1
|
Design and outcome measures of LAVENDER, a phase 3 study of trofinetide for Rett syndrome. Contemp Clin Trials 2022; 114:106704. [PMID: 35149233 DOI: 10.1016/j.cct.2022.106704] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Rett syndrome (RTT) is a debilitating neurodevelopmental disorder with no approved treatments. Trofinetide is a synthetic analog of glycine-proline-glutamate, the N-terminal tripeptide of insulin-like growth factor 1. In a phase 2, placebo-controlled trial in 82 females with RTT aged 5-15 years, a significant (p ≤ 0.042) improvement over placebo was observed with the highest trofinetide dose (200 mg/kg twice daily [BID]) on three measures: Rett Syndrome Behavior Questionnaire (RSBQ), Clinical Global Impression-Improvement (CGI-I), and RTT-Clinician Domain Specific Concerns-Visual Analog Scale (RTT-DSC-VAS). Trofinetide was well tolerated at all doses (50, 100, and 200 mg/kg BID). A phase 3 trial utilizing disease-specific and novel scales was designed to investigate the efficacy and safety of trofinetide in girls and women with RTT. METHODS This 12-week, double-blind, randomized, placebo-controlled study (LAVENDER; NCT04181723) will evaluate trofinetide in 187 females, aged 5-20 years, with RTT. Co-primary endpoints are the RSBQ and CGI-I scales. Clinical domains of the CGI-I include communication, ambulation, hand use, seizures, attentiveness, and social (eye contact) and autonomic (breathing) aspects. Secondary endpoints will leverage four novel RTT-specific clinician ratings (derived from the RTT-DSC-VAS) of hand function, ambulation, ability to communicate, and verbal communication, and existing scales, to evaluate other core symptoms of RTT, quality of life and caregiver burden. A 40-week, open-label extension study will follow. DISCUSSION This study was designed using disease-specific scales optimized to demonstrate changes in core symptoms of RTT and may provide the first phase 3 data demonstrating drug efficacy in individuals with RTT. TRIAL REGISTRATION Clinicaltrials.govNCT04181723.
Collapse
|
2
|
Dominick KC, Andrews HF, Kaufmann WE, Berry-Kravis E, Erickson CA. Psychotropic Drug Treatment Patterns in Persons with Fragile X Syndrome. J Child Adolesc Psychopharmacol 2021; 31:659-669. [PMID: 34818076 DOI: 10.1089/cap.2021.0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective: Psychiatric comorbidity is common in fragile X syndrome (FXS) and often addressed through pharmacological management. Here we examine data in the Fragile X Online Registry With Accessible Research Database (FORWARD) to characterize specific symptoms being treated with psychotropic medication, patterns of medication use, as well as the influence of gender, intellectual disability (ID), age, and autism spectrum disorder (ASD) diagnosis. Methods: Data were drawn from the 975 participants who have a completed clinician form. We explored the frequency of psychotropic medication use for the following symptom clusters: attention, hyperactivity, anxiety, hypersensitivity, obsessive-compulsive disorder (OCD), mood swings, irritability/agitation, aggression, and self-injury (IAAS). Results: A majority of participants (617 or 63.3%) were taking a psychotropic medication, including investigational drugs. Medications were often targeting multiple symptoms. Psychotropic medication use was more common in males, adolescents, and those with comorbid ID and ASD. Anxiety was the most frequently targeted symptom, followed by attention-deficit/hyperactivity disorder symptoms and IAAS. Selective serotonin reuptake inhibitors (SSRIs) were the most frequently prescribed medication class among all patients (n = 266, 43%), followed by stimulants (n = 235, 38%), each with no gender difference. Antipsychotics were the third most frequently prescribed medication class (n = 205, 33%), and were more frequently prescribed to males and those with ID and ASD. Conclusions: Anxiety, attention and hyperactivity were the most common symptom targets for psychopharmacologic intervention in FXS. Our results support clinical knowledge that males with comorbid ASD and ID have a more severe presentation requiring more intervention including medications. These results highlight the need for examination of symptom overlap and interaction.
