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan
| | - Pi-Lien Hung
- Department of Pediatric Neurology, Chang Gung Memorial Hospital-Kaohsiung, Kaohsiung, Taiwan
| | - Pi-Chuan Fan
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ting-Rong Hsu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Jun Chou
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Che-Sheng Ho
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - I-Ching Chou
- Division of Pediatrics Neurology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Wei-Sheng Lin
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Inn-Chi Lee
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jao-Shwann Liang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yi-Fang Tu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tung-Ming Chang
- Department of Pediatric Neurology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Su-Ching Hu
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Lee-Chin Wong
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Kun-Long Hung
- Department of Pediatrics, Fu-Jen Catholic University Hospital, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Pediatric Neurology, National Taiwan University Children's Hospital, 8, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
26
|
Boßelmann CM. Seizures, semiology, and syndromes: A narrative review. Seizure 2021; 92:230-233. [PMID: 34607271 DOI: 10.1016/j.seizure.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Clinical seizure signs continue to be of central importance to guide diagnosis, classification, treatment and prognosis. Some basic principles guide history-taking and observation in clinical epileptology. The information contained within subjective seizure descriptions can be framed within standardized vocabulary and a classification of ictal signs, seizure types, and the integrated framework of epilepsy syndromes. As illustrative examples, we discuss the historical origins and current research context of Dravet syndrome and Janz syndrome, two genetic epilepsy syndromes. In candidates for epilepsy surgery, ictal signs aid us in identifying the symptomatogenic zone and hence delineating the ictal onset zone. Here, historical reports from Victor Horsley and Hughlings Jackson provide valuable perspective on clinical reasoning. Lastly, the information contained within clinical signs and syndromes presents an indispensable data source in future efforts of large-scale genotype-phenotype correlations and machine learning methods.
Collapse
Affiliation(s)
- Christian Malte Boßelmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany; Methods in Medical Informatics, Department of Computer Science, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
27
|
Ricci E, Fetta A, Garavelli L, Caraffi S, Ivanovski I, Bonanni P, Accorsi P, Giordano L, Pantaleoni C, Romeo A, Arena A, Bonetti S, Boni A, Chiarello D, Di Pisa V, Epifanio R, Faravelli F, Finardi E, Fiumara A, Grioni D, Mammi I, Negrin S, Osanni E, Raviglione F, Rivieri F, Rizzi R, Savasta S, Tarani L, Zanotta N, Dormi A, Vignoli A, Canevini M, Cordelli DM. Further delineation and long-term evolution of electroclinical phenotype in Mowat Wilson Syndrome. A longitudinal study in 40 individuals. Epilepsy Behav 2021; 124:108315. [PMID: 34619538 DOI: 10.1016/j.yebeh.2021.108315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epilepsy is a main feature of Mowat Wilson Syndrome (MWS), a congenital malformation syndrome caused by ZEB2 variants. The aim of this study was to investigate the long-term evolution of the electroclinical phenotype of MWS in a large population. METHODS Forty-individuals with a genetically confirmed diagnosis were enrolled. Three age groups were identified (t1 = 0-4; t2 = 5-12; t3 = >13 years); clinical data and EEG records were collected, analyzed, and compared for age group. Video-EEG recorded seizures were reviewed. RESULTS Thirty-six of 40 individuals had epilepsy, of whom 35/35 aged >5 years. Almost all (35/36) presented focal seizures at onset (mean age at onset 3.4 ± 2.3 SD) that persisted, reduced in frequency, in 7/22 individuals after the age of 13. Absences occurred in 22/36 (mean age at onset 7.2 ± 0.9 SD); no one had absences before 6 and over 16 years old. Paroxysmal interictal abnormalities in sleep also followed an age-dependent evolution with a significant increase in frequency at school age (p = 0.002) and a reduction during adolescence (p = 0.008). Electrical Status Epilepticus during Sleep occurred in 14/36 (13/14 aged 5-13 years old at onset). Seven focal seizure ictal video-EEGs were collected: all were long-lasting and more visible clinical signs were often preceded by prolonged electrical and/or subtle (erratic head and eye orientation) seizures. Valproic acid was confirmed as the most widely used and effective drug, followed by levetiracetam. CONCLUSIONS Epilepsy is a major sign of MWS with a characteristic, age-dependent, electroclinical pattern. Improvement with adolescence/adulthood is usually observed. Our data strengthen the hypothesis of a GABAergic transmission imbalance underlying ZEB2-related epilepsy.
Collapse
Affiliation(s)
- Emilia Ricci
- Child Neuropsychiatry Unit, Epilepsy Center, San Paolo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Anna Fetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Sant'Orsola Hospital, University of Bologna, Bologna, Italy.
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Caraffi
- Medical Genetics Unit, Department of Mother and Child, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ivan Ivanovski
- Insitut für Medizinische Genetik, Universität Zürich, Zürich, Switzerland
| | - Paolo Bonanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Treviso, Italy
| | - Patrizia Accorsi
- Child Neurology and Psychiatry Unit, Spedali Civili Brescia, Brescia, Italy
| | - Lucio Giordano
- Child Neurology and Psychiatry Unit, Spedali Civili Brescia, Brescia, Italy
| | - Chiara Pantaleoni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonino Romeo
- Pediatric Neurology Unit and Epilepsy Center, 'Fatebenefratelli e Oftalmico' Hospital, Milan, Italy
| | - Alessia Arena
- Department of Clinical and Experimental Medicine, Regional Referral Center for Inborn Errors Metabolism, Pediatric Clinic, University of Catania, Catania, Italy
| | - Silvia Bonetti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Antonella Boni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Daniela Chiarello
- Department of Neurosciences, Center for Epilepsy Surgery "C. Munari,", Niguarda Hospital, Milan, Italy
| | - Veronica Di Pisa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Roberta Epifanio
- Clinical Neurophysiology Unit, IRCCS E Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Francesca Faravelli
- Clinical Genetics, NE Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Erica Finardi
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Agata Fiumara
- Department of Clinical and Experimental Medicine, Regional Referral Center for Inborn Errors Metabolism, Pediatric Clinic, University of Catania, Catania, Italy
| | - Daniele Grioni
- Child Neurophysiological Unit, San Gerardo Hospital, Monza, Italy
| | - Isabella Mammi
- Medical Genetics Unit, Dolo General Hospital, Venezia, Italy
| | - Susanna Negrin
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Treviso, Italy
| | - Elisa Osanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Treviso, Italy
| | | | | | - Romana Rizzi
- Neurology Unit Department of Neuro-Motor Diseases Local Health Authority of Reggio Emilia-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | | | - Luigi Tarani