Collapse
Affiliation(s)
- Kelli C Dominick
- Department of Psychiatry, University of Cincinnati College of Medicine. Cincinnati, Ohio, USA.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Howard F Andrews
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Walter E Kaufmann
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, USA.,Department of Neurological Sciences, and Rush University Medical Center, Chicago, Illinois, USA.,Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Craig A Erickson
- Department of Psychiatry, University of Cincinnati College of Medicine. Cincinnati, Ohio, USA.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Ellis K, Moss J, Stefanidou C, Oliver C, Apperly I. The development of early social cognitive skills in neurogenetic syndromes associated with autism: Cornelia de Lange, fragile X and Rubinstein-Taybi syndromes. Orphanet J Rare Dis 2021; 16:488. [PMID: 34809685 PMCID: PMC8607585 DOI: 10.1186/s13023-021-02117-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cornelia de Lange (CdLS), Fragile X (FXS) and Rubinstein-Taybi syndromes (RTS) evidence unique profiles of autistic characteristics. To delineate these profiles further, the development of early social cognitive abilities in children with CdLS, FXS and RTS was compared to that observed in typically developing (TD) and autistic (AUT) children. METHODS Children with CdLS (N = 22), FXS (N = 19) and RTS (N = 18), completed the Early Social Cognition Scale (ESCogS). Extant data from AUT (N = 19) and TD (N = 86) children were used for comparison. RESULTS Similar to AUT children, children with CdLS, FXS and RTS showed an overall delay in passing ESCogS tasks. Children with CdLS showed a similar degree of delay to AUT children and greater delay than children with FXS and RTS. The CdLS, FXS and RTS groups did not pass tasks in the same sequence observed in TD and AUT children. Children with CdLS (p = 0.04), FXS (p = 0.02) and RTS (p = 0.04) performed better on tasks requiring understanding simple intentions in others significantly more than tasks requiring joint attention skills. CONCLUSIONS An underlying mechanism other than general cognitive delay may be disrupting early social cognitive development in children with CdLS, FXS and RTS. Factors that may disrupt early social cognitive development within these syndromes are discussed.
Collapse
Affiliation(s)
- Katherine Ellis
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
- School of Psychology, University of Surrey, Guildford, Surrey, GU26 7XH, UK.
| | - Jo Moss
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- School of Psychology, University of Surrey, Guildford, Surrey, GU26 7XH, UK
| | - Chrysi Stefanidou
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Rivermead Campus, Bishop Hall Lane, Chelmsford, CM1 1SQ, UK
| | - Chris Oliver
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ian Apperly
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
4
|
Romagnoli A, Di Marino D. The Use of Peptides in the Treatment of Fragile X Syndrome: Challenges and Opportunities. Front Psychiatry 2021; 12:754485. [PMID: 34803767 PMCID: PMC8599826 DOI: 10.3389/fpsyt.2021.754485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most frequent cause of inherited intellectual disabilities and autism spectrum disorders, characterized by cognitive deficits and autistic behaviors. The silencing of the Fmr1 gene and consequent lack of FMRP protein, is the major contribution to FXS pathophysiology. FMRP is an RNA binding protein involved in the maturation and plasticity of synapses and its absence culminates in a range of morphological, synaptic and behavioral phenotypes. Currently, there are no approved medications for the treatment of FXS, with the approaches under study being fairly specific and unsatisfying in human trials. Here we propose peptides/peptidomimetics as candidates in the pharmacotherapy of FXS; in the last years this class of molecules has catalyzed the attention of pharmaceutical research, being highly selective and well-tolerated. Thanks to their ability to target protein-protein interactions (PPIs), they are already being tested for a wide range of diseases, including cancer, diabetes, inflammation, Alzheimer's disease, but this approach has never been applied to FXS. As FXS is at the forefront of efforts to develop new drugs and approaches, we discuss opportunities, challenges and potential issues of peptides/peptidomimetics in FXS drug design and development.
Collapse
Affiliation(s)
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
5
|
Proteau-Lemieux M, Lacroix A, Galarneau L, Corbin F, Lepage JF, Çaku A. The safety and efficacy of metformin in fragile X syndrome: An open-label study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110307. [PMID: 33757860 DOI: 10.1016/j.pnpbp.2021.110307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022]
Abstract
Fragile X syndrome (FXS) is a rare genetic disorder characterized by a deficit of the fragile X mental retardation protein (FMRP), encoded by the fragile X mental retardation gene (FMR1) on the X chromosome. It has been hypothesized that the absence of FRMP leads to higher levels of Insulin-like Growth Factor 1 (IGF-1) in the brain, possibly contributing to the intellectual impairment characteristic of the disorder. Preclinical studies have shown that metformin downregulates the insulin/IGF-1 signaling pathway, corrects dendritic defects, and improves repetitive behavior in Fmr1 knockout mice. Here, we conducted an open-label study to evaluate: (1) the safety of metformin in normoglycemic individuals with FXS; and (2) the efficacy of metformin to improve aberrant behavior, attention, and to modulate cortical functioning. Fifteen patients with FXS, aged from 17 to 44, received 500 mg of metformin twice/daily over a 9-week treatment period. The primary outcome measures were: (1) the incidence of adverse events (AE); (2) the decrease in IGF-1 levels; and (3) the global score of the Aberrant Behavior Checklist-Community, Fragile X. The secondary outcomes were: (1) the Test of Attentional Performance for children (KiTAP); and (2) the Transcranial Magnetic Stimulation (TMS) parameters measuring cortical excitability. The metformin treatment was well tolerated, with no significant related AE. The TMS data showed an increase in corticospinal inhibition mediated by GABAA and GABAB mechanisms. This study demonstrates the safety of metformin in normoglycemic patients with FXS, and suggests the potential of this medication in modifying GABA-mediated inhibition, a hallmark of FXS pathophysiology. Implications for future clinical trials are discussed.
Collapse
Affiliation(s)
- Mélodie Proteau-Lemieux
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Angélina Lacroix
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pharmacology, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Luc Galarneau
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - François Corbin
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Jean-François Lepage
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada.
| | - Artuela Çaku
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| |
Collapse
|
6
|
Yazd HS, Rubio VY, Chamberlain CA, Yost RA, Garrett TJ. Metabolomic and lipidomic characterization of an X-chromosome deletion disorder in neural progenitor cells by UHPLC-HRMS. J Mass Spectrom Adv Clin Lab 2021; 20:11-24. [PMID: 34820667 PMCID: PMC8601009 DOI: 10.1016/j.jmsacl.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Intellectual disorders involving deletions of the X chromosome present a difficult task in the determination of a connection between symptoms and metabolites that could lead to treatment options. One specific disorder of X-chromosomal deletion, Fragile X syndrome, is the most frequently occurring of intellectual disabilities. Previous metabolomic studies have been limited to mouse models that may not have sufficiently revealed the full biochemical diversity of the disease in humans. OBJECTIVES The primary objective of this study was to elucidate the human biochemistry in X-chromosomal deletion disorders through metabolomic and lipidomic profiling, using cells from a X-deletion patient as a representative case. METHODS Metabolomic and lipidomic analysis was performed by UHPLC-HRMS on neural progenitor (NP) cells isolated from an afflicted female patient versus normal neural progenitor cells. RESULTS Results showed perturbations in several metabolic pathways, including those of arginine and proline, that significantly impact both neurotransmitter generation and overall brain function. Coincidently, dysregulation was observed for lipids involved in both cellular structure and membrane integrity. The trends of observed metabolomic changes, as well as lipidomic profiling from identified features, are discussed. CONCLUSION The lipidomic and metabolomic profiles of NP cell samples exhibited significant differentiation associated with partial deletion of the X chromosome. These findings suggest that rare X-chromosomal deletion disorders are not only a mental disorder limited to alterations in local neuronal functions, but are also metabolic diseases.
Collapse
Key Words
- BMP, Bis(monoacylglycero) phosphate
- Cer-NS, Ceramide nonhydroxyfatty acid-sphingosines
- Fragile X syndrome
- GL, Glycerolipid
- HexCer-NS, Hexosylceramide nonhydroxyfatty acid-sphingosines
- LPC, Lysophosphatidylcholines
- Lipidomics
- Metabolomics
- Microdeletion
- PC, Phosphatidylcholine
- PE, Phosphatidylethanolamine
- PG, Phosphatidylglycerol
- SM, Sphingomyelin
- SP, Sphingolipid
- ST, Sterol
- Xq27.3-Xq28
Collapse
Affiliation(s)
- Hoda Safari Yazd
- Department of Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Vanessa Y. Rubio
- Department of Chemistry, University of Florida, Gainesville, FL 32610, USA
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Casey A. Chamberlain
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Richard A. Yost
- Department of Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J. Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Basilico B, Morandell J, Novarino G. Molecular mechanisms for targeted ASD treatments. Curr Opin Genet Dev 2020; 65:126-137. [PMID: 32659636 DOI: 10.1016/j.gde.2020.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022]
Abstract
The possibility to generate construct valid animal models enabled the development and testing of therapeutic strategies targeting the core features of autism spectrum disorders (ASDs). At the same time, these studies highlighted the necessity of identifying sensitive developmental time windows for successful therapeutic interventions. Animal and human studies also uncovered the possibility to stratify the variety of ASDs in molecularly distinct subgroups, potentially facilitating effective treatment design. Here, we focus on the molecular pathways emerging as commonly affected by mutations in diverse ASD-risk genes, on their role during critical windows of brain development and the potential treatments targeting these biological processes.