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Zanotta
- Clinical Neurophysiology Unit, IRCCS E Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Ada Dormi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Aglaia Vignoli
- Child Neuropsychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, Department of Health Sciences, University of Milan, Milan, Italy
| | - Mariapaola Canevini
- Child Neuropsychiatry Unit, Epilepsy Center, San Paolo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Duccio M Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Gallop K, Lloyd AJ, Olt J, Marshall J. Impact of developmental and epileptic encephalopathies on caregivers: A literature review. Epilepsy Behav 2021; 124:108324. [PMID: 34607217 DOI: 10.1016/j.yebeh.2021.108324] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Developmental and epileptic encephalopathies (DEEs) are rare neurodevelopmental disorders characterized by early-onset seizures and numerous comorbidities. Due to the complex requirements for the care of a child with a DEE, these disorders would be expected to impact health-related quality of life (HRQL) for caregivers as well as for patients. The objective of this literature review was to describe the impact of DEEs on the HRQL, emotional wellbeing, and usual activities (social, work, relationships, etc.) of caregivers, including the wider impact on other family members such as siblings. METHODS A literature search was conducted in May 2020 using MEDLINE® and Embase® databases. Quantitative and qualitative studies were identified using search terms related to family, disease type (including >20 specific DEEs), and quality of life/methodology. Each study was assessed for relevance and was graded using customized critical appraisal criteria. Findings from studies that were given the highest quality ratings were summarized and used to develop a conceptual model to illustrate the complex impact of DEEs on caregiver HRQL. RESULTS Sixty-seven relevant studies were identified, of which 39 (27 quantitative, 12 qualitative) met the highest appraisal criteria. The studies recruited caregivers of patients with one of eight individual DEEs, or pediatric intractable or refractory epilepsy. Most studies reported negative impacts on HRQL and emotional wellbeing in caregivers. The wide-ranging impact of a DEE was highlighted by reports of negative effects on caregivers' physical health, daily activities, relationships, social activities, leisure time, work, and productivity. Factors that influenced the perceived impact included demographic characteristics (e.g., child's age, living arrangements, family income) and clinical factors (e.g., feeding or sleep difficulties, disease severity). Few studies evaluated the impact on siblings. CONCLUSIONS There is evidence that DEEs can impact HRQL and emotional wellbeing and can limit usual activities for the primary caregiver and their wider family. However, no research was identified regarding many individual DEEs, and only limited research assessed the impact on different family members with most studies focusing on mothers. Further research is required to understand the influence of certain factors such as the age of the patient, disease severity, and seizures on caregiver burden. Furthermore, the review highlighted the lack of appropriate measurement tools to assess caregiver HRQL in this population.
Collapse
Affiliation(s)
- Katy Gallop
- Acaster Lloyd Consulting Ltd, Lacon House, 84 Theobald's Road, London WC1X 8NL, United Kingdom.
| | - Andrew J Lloyd
- Acaster Lloyd Consulting Ltd, Lacon House, 84 Theobald's Road, London WC1X 8NL, United Kingdom
| | - Jennifer Olt
- Acaster Lloyd Consulting Ltd, Lacon House, 84 Theobald's Road, London WC1X 8NL, United Kingdom
| | - Jade Marshall
- GW Pharma Ltd, 1 Cavendish Place, London W1G 0QF, United Kingdom
| |
Collapse
|
29
|
Treating Dravet syndrome: a patent landscape. Pharm Pat Anal 2021; 10:215-217. [PMID: 34488475 DOI: 10.4155/ppa-2021-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Liu YH, Cheng YT, Tsai MH, Chou IJ, Hung PC, Hsieh MY, Wang YS, Chen YJ, Kuo CY, Lin JJ, Wang HS, Lin KL. Genetics and clinical correlation of Dravet syndrome and its mimics - experience of a tertiary center in Taiwan. Pediatr Neonatol 2021; 62:550-558. [PMID: 34226156 DOI: 10.1016/j.pedneo.2021.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Dravet syndrome is a severe developmental and epileptic encephalopathy characterized by the onset of prolonged febrile and afebrile seizures in infancy and SCN1A gene mutations. In some cases, non-SCN1A gene mutations can present with a phenotype very similar to that of Dravet syndrome. The aim of this study was to compare phenotypes of patients with SCN1A and non-SCN1A gene mutation-related Dravet syndrome. METHODS Thirty-six patients with Dravet syndrome-like phenotypes were followed from July 2017 to December 2019. We retrospectively analyzed their clinical profiles and genetic surveys. RESULTS Of the 36 enrolled patients, 15 (41.7%) had SCN1A mutations, one (2.8%) had an SCN8A mutation, one (2.8%) had an STX1B mutation, and five females (13.9%) had PCDH 19 mutations. The median age at first seizure onset was 7 months in those with SCN1A mutations, 1.3 years in those with PCDH19 mutations, and 10 months for the remaining patients. The majority of the patients with SCN1A mutations had status epilepticus (80% vs. 20%) and fever-sensitive seizures (76% vs. 31%) compared to those with PCDH19 mutations. The patients with SCN1A-related seizures had a higher rate of focal seizures as first seizure type than those without SCN1A mutations. Three of five (60%) patients with PCDH19 mutations had brain magnetic resonance imaging abnormalities. The three most commonly used antiseizure medications were sodium valproate, levetiracetam, and clobazam. Seven of the 15 patients with SCN1A mutations used stiripentol. The median time from seizure onset to genetic diagnosis was 6.6 years (range 4 months-22.3 years). CONCLUSION The patients with SCN1A mutations in this study had high rates of fever-sensitive seizures, status epilepticus, seizure onset with focal seizure type, and relatively young age at seizure onset. The patients with PCDH19 mutations had a relatively high rate of abnormal brain magnetic resonance imaging findings.
Collapse
Affiliation(s)
- Yi-Hsuan Liu
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ting Cheng
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Meng-Han Tsai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - I-Jun Chou
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Cheng Hung
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Ying Hsieh
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Shan Wang
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Ju Chen
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
| | - Cheng-Yen Kuo
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jainn-Jim Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huei-Shyong Wang
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
31
|
Abstract
The presence of unprovoked, recurrent seizures, particularly when drug resistant and associated with cognitive and behavioral deficits, warrants investigation for an underlying genetic cause. This article provides an overview of the major classes of genes associated with epilepsy phenotypes divided into functional categories along with the recommended work-up and therapeutic considerations. Gene discovery in epilepsy supports counseling and anticipatory guidance but also opens the door for precision medicine guiding therapy with a focus on those with disease-modifying effects.
Collapse
Affiliation(s)
- Luis A Martinez
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Yi-Chen Lai
- Department of Pediatrics, Section of Pediatric Critical Care Medicine, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - J Lloyd Holder
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Anne E Anderson
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Bishop KI, Isquith PK, Gioia GA, Gammaitoni AR, Farfel G, Galer BS, Nabbout R, Wirrell EC, Polster T, Sullivan J. Improved everyday executive functioning following profound reduction in seizure frequency with fenfluramine: Analysis from a phase 3 long-term extension study in children/young adults with Dravet syndrome. Epilepsy Behav 2021; 121:108024. [PMID: 34023810 DOI: 10.1016/j.yebeh.2021.108024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Individuals with Dravet syndrome (DS) experience frequent pharmacoresistant seizures beginning in infancy. Most exhibit poor neurodevelopmental outcomes including motor function difficulties, behavior problems, and cognitive impairment. Cognitive deficits in children with DS have been associated with seizure frequency and antiseizure medication (ASM) use. Recent research in children and young adults with DS has begun to examine the role of executive functions (EFs), as these include higher-order cognitive functions and may mediate the relationship between risk factors and cognitive impairment. Current conceptualizations, however, of EFs involve the broader self-regulation of cognitive, behavioral, and emotional domains. We explored relationships between reduction in convulsive seizure frequency and everyday EFs in a subset of children and young adults with DS treated with adjunctive fenfluramine for 1 year. METHODS This is a post-hoc analysis of data from children and young adults with Dravet syndrome aged 5-18 years who participated in a phase 3 randomized, placebo-controlled clinical trial (core study) followed by completion of at least 1 year of fenfluramine treatment in an open-label extension (OLE) study. Eligible children and young adults started the OLE study at 0.2 mg/kg/day fenfluramine and were titrated to optimal seizure control and tolerability (maximum daily dose: 26 mg/day). Parents/caregivers documented convulsive seizure frequency per 28 days (i.e., monthly convulsive seizure frequency [MCSF]) by electronic diary. A parent/caregiver for each child also completed the Behavior Rating Inventory of Executive Function (BRIEF®) parent form, a questionnaire capturing parents'/caregivers' perceptions of everyday EF that was included as a safety measure to assess treatment-related adverse effects on EF during the trial. Ratings on BRIEF® were mapped to the current edition, the BRIEF®2 parent form, and were used to calculate T-scores for the Behavior Regulation Index (BRI), Emotion Regulation Index (ERI), Cognitive Regulation Index (CRI), and Global Executive Composite (GEC). Change in BRIEF®2 T-scores from baseline in the core study to Year 1 of the OLE study was calculated. Spearman's rho correlation coefficients assessed associations between change in BRIEF®2 indexes/composite T-scores and percentage change in MCSF. Children and young adults were divided into 2 groups based on percentage of MCSF reduction achieved from pre-randomization baseline in the core study to Year 1 of the OLE study: <50% and ≥50% MCSF reduction. Changes in the distribution of BRIEF®2 indexes/composite T-scores were compared between MCSF reduction groups using Mann-Whitney U tests. The proportions of children and young adults in these groups who showed clinically meaningful improvement in everyday EF, defined as Reliable Change Index (RCI) values ≥95% certainty relative to a reference population of neurotypically developing healthy volunteers, were then assessed by cross-tabulations and Somers' D tests (p ≤ 0.05). When there was a significant meaningful improvement in an index score, post-hoc analyses using the same statistical methods were conducted to evaluate the individual BRIEF®2 scales composing that index. Supplemental analyses examined the proportions of patients in MCSF reduction groups <25% and ≥75% who achieved clinically meaningful improvement or worsening in everyday EF using RCI values ≥95% certainty and ≥80% certainty, respectively, relative to the reference population. RESULTS At the time of analysis, 58 children and young adults (mean age: 11 ± 4 years) had reached OLE Year 1 of fenfluramine treatment with a 75% median percentage reduction in seizure frequency from pre-randomization baseline. Overall, there was a significant correlation between change in MCSF and change in BRIEF®2 T-scores for ERI (p = 0.008), but not for BRI, CRI, or GEC (p > 0.05). At OLE Year 1, 78% (n = 45) of total children/young adults had ≥50% MCSF reduction (50% [n = 29] achieved ≥75% MCSF reduction) and 22% (n = 13) of total children/young adults had <50% MCSF reduction (12% [n = 7] showed <25% MCSF reduction). The ≥50% MCSF reduction group was significantly more likely to achieve clinically meaningful improvement (RCI ≥ 95% certainty) in ERI (p = 0.002) and in CRI (p = 0.001) than the <50% MCSF reduction group. There were no significant differences in the proportions of children and young adults in the 2 MCSF reduction groups showing clinically meaningful worsening (RCI ≥ 80% certainty) on the BRIEF®2 indexes/composite. SIGNIFICANCE In children and young adults with DS, the magnitude of reduction in MCSF after long-term treatment with adjunctive fenfluramine was associated with clinically meaningful levels of improvement in everyday EF. Seventy-eight percent (78%) of children and young adults treated with adjunctive fenfluramine for 1 year in the OLE study achieved ≥50% reduction in MCSF, for a magnitude of efficacy associated with a significantly greater likelihood of experiencing clinically meaningful improvement in emotion regulation and cognitive regulation.
Collapse
Affiliation(s)
- Kim I Bishop
- Global Pharma Consultancy, LLC, PO Box 38, Muncy, PA 17756, USA
| | - Peter K Isquith
- Global Pharma Consultancy, LLC, PO Box 38, Muncy, PA 17756, USA; Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard A Gioia
- Global Pharma Consultancy, LLC, PO Box 38, Muncy, PA 17756, USA; Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA; Departments of Pediatrics and Psychiatry, George Washington University School of Medicine, Washington, DC, USA
| | | | - Gail Farfel
- Zogenix, Inc., 5959 Horton Street, Suite 500, Emeryville, CA 94608, USA
| | - Bradley S Galer
- Zogenix, Inc., 5959 Horton Street, Suite 500, Emeryville, CA 94608, USA
| | - Rima Nabbout
- Hôpital Universitaire Necker - Enfants Malades, Inserm U1163, Institut Imagine, Université de Paris, 149 rue de Sèvres, 75743 Paris, France
| | - Elaine C Wirrell
- Mayo Clinic, Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, 200 1st Street SW, Rochester, MN 55905, USA
| | - Tilman Polster
- Department of Epileptology, Mara Hospital, Bethel Epilepsy Centre, Medical School OWL, Bielefeld University, Maraweg 21, 33617 Bielefeld, Germany
| | - Joseph Sullivan
- University of California San Francisco, Benioff Children's Hospital, 1975 4th Street, San Francisco, CA 94158, USA
| |
Collapse
|
33
|
Ho SY, Lin L, Chen IC, Tsai CW, Chang FC, Liou HH. Perampanel Reduces Hyperthermia-Induced Seizures in Dravet Syndrome Mouse Model. Front Pharmacol 2021; 12:682767. [PMID: 34335252 PMCID: PMC8317459 DOI: 10.3389/fphar.2021.682767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Treatment options for Dravet syndrome are limited. The aim of this study was to evaluate the antiepileptic effect of the AMPA receptor antagonist perampanel (PER) on a mouse model of Dravet syndrome (Scn1aE1099X/+). We report here that the PER (2 mg/kg) treatment inhibited the spontaneous recurrent seizures and attenuated epileptic activity in Scn1aE1099X/+ mice. In the hyperthermia-induced seizure experiment, PER clearly increased temperature tolerance and significantly ameliorated seizure frequency and discharge duration. PER also demonstrated antiepileptic effects in a cross-over study and a synergistic effect for attenuating heat-induced seizure when given in combination with stiripentol or valproic acid. The results showed that PER effectively decreased the occurrence of spontaneous recurrent seizures and showed significant therapeutic potential for hyperthermia-induced seizures with regard to both susceptibility and severity in a Dravet syndrome mouse model. Potential therapeutic effects of PER for treatment of Dravet syndrome were demonstrated.