Collapse
Affiliation(s)
| | - Jasmin Morandell
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
8
|
An Observational Study of Social Interaction Skills and Behaviors in Cornelia de Lange, Fragile X and Rubinstein-Taybi Syndromes. J Autism Dev Disord 2020; 50:4001-4010. [PMID: 32189229 PMCID: PMC7560922 DOI: 10.1007/s10803-020-04440-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We directly assessed the broader aspects of sociability (social enjoyment, social motivation, social interaction skills and social discomfort) in individuals with Cornelia de Lange (CdLS), fragile X (FXS) and Rubinstein-Taybi syndromes (RTS), and their association with autism characteristics and chronological age in these groups. Individuals with FXS (p < 0.01) and RTS (p < 0.01) showed poorer quality of eye contact compared to individuals with CdLS. Individuals with FXS showed less person and more object attention than individuals with CdLS (p < 0.01). Associations between sociability and autism characteristics and chronological age differed between groups, which may indicate divergence in the development and aetiology of different components of sociability across these groups. Findings indicate that individuals with CdLS, FXS and RTS show unique profiles of sociability.
Collapse
|
9
|
Telias M. Pharmacological Treatments for Fragile X Syndrome Based on Synaptic Dysfunction. Curr Pharm Des 2020; 25:4394-4404. [PMID: 31682210 DOI: 10.2174/1381612825666191102165206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common form of monogenic hereditary cognitive impairment, including intellectual disability, autism, hyperactivity, and epilepsy. METHODS This article reviews the literature pertaining to the role of synaptic dysfunction in FXS. RESULTS In FXS, synaptic dysfunction alters the excitation-inhibition ratio, dysregulating molecular and cellular processes underlying cognition, learning, memory, and social behavior. Decades of research have yielded important hypotheses that could explain, at least in part, the development of these neurological disorders in FXS patients. However, the main goal of translating lab research in animal models to pharmacological treatments in the clinic has been so far largely unsuccessful, leaving FXS a still incurable disease. CONCLUSION In this concise review, we summarize and analyze the main hypotheses proposed to explain synaptic dysregulation in FXS, by reviewing the scientific evidence that led to pharmaceutical clinical trials and their outcome.
Collapse
Affiliation(s)
- Michael Telias
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
10
|
Ding Q, Sethna F, Wu XT, Miao Z, Chen P, Zhang Y, Xiao H, Feng W, Feng Y, Li X, Wang H. Transcriptome signature analysis repurposes trifluoperazine for the treatment of fragile X syndrome in mouse model. Commun Biol 2020; 3:127. [PMID: 32179850 PMCID: PMC7075969 DOI: 10.1038/s42003-020-0833-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS) is a prevailing genetic disorder of intellectual disability and autism. There is no efficacious medication for FXS. Through in silico screening with a public database, computational analysis of transcriptome profile in FXS mouse neurons predicts therapeutic value of an FDA-approved drug trifluoperazine. Systemic administration of low-dose trifluoperazine at 0.05 mg/kg attenuates multiple FXS- and autism-related behavioral symptoms. Moreover, computational analysis of transcriptome alteration caused by trifluoperazine suggests a new mechanism of action against PI3K (Phosphatidylinositol-4,5-bisphosphate 3-kinase) activity. Consistently, trifluoperazine suppresses PI3K activity and its down-stream targets Akt (protein kinase B) and S6K1 (S6 kinase 1) in neurons. Further, trifluoperazine normalizes the aberrantly elevated activity of Akt and S6K1 and enhanced protein synthesis in FXS mouse. Together, our data demonstrate a promising value of transcriptome-based computation in identification of therapeutic strategy and repurposing drugs for neurological disorders, and suggest trifluoperazine as a potential treatment for FXS. Qi Ding, Ferzin Sethna et al. perform a computational analysis of the transcriptome profile of Fmr1−/− neurons and identify trifluoperazine as potential therapeutic agent against Fragile X Syndrome. Next, they show that low doses of trifluoperazine ameliorate some of the behavioral and molecular phenotypes present in Fmr1−/− mice.