Collapse
Affiliation(s)
- Shih-Yin Ho
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li Lin
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chun Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Che-Wen Tsai
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| |
Collapse
|
34
|
Pernici CD, Mensah JA, Dahle EJ, Johnson KJ, Handy L, Buxton L, Smith MD, West PJ, Metcalf CS, Wilcox KS. Development of an antiseizure drug screening platform for Dravet syndrome at the NINDS contract site for the Epilepsy Therapy Screening Program. Epilepsia 2021; 62:1665-1676. [PMID: 34002394 PMCID: PMC8360068 DOI: 10.1111/epi.16925] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Dravet syndrome (DS) is a rare but catastrophic genetic epilepsy, with 80% of patients carrying a mutation in the SCN1A gene. Currently, no antiseizure drug (ASD) exists that adequately controls seizures. In the clinic, individuals with DS often present first with a febrile seizure and, subsequently, generalized tonic-clonic seizures that can continue throughout life. To facilitate the development of ASDs for DS, the contract site of the National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP) has evaluated a mouse model of DS using the conditional knock-in Scn1aA1783V/WT mouse. METHODS Survival rates and temperature thresholds for Scn1aA1783V/WT were determined. Prototype ASDs were administered via intraperitoneal injections at the time-to-peak effect, which was previously determined, prior to the induction of hyperthermia-induced seizures. ASDs were considered effective if they significantly increased the temperature at which Scn1aA1783V/WT mice had seizures. RESULTS Approximately 50% of Scn1aA1783V/WT survive to adulthood and all have hyperthermia-induced seizures. The results suggest that hyperthermia-induced seizures in this model of DS are highly refractory to a battery of ASDs. Exceptions were clobazam, tiagabine, levetiracetam, and the combination of clobazam and valproic acid with add-on stiripentol, which elevated seizure thresholds. SIGNIFICANCE Overall, the data demonstrate that the proposed model for DS is suitable for screening novel compounds for the ability to block hyperthermia-induced seizures and that heterozygous mice can be evaluated repeatedly over the course of several weeks, allowing for higher throughput screening.
Collapse
Affiliation(s)
- Chelsea D. Pernici
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Jeffrey A. Mensah
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - E. Jill Dahle
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Kristina J. Johnson
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
| | - Laura Handy
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
| | - Lauren Buxton
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Misty D. Smith
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Peter J. West
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Cameron S. Metcalf
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Karen S. Wilcox
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
35
|
Xu YX, Zhong JM. [Early identification and diagnosis of epilepsy related to fever sensitivity]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:749-754. [PMID: 34266536 PMCID: PMC8292662 DOI: 10.7499/j.issn.1008-8830.2105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Febrile seizures are the most common nervous system disease in childhood, and most children have a good prognosis. However, some epilepsy cases are easily induced by fever and are characterized by "fever sensitivity", and it is difficult to differentiate such cases from febrile seizures. Epilepsy related to fever sensitivity includes hereditary epilepsy with febrile seizures plus, Dravet syndrome, and PCDH19 gene-related epilepsy. This article mainly describes the clinical manifestations of these three types of epilepsy and summarizes their clinical features in the early stage of disease onset, so as to achieve early identification, early diagnosis, and early intervention to improve prognosis.
Collapse
Affiliation(s)
- Yu-Xin Xu
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| | - Jian-Min Zhong
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| |
Collapse
|
36
|
Isom LL, Knupp KG. Dravet Syndrome: Novel Approaches for the Most Common Genetic Epilepsy. Neurotherapeutics 2021; 18:1524-1534. [PMID: 34378168 PMCID: PMC8608987 DOI: 10.1007/s13311-021-01095-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/04/2023] Open
Abstract
Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy that is mainly associated with variants in SCN1A. While drug-resistant epilepsy is the most notable feature of this syndrome, numerous symptoms are present that have significant impact on patients' quality of life. In spite of novel, third-generation anti-seizure treatment options becoming available over the last several years, seizure freedom is often not attained and non-seizure symptoms remain. Precision medicine now offers realistic hope for seizure freedom in DS patients, with several approaches demonstrating preclinical success. Therapeutic approaches such as antisense oligonucleotides (ASO) and adeno-associated virus (AAV)-delivered gene modulation have expanded the potential treatment options for DS, with some of these approaches now transitioning to clinical trials. Several of these treatments may risk the exacerbation of gain-of-function variants and may not be reversible, therefore emphasizing the need for functional testing of new pathogenic variants. The current absence of treatments that address the overall disease, in addition to seizures, exposes the urgent need for reliable, valid measures of the entire complement of symptoms as outcome measures to truly know the impact of treatments on DS. Additionally, with so many treatment options on the horizon, there will be a need to understand how to select appropriate patients for each treatment, whether treatments are complementary or adverse to each other, and long-term risks of the treatment. Nevertheless, precision therapeutics hold tremendous potential to provide long-lasting seizure freedom and even complete cures for this devastating disease.
Collapse
Affiliation(s)
- Lori L Isom
- Department of Pharmacology, Department of Neurology, Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109-5632, USA.
| | - Kelly G Knupp
- Department of Pediatrics and Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
37
|
Devi N, Madaan P, Asrar MM, Sahu JK, Bansal D. Comparative short-term efficacy and safety of add-on anti-seizure medications in Dravet syndrome: An indirect treatment comparison. Seizure 2021; 91:316-324. [PMID: 34274891 DOI: 10.1016/j.seizure.2021.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Although cannabidiol and fenfluramine have been recently approved by the US Food and Drug Administration (FDA) for seizures in children with Dravet syndrome (DS), the comparative efficacy and safety of these and stiripentol as an add-on therapy for DS has not been evaluated in head-to-head trials. The current study aimed to assess the comparative efficacy and safety of add-on anti-seizure medications in DS. METHODS PubMed and EMBASE database search and a manual search was done using keywords; "antiepileptic", "Dravet syndrome" and "antiseizure". The primary efficacy outcome was ≥50% reduction in convulsive seizure frequency from baseline while the safety outcome was treatment-emergent adverse events (TEAEs). Frequentist approach were used for combining direct and indirect evidence and network plots prepared. The drugs were ranked based on p-scores obtained using the surface under the cumulative ranking (SUCRA). Heterogeneity across studies was calculated by I2 statistic and Q test. RESULTS Five randomized controlled trials (RCTs) with 565 patients with DS (2-20 years) who received placebo or any of the three active interventions (stiripentol, cannabidiol, and fenfluramine) were included. Compared with placebo, all the three drugs were associated with a significant reduction in convulsive seizure frequency from baseline. Stiripentol had the highest probability ranking for ≥50% reduction in convulsive seizure frequency from baseline [OR: 20.2; 95% CI: 2.1-198.0] and for occurrence of any treatment emergent adverse events (TEAEs) [OR:53.9; 95% CI: 1.4 to 2079.8] followed by fenfluramine and cannabidiol. However, for serious TEAEs, the ranking order was stiripentol followed by cannabidiol and fenfluramine. The trial on stiripentol had limited sample size explaining the wide confidence intervals for the comparative outcomes. CONCLUSION In this indirect comparison, fenfluramine and stiripentol hadd comparable efficacy but fenfluramine appeareded to be safer in terms of less frequent serious TEAEs. Cannabidiol had relatively lower efficacy and was associated with serious TEAEs. A head-to-head trial between stiripentol, cannabidiol and fenfluramine is the need of the hour.
Collapse
Affiliation(s)
- Nagita Devi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| | - Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mir Mahmood Asrar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| | - Jitendra Kumar Sahu
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dipika Bansal
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India.
| |
Collapse
|
38
|
Efficacy of Fenfluramine and Norfenfluramine Enantiomers and Various Antiepileptic Drugs in a Zebrafish Model of Dravet Syndrome. Neurochem Res 2021; 46:2249-2261. [PMID: 34041623 PMCID: PMC8302504 DOI: 10.1007/s11064-021-03358-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 01/21/2023]
Abstract
Dravet syndrome (DS) is a rare genetic encephalopathy that is characterized by severe seizures and highly resistant to commonly used antiepileptic drugs (AEDs). In 2020, FDA has approved fenfluramine (FFA) for treatment of seizures associated with DS. However, the clinically used FFA is a racemic mixture (i.e. (±)-FFA), that is substantially metabolized to norfenfluramine (norFFA), and it is presently not known whether the efficacy of FFA is due to a single enantiomer of FFA, or to both, and whether the norFFA enantiomers also contribute significantly. In this study, the antiepileptic activity of enantiomers of FFA (i.e. (+)-FFA and (−)-FFA) and norFFA (i.e. (+)-norFFA and (−)-norFFA) was explored using the zebrafish scn1Lab−/− mutant model of DS. To validate the experimental conditions used, we assessed the activity of various AEDs typically used in the fight against DS, including combination therapy. Overall, our results are highly consistent with the treatment algorithm proposed by the updated current practice in the clinical management of DS. Our results show that (+)-FFA, (−)-FFA and (+)-norFFA displayed significant antiepileptic effects in the preclinical model, and thus can be considered as compounds actively contributing to the clinical efficacy of FFA. In case of (−)-norFFA, the results were less conclusive. We also investigated the uptake kinetics of the enantiomers of FFA and norFFA in larval zebrafish heads. The data show that the total uptake of each compound increased in a time-dependent fashion. A somewhat similar uptake was observed for the (+)-norFFA and (−)-norFFA, implying that the levo/dextrotation of the structure did not dramatically affect the uptake. Significantly, when comparing (+)-FFA with the less lipophilic (+)-norFFA, the data clearly show that the nor-metabolite of FFA is taken up less than the parent compound.
Collapse
|
39
|
Zhang L, Li W, Wang C. Efficacy and safety of fenfluramine in patients with Dravet syndrome: A meta-analysis. Acta Neurol Scand 2021; 143:339-348. [PMID: 33336426 DOI: 10.1111/ane.13387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/03/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dravet syndrome (DS) is a severe, drug-resistant, developmental epileptic encephalopathy. Despite multiple anti-epileptic drug regimens, the syndrome remains poorly controlled and nearly half of patients still experience at least four tonic-clonic seizure per month. Recently, several clinical trials demonstrated that fenfluramine may provide a significant reduction in convulsive seizure frequency in the treatment of Dravet syndrome. METHODS A computerized literature search of Web of Science, MEDLINE (Ovid and PubMed), Cochrane Library, EMBASE, and Google Scholar was performed from inception until December 31, 2019. We included randomized placebo-controlled trials for the treatment of Dravet syndrome. We calculated the risk ratio (RR) of ≥50% and 100% reduction seizure frequency from baseline, along with the treatment-related withdrawals and serious adverse events, using the fixed-effect model. Quality assessment of included studies was performed with the Cochrane Collaboration's tool. KEY RESULTS Two trials with a total of 206 patients were included. The pooled RR of 5.49 (95% CI 3.13-9.65) showed that a significantly greater proportion in the fenfluramine group achieved ≥50% reduction in monthly convulsive seizure frequency (MCSF). As for the complete seizure free rate, the pooled RR of 5.75 (95% CI 1.03-32.07) also demonstrated the favorable efficacy of fenfluramine, even though the difference was not statistically significant (p = 0.046). However, a significantly greater proportion of patients in the fenfluramine group experienced no more than one seizure during the treatment period (RR 13.82, 95% CI 2.68-71.27, p = 0.002). There were no significant differences in withdrawals and serious adverse events between the two treatment groups. No valvular heart disease or pulmonary arterial hypertension was observed in participants. The most common adverse events reported by included trials were diarrhea, fatigue, lethargy, nasopharyngitis, pyrexia, seizure, decreased appetite, and weight loss. CONCLUSIONS Fenfluramine is an effective antiepileptic drug for pediatric patients with Dravet syndrome, demonstrating clinically meaningful reduction in convulsive frequency, and generally could be well tolerated.
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Pediatrics Yancheng Maternal and Children's Health Hospital Yancheng China
| | - Wei Li
- Department of Medical Imaging Jiangsu Vocational College of Medicine Yancheng China
| | - Chengzhong Wang
- Department of Pediatrics Yancheng Maternal and Children's Health Hospital Yancheng China
| |
Collapse
|
40
|
Hollenack K, Marshall J. Comment on "Cost-Effectiveness of Cannabidiol Adjunct Therapy Versus Usual Care for the Treatment of Seizures in Lennox-Gastaut Syndrome". PHARMACOECONOMICS 2021; 39:473-475. [PMID: 33674999 PMCID: PMC8009776 DOI: 10.1007/s40273-021-01005-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Kelly Hollenack
- Greenwich Biosciences, Inc., 5750 Fleet Street, Suite 200, Carlsbad, CA, 92008, USA.
| | | |
Collapse
|
41
|
Johannessen Landmark C, Potschka H, Auvin S, Wilmshurst JM, Johannessen SI, Kasteleijn-Nolst Trenité D, Wirrell EC. The role of new medical treatments for the management of developmental and epileptic encephalopathies: Novel concepts and results. Epilepsia 2021; 62:857-873. [PMID: 33638459 DOI: 10.1111/epi.16849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Developmental and epileptic encephalopathies (DEEs) are among the most challenging of all epilepsies to manage, given the exceedingly frequent and often severe seizure types, pharmacoresistance to conventional antiseizure medications, and numerous comorbidities. During the past decade, efforts have focused on development of new treatment options for DEEs, with several recently approved in the United States or Europe, including cannabidiol as an orphan drug in Dravet and Lennox-Gastaut syndromes and everolimus as a possible antiepileptogenic and precision drug for tuberous sclerosis complex, with its impact on the mammalian target of rapamycin pathway. Furthermore, fenfluramine, an old drug, was repurposed as a novel therapy in the treatment of Dravet syndrome. The evolution of new insights into pathophysiological processes of various DEEs provides possibilities to investigate novel and repurposed drugs and to place them into the context of their role in future management of these patients. The purpose of this review is to provide an overview of these new medical treatment options for the DEEs and to discuss the clinical implications of these results for improved treatment.