Collapse
Affiliation(s)
- Qi Ding
- Department of Physiology, Michigan State University, East Lansing, USA
| | - Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, USA
| | - Xue-Ting Wu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhuang Miao
- Genetics Program, Michigan State University, East Lansing, USA
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yueqi Zhang
- Department of Physiology, Michigan State University, East Lansing, USA
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, USA
| | - Wei Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, USA. .,Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
11
|
D’Amanda CS, Peay HL, Wheeler AC, Turbitt E, Biesecker BB. Fragile X syndrome clinical trials: exploring parental decision-making. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2019; 63:926-935. [PMID: 30747463 PMCID: PMC6639141 DOI: 10.1111/jir.12605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 10/26/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The objective of this research was to understand parental proxy decision-making for drug trial participation for children with Fragile X syndrome (FXS). Specifically, we aimed to capture preferences, motivations, influencing factors and barriers related to trial involvement among trial joiners and decliners and describe ease of trial decision-making and decisional regret. METHODS Interviews were conducted with parents from two groups: those who chose to enrol their child with FXS in a trial (N = 16; Joiners) and those who declined trial participation (N = 15; Decliners). Data were coded and interpreted through inductive content analysis. RESULTS Prominent decisional factors included attitudes about medicating FXS symptoms, potential for direct benefit (primarily evaluated through the degree of match between target outcomes and child symptomatology and drug mechanism), logistical convenience and perceived risks of side effects. The ultimate motivation for participation was potential for direct benefit. None of the parents reported decisional regret, and ease of decision-making ranged from easy to difficult for our participants. CONCLUSIONS Therapeutic optimism was high among those who elected participation. Parents may benefit from an explanation of the rationale behind chosen outcome variables and may be more interested in trials that target or measure as an exploratory outcome the symptoms they find most concerning. Our findings reinforce the need for future trials to reduce participant inconvenience. Our results contrast with what has previously been observed in parents of children with life-threatening conditions; parents of children with FXS may be more trial risk averse and find trial decisions to be harder. Parents of children with FXS considering trials may benefit from a decisional intervention aimed at deliberating motivations and barriers.
Collapse
Affiliation(s)
- Celeste S. D’Amanda
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH 31 Center Drive MSC2073, Bethesda, MD, USA 20892-2073, ,
| | - Holly L. Peay
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International. 3040 East Cornwallis Road, Research Triangle Park, NC, USA 27709-2194, ,
| | - Anne C. Wheeler
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International. 3040 East Cornwallis Road, Research Triangle Park, NC, USA 27709-2194, ,
| | - Erin Turbitt
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH 31 Center Drive MSC2073, Bethesda, MD, USA 20892-2073, ,
| | - Barbara B. Biesecker
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH 31 Center Drive MSC2073, Bethesda, MD, USA 20892-2073, ,
| |
Collapse
|
12
|
Kozikowski AP, Shen S, Pardo M, Tavares MT, Szarics D, Benoy V, Zimprich CA, Kutil Z, Zhang G, Bařinka C, Robers MB, Van Den Bosch L, Eubanks JH, Jope RS. Brain Penetrable Histone Deacetylase 6 Inhibitor SW-100 Ameliorates Memory and Learning Impairments in a Mouse Model of Fragile X Syndrome. ACS Chem Neurosci 2019; 10:1679-1695. [PMID: 30511829 DOI: 10.1021/acschemneuro.8b00600] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disease-modifying therapies are needed for Fragile X Syndrome (FXS), as at present there are no effective treatments or cures. Herein, we report on a tetrahydroquinoline-based selective histone deacetylase 6 (HDAC6) inhibitor SW-100, its pharmacological and ADMET properties, and its ability to improve upon memory performance in a mouse model of FXS, Fmr1-/- mice. This small molecule demonstrates good brain penetrance, low-nanomolar potency for the inhibition of HDAC6 (IC50 = 2.3 nM), with at least a thousand-fold selectivity over all other class I, II, and IV HDAC isoforms. Moreover, through its inhibition of the α-tubulin deacetylase domain of HDAC6 (CD2), in cells SW-100 upregulates α-tubulin acetylation with no effect on histone acetylation and selectively restores the impaired acetylated α-tubulin levels in the hippocampus of Fmr1-/- mice. Lastly, SW-100 ameliorates several memory and learning impairments in Fmr1-/- mice, thus modeling the intellectual deficiencies associated with FXS, and hence providing a strong rationale for pursuing HDAC6-based therapies for the treatment of this rare disease.