Collapse
Affiliation(s)
- Cecilie Johannessen Landmark
- Program for Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.,National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stéphane Auvin
- Pediatric Neurology Department, Robert Debré Hospital, Public Hospital Network of Paris, Paris, France.,Mixed Unit of Research NeuroDiderot U1141, University of Paris, Paris, France
| | - Jo M Wilmshurst
- Paediatric Neurology Department, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Svein I Johannessen
- National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | | | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
42
|
Schoonjans AS, Ceulemans B. A critical evaluation of fenfluramine hydrochloride for the treatment of Dravet syndrome. Expert Rev Neurother 2021; 22:351-364. [PMID: 33455486 DOI: 10.1080/14737175.2021.1877540] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Dravet Syndrome (DS) is a severe developmental and epileptic encephalopathy. Fenfluramine recently demonstrated to be a highly efficacious and safe treatment option for DS patients. Fenfluramine has been recently approved by the FDA and EMA and is marketed as Fintepla®.Areas covered: DS and the need for additional anticonvulsive treatment options is discussed. The results of three placebo-controlled phase III studies (1 with and 2 without stiripentol) and 2 open label (extension) studies are reviewed. All studies demonstrate a consistent and impressive seizure reduction, confirming the results of two smaller investigator-initiated trials. The mechanism of action of fenfluramine is discussed. Finally, the place of fenfluramine in the future treatment of DS is outlined.Expert opinion: Fenfluramine has a potent anticonvulsive effect in DS. Although not yet fully elucidated, the anticonvulsive mechanism of fenfluramine seems to be mainly serotonergic. Fenfluramine is generally well tolerated. A dose reduction is necessary in combination with stiripentol. Considering new competitors, efficacy seems lower for cannabidiol and is comparable with stiripentol. Preclinical studies indicate a disease specific action and possible disease modification in DS. The latter would support the use of fenfluramine above its anticonvulsive effect and needs to be further elaborated.
Collapse
Affiliation(s)
- An-Sofie Schoonjans
- Department of Pediatrics and Pediatric Neurology, Antwerp University Hospital, Edegem, Belgium.,Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Berten Ceulemans
- Department of Pediatrics and Pediatric Neurology, Antwerp University Hospital, Edegem, Belgium.,Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
43
|
Löscher W, Klein P. The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond. CNS Drugs 2021; 35:935-963. [PMID: 34145528 PMCID: PMC8408078 DOI: 10.1007/s40263-021-00827-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological disorders. Antiseizure medications (ASMs), previously referred to as anticonvulsant or antiepileptic drugs, are the mainstay of symptomatic epilepsy treatment. Epilepsy is a multifaceted complex disease and so is its treatment. Currently, about 30 ASMs are available for epilepsy therapy. Furthermore, several ASMs are approved therapies in nonepileptic conditions, including neuropathic pain, migraine, bipolar disorder, and generalized anxiety disorder. Because of this wide spectrum of therapeutic activity, ASMs are among the most often prescribed centrally active agents. Most ASMs act by modulation of voltage-gated ion channels; by enhancement of gamma aminobutyric acid-mediated inhibition; through interactions with elements of the synaptic release machinery; by blockade of ionotropic glutamate receptors; or by combinations of these mechanisms. Because of differences in their mechanisms of action, most ASMs do not suppress all types of seizures, so appropriate treatment choices are important. The goal of epilepsy therapy is the complete elimination of seizures; however, this is not achievable in about one-third of patients. Both in vivo and in vitro models of seizures and epilepsy are used to discover ASMs that are more effective in patients with continued drug-resistant seizures. Furthermore, therapies that are specific to epilepsy etiology are being developed. Currently, ~ 30 new compounds with diverse antiseizure mechanisms are in the preclinical or clinical drug development pipeline. Moreover, therapies with potential antiepileptogenic or disease-modifying effects are in preclinical and clinical development. Overall, the world of epilepsy therapy development is changing and evolving in many exciting and important ways. However, while new epilepsy therapies are developed, knowledge of the pharmacokinetics, antiseizure efficacy and spectrum, and adverse effect profiles of currently used ASMs is an essential component of treating epilepsy successfully and maintaining a high quality of life for every patient, particularly those receiving polypharmacy for drug-resistant seizures.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- grid.429576.bMid-Atlantic Epilepsy and Sleep Center, Bethesda, MD USA
| |
Collapse
|
44
|
Richards K, Jancovski N, Hanssen E, Connelly A, Petrou S. Atypical myelinogenesis and reduced axon caliber in the Scn1a variant model of Dravet syndrome: An electron microscopy pilot study of the developing and mature mouse corpus callosum. Brain Res 2020; 1751:147157. [PMID: 33069731 DOI: 10.1016/j.brainres.2020.147157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022]
Abstract
Dravet Syndrome (DS) is a genetic neurodevelopmental disease. Recurrent severe seizures begin in infancy and co-morbidities follow, including developmental delay, cognitive and behavioral dysfunction. A majority of DS patients have an SCN1A heterozygous gene mutation. This mutation causes a loss-of-function in inhibitory neurons, initiating seizure onset. We have investigated whether the sodium channelopathy may result in structural changes in the DS model independent of seizures. Morphometric analyses of axons within the corpus callosum were completed at P16 and P50 in Scn1a heterozygote KO male mice and their age-matched wild-type littermates. Trainable machine learning algorithms were used to examine electron microscopy images of ~400 myelinated axons per animal, per genotype, including myelinated axon cross-section area, frequency distribution and g-ratios. Pilot data for Scn1a heterozygote KO mice demonstrate the average axon caliber was reduced in developing and adult mice. Qualitative analysis also shows micro-features marking altered myelination at P16 in the DS model, with myelin out-folding and myelin debris within phagocytic cells. The data has indicated, in the absence of behavioral seizures, factors that governed a shift toward small calibre axons at P16 have persisted in adult Scn1a heterozygote KO corpus callosum. The pilot study provides a basis for future meta-analysis that will enable robust estimates of the effects of the sodium channelopathy on axon architecture. We propose that early therapeutic strategies in DS could help minimize the effect of sodium channelopathies, beyond the impact of overt seizures, and therefore achieve better long-term treatment outcomes.
Collapse
Affiliation(s)
- Kay Richards
- Florey Institute of Neuroscience and Mental Health, Australia
| | | | - Eric Hanssen
- Bio21 Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
| | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Australia; Florey Institute of Neuroscience and Mental Health, The Florey Department of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Steve Petrou
- Florey Institute of Neuroscience and Mental Health, Australia.
| |
Collapse
|
45
|
Aledo-Serrano A, García-Morales I, Toledano R, Jiménez-Huete A, Parejo B, Anciones C, Mingorance A, Ramos P, Gil-Nagel A. Diagnostic gap in genetic epilepsies: A matter of age. Epilepsy Behav 2020; 111:107266. [PMID: 32610249 DOI: 10.1016/j.yebeh.2020.107266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to evaluate the access to advanced diagnostic tests in patients with epilepsy and intellectual disability, with special focus on genetics. METHODS Patients with epilepsy and intellectual disability evaluated between 2016 and 2018 at the Epilepsy Unit of two hospitals in Madrid, Spain were included. The main inclusion criterion was an undetermined etiological diagnosis after clinical assessment, neuroimaging, and electroencephalogram (EEG). RESULTS Two hundred and five patients with epilepsy and intellectual disability were evaluated, with 124 fulfilling the inclusion criteria (mean age: 33.9 years). Regarding the etiological workup, advanced neuroimaging, prolonged video-EEG, and any type of genetic test had been performed in 58%, 41%, and 40%, respectively. An etiological diagnosis was reached in 18.5%. The workup was considered incomplete in 67%. Variables that showed the strongest association with an incomplete diagnostic workup in the multivariate analysis were current age and seizure freedom. CONCLUSIONS Despite the multiple implications of modern diagnostic techniques, especially genetic testing, there is a large proportion of patients with epilepsy and intellectual disability who do not have access to them. Older age and seizure freedom seem to be associated with the highest diagnostic gap.
Collapse
Affiliation(s)
- Angel Aledo-Serrano
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain.
| | - Irene García-Morales
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain; Epilepsy Unit, Neurology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Rafael Toledano
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain; Epilepsy Unit, Neurology Department, Hospital Ramón y Cajal, Madrid, Spain
| | - Adolfo Jiménez-Huete
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Beatriz Parejo
- Epilepsy Unit, Neurology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Carla Anciones
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | | | | | - Antonio Gil-Nagel
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| |
Collapse
|
46
|
Specchio N, Pietrafusa N, Doccini V, Trivisano M, Darra F, Ragona F, Cossu A, Spolverato S, Battaglia D, Quintiliani M, Luigia Gambardella M, Rosati A, Mei D, Granata T, Dalla Bernardina B, Vigevano F, Guerrini R. Efficacy and safety of Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: A real‐world study. Epilepsia 2020; 61:2405-2414. [DOI: 10.1111/epi.16690] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit Department of Neuroscience Bambino Gesù Children’s Hospital IRCCS Full Member of European Reference Network EpiCARE Rome Italy
| | - Nicola Pietrafusa
- Rare and Complex Epilepsy Unit Department of Neuroscience Bambino Gesù Children’s Hospital IRCCS Full Member of European Reference Network EpiCARE Rome Italy
| | - Viola Doccini
- Neuroscience Department A. Meyer Children's Hospital–University of Florence Full Member of European Reference Network EpiCARE Florence Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit Department of Neuroscience Bambino Gesù Children’s Hospital IRCCS Full Member of European Reference Network EpiCARE Rome Italy
| | - Francesca Darra
- Child Neuropsychiatry Department of Surgical Sciences Dentistry, Gynecology, and Pediatrics University of Verona Verona Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience IRCCS Foundation Carlo Besta Neurological Institute Full Member of the European Reference Network EpiCare Milan Italy
| | - Alberto Cossu
- Child Neuropsychiatry Department of Surgical Sciences Dentistry, Gynecology, and Pediatrics University of Verona Verona Italy
| | - Silvia Spolverato
- Child Neuropsychiatry Department of Surgical Sciences Dentistry, Gynecology, and Pediatrics University of Verona Verona Italy
| | - Domenica Battaglia
- Pediatric Neurology Department of Woman and Child Health and Public Health Child Health Area A. Gemelli University Polyclinic Foundation IRCCS Catholic University of the Sacred Heart Rome Italy
| | - Michela Quintiliani
- Pediatric Neurology Department of Woman and Child Health and Public Health Child Health Area A. Gemelli University Polyclinic Foundation IRCCS Catholic University of the Sacred Heart Rome Italy
| | - Maria Luigia Gambardella
- Pediatric Neurology Department of Woman and Child Health and Public Health Child Health Area A. Gemelli University Polyclinic Foundation IRCCS Catholic University of the Sacred Heart Rome Italy
| | - Anna Rosati
- Neuroscience Department A. Meyer Children's Hospital–University of Florence Full Member of European Reference Network EpiCARE Florence Italy
| | - Davide Mei
- Neuroscience Department A. Meyer Children's Hospital–University of Florence Full Member of European Reference Network EpiCARE Florence Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience IRCCS Foundation Carlo Besta Neurological Institute Full Member of the European Reference Network EpiCare Milan Italy
| | - Bernardo Dalla Bernardina
- Child Neuropsychiatry Department of Surgical Sciences Dentistry, Gynecology, and Pediatrics University of Verona Verona Italy
| | - Federico Vigevano
- Department of Neuroscience Bambino Gesù Children’s Hospital IRCCS Full Member of European Reference Network EpiCARE Rome Italy
| | - Renzo Guerrini
- Child Neuropsychiatry Department of Surgical Sciences Dentistry, Gynecology, and Pediatrics University of Verona Verona Italy
| |
Collapse
|
47
|
Heger K, Lund C, Larsen Burns M, Bjørnvold M, Sætre E, Johannessen SI, Johannessen Landmark C. A retrospective review of changes and challenges in the use of antiseizure medicines in Dravet syndrome in Norway. Epilepsia Open 2020; 5:432-441. [PMID: 32913951 PMCID: PMC7469772 DOI: 10.1002/epi4.12413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Dravet syndrome is a developmental and epileptic encephalopathy characterized by severe and drug-resistant seizures in early childhood, followed by developmental delay. The purpose of this study was to investigate aspects of pharmacological treatment of Norwegian patients with Dravet syndrome, focusing on the use of antiseizure medicines (ASMs) and identifying treatment challenges. METHODS Patients were identified through medical registries at the National Center for Epilepsy in Norway and National Center for Rare Epilepsy Related Disorders during 2008-2018. Additional clinical data were obtained from medical records and laboratory request forms. RESULTS We identified 53 patients with Dravet syndrome, 30/23 males/females, aged 2-50 years. The majority of patients with known seizure frequency experienced frequent seizures, 80% (n = 35/44). Only two patients were seizure-free. Valproate (n = 48), clobazam (n = 45), levetiracetam (n = 30), and stiripentol (n = 38) were most commonly used, previous or current use. More than one-third (n = 20) had tried sodium channel blockers (including lamotrigine), but these drugs were used less during the last decade. Polytherapy was common, 81% (n = 43) used two or more ASMs, and eight of these patients used 4-5 drugs (15%). Several challenges were identified: high seizure frequency, comorbidities, treatment changes with a wide range of ASMs, common use of oral gastro-tubes, extensive polypharmacy, and drug interactions. SIGNIFICANCE The use of ASMs has changed over the last decade, in accordance with updated international recommendations. Various treatment challenges were identified. This vulnerable group of patients needs close follow-up for an optimal treatment outcome.
Collapse
Affiliation(s)
- Katrine Heger
- Program for PharmacyDepartment of Life Sciences and HealthFaculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Caroline Lund
- Department of Rare Genetic SyndromesOslo University HospitalOsloNorway
- Department of NeurohabilitationOslo University HospitalOsloNorway
| | - Margrete Larsen Burns
- Section for Clinical PharmacologyThe National Center for EpilepsyDepartment of PharmacologyOslo University HospitalOsloNorway
| | - Marit Bjørnvold
- The National Center for EpilepsyOslo University HospitalOsloNorway
| | - Erik Sætre
- The National Center for EpilepsyOslo University HospitalOsloNorway
| | - Svein I. Johannessen
- Section for Clinical PharmacologyThe National Center for EpilepsyDepartment of PharmacologyOslo University HospitalOsloNorway
- The National Center for EpilepsyOslo University HospitalOsloNorway
| | - Cecilie Johannessen Landmark
- Program for PharmacyDepartment of Life Sciences and HealthFaculty of Health SciencesOslo Metropolitan UniversityOsloNorway
- Section for Clinical PharmacologyThe National Center for EpilepsyDepartment of PharmacologyOslo University HospitalOsloNorway
- The National Center for EpilepsyOslo University HospitalOsloNorway
| |
Collapse
|
48
|
Strzelczyk A, Schubert-Bast S. Therapeutic advances in Dravet syndrome: a targeted literature review. Expert Rev Neurother 2020; 20:1065-1079. [PMID: 32799683 DOI: 10.1080/14737175.2020.1801423] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Dravet syndrome (DS), a prototypic developmental and genetic epileptic encephalopathy (DEE), is characterized by an early onset of treatment-refractory seizures, together with impairments in motor control, behavior, and cognition. Even with multiple conventional anti-epileptic drugs, seizures remain poorly controlled, and there has been a considerable unmet need for effective and tolerable treatments. AREAS COVERED This targeted literature review aims to highlight recent changes to the therapeutic landscape for DS by summarizing the most up-to-date, evidence-based research, including pivotal data from the clinical development of stiripentol, cannabidiol, and fenfluramine, which are important milestones for DS treatment, together with the latest findings of other pharmacotherapies in development. In phase III, double-blind, placebo-controlled randomized controlled trials stiripentol, cannabidiol, and fenfluramine have shown clinically relevant reductions in convulsive seizure frequency, and are generally well tolerated. Stiripentol was associated with responder rates (greater than 50% reduction in convulsive seizure frequency) of 67%-71%, when added to valproic acid and clobazam; cannabidiol was associated with responder rates of 43%-49% (48%-63% in conjunction with clobazam), and fenfluramine of 54%-68% across studies. Therapies in development include soticlestat, ataluren, verapamil, and clemizole, with strategies to treat the underlying cause of DS, including gene therapy and antisense oligonucleotides beginning to emerge from preclinical studies. EXPERT OPINION Despite the challenges of drug development in rare diseases, this is an exciting time for the treatment of DS, with the promise of new efficacious and well-tolerated therapies, which may pave the way for treatment advances in other DEEs.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt , Frankfurt am Main, Germany.,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt , Frankfurt am Main, Germany
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt , Frankfurt am Main, Germany.,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt , Frankfurt am Main, Germany.,Department of Neuropediatrics, Goethe-University Frankfurt , Frankfurt am Main, Germany
| |
Collapse
|
49
|
Abstract
Epilepsy includes a number of medical conditions with recurrent seizures as common denominator. The large number of different syndromes and seizure types as well as the highly variable inter-individual response to the therapies makes management of this condition often challenging. In the last two decades, a genetic etiology has been revealed in more than half of all epilepsies and single gene defects in ion channels or neurotransmitter receptors have been associated with most inherited forms of epilepsy, including some focal and lesional forms as well as specific epileptic developmental encephalopathies. Several genetic tests are now available, including targeted assays up to revolutionary tools that have made sequencing of all coding (whole exome) and non-coding (whole genome) regions of the human genome possible. These recent technological advances have also driven genetic discovery in epilepsy and increased our understanding of the molecular mechanisms of many epileptic disorders, eventually providing targets for precision medicine in some syndromes, such as Dravet syndrome, pyroxidine-dependent epilepsy, and glucose transporter 1 deficiency. However, these examples represent a relatively small subset of all types of epilepsy, and to date, precision medicine in epilepsy has primarily focused on seizure control, and other clinical aspects, such as neurodevelopmental and neuropsychiatric comorbidities, have yet been possible to address. We herein summarize the most recent advances in genetic testing and provide up-to-date approaches for the choice of the correct test for some epileptic disorders and tailored treatments that are already applicable in some monogenic epilepsies. In the next years, the most probably scenario is that epilepsy treatment will be very different from the currently almost empirical approach, eventually with a "precision medicine" approach applicable on a large scale.
Collapse
Affiliation(s)
- Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "G. Gaslini", Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Via Gaslini 5, 16148, Genoa, Italy.
| | - Berge A Minassian
- Department of Pediatrics Division of Neurology, University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
50
|
Rodent genetic models of neurodevelopmental disorders and epilepsy. Eur J Paediatr Neurol 2020; 24:66-69. [PMID: 31870697 DOI: 10.1016/j.ejpn.2019.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterised by cognitive, social and motor deficits and are highly comorbid with intractable epilepsies. Through advances in genetic sequencing technologies a vast number of genes have been implicated in NDDs. State-of-the-art gene-editing techniques have led to the generation of hundreds of mouse models of NDDs. As an example, rodent models of Rett and Dravet syndromes as well as the syndromes caused by mutations in CDKL5 and Syngap1 display cognitive deficits in conjunction with seizure phenotypes. These models allow researchers to understand the underlying mechanisms as well as develop novel treatment strategies that can potentially be translated to the clinic. Furthermore, it may be possible to gain insights into the contribution of epilepsy to the progression of cognitive, social and motor phenotypes in NDDs.
Collapse
|