Collapse
Affiliation(s)
| | - Sida Shen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Marta Pardo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Maurício T. Tavares
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Dora Szarics
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Veronick Benoy
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | | | - Zsófia Kutil
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Guiping Zhang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | | | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | - James H. Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Richard S. Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
13
|
Jalnapurkar I, Cochran DM, Frazier JA. New Therapeutic Options for Fragile X Syndrome. Curr Treat Options Neurol 2019; 21:12. [PMID: 30809735 DOI: 10.1007/s11940-019-0551-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an overview of current research and clinical practice guidelines in fragile X syndrome (FXS) with regard to therapeutic approaches in the management of this condition. The authors summarize and discuss findings from relevant preclinical studies and results from clinical trials in human subjects with FXS. Additionally, we provide an outline of the basic framework for understanding and providing educational and psychosocial supports for these individuals. RECENT FINDINGS Current treatments in FXS are largely symptom based and focused on managing associated psychiatric and behavioral co-morbidities. While data from animal studies has been promising in providing targeted treatments to correct the underlying deficits at the cellular level, there have not been as robust findings in human trials. There are several targeted treatments for FXS currently under development. Individuals with FXS present with several behavioral challenges including anxiety, social withdrawal, ADHD, hyperarousal, self-injury, and aggression. Therapeutic services are often necessary, such as behavioral intervention, speech and language therapy, occupational therapy, and individualized educational support; adjunctive psychopharmacologic treatment is often helpful as well. It is important to address these symptoms and weigh the evidence for the use of medications that target the underlying neurobiology and pathophysiology of the syndrome.
Collapse
Affiliation(s)
- Isha Jalnapurkar
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA. .,Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA.
| | - David M Cochran
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA.,Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA
| | - Jean A Frazier
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA.,Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA
| |
Collapse
|
14
|
Melancia F, Trezza V. Modelling fragile X syndrome in the laboratory setting: A behavioral perspective. Behav Brain Res 2018; 350:149-163. [DOI: 10.1016/j.bbr.2018.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
|
15
|
Westmark PR, Dekundy A, Gravius A, Danysz W, Westmark CJ. Rescue of Fmr1 KO phenotypes with mGluR 5 inhibitors: MRZ-8456 versus AFQ-056. Neurobiol Dis 2018; 119:190-198. [PMID: 30125640 DOI: 10.1016/j.nbd.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
Metabotropic glutamate receptor 5 (mGluR5) is a drug target for central nervous system disorders such as fragile X syndrome that involve excessive glutamate-induced excitation. We tested the efficacy of a novel negative allosteric modulator of mGluR5 developed by Merz Pharmaceuticals, MRZ-8456, in comparison to MPEP and AFQ-056 (Novartis, a.k.a. mavoglurant) in both in vivo and in vitro assays in a mouse model of fragile X syndrome, Fmr1KO mice. The in vivo assays included susceptibility to audiogenic-induced seizures and pharmacokinetic measurements of drug availability. The in vitro assays included dose response assessments of biomarker expression and dendritic spine length and density in cultured primary neurons. Both MRZ-8456 and AFQ-056 attenuated wild running and audiogenic-induced seizures in Fmr1KO mice with similar pharmacokinetic profiles. Both drugs significantly reduced dendritic expression of amyloid-beta protein precursor (APP) and rescued the ratio of mature to immature dendritic spines. These findings demonstrate that MRZ-8456, a drug being developed for the treatment of motor complications of L-DOPA in Parkinson's disease and which completed a phase I clinical trial, is effective in attenuating both well-established (seizures and dendritic spine maturity) and exploratory biomarker (APP expression) phenotypes in a mouse model of fragile X syndrome.
Collapse
Affiliation(s)
- Pamela R Westmark
- University of Wisconsin-Madison, Department of Neurology, Madison, WI, USA; University of Wisconsin-Madison, Department of Medicine, Madison, WI, USA
| | - Andrzej Dekundy
- Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | - Andreas Gravius
- Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | - Wojciech Danysz
- Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | - Cara J Westmark
- University of Wisconsin-Madison, Department of Neurology, Madison, WI, USA.
| |
Collapse
|
16
|
Handling FMRP and its molecular partners: Structural insights into Fragile X Syndrome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 141:3-14. [PMID: 30905341 DOI: 10.1016/j.pbiomolbio.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022]
Abstract
Fragile X Mental Retardation Protein (FMRP) is a RNA-binding protein (RBP) known to control different steps of mRNA metabolism, even though its complete function is not fully understood yet. Lack or mutations of FMRP lead to Fragile X Syndrome (FXS), the most common form of inherited intellectual disability and a leading monogenic cause of autism spectrum disorder (ASD). It is well established that FMRP has a multi-domain architecture, a feature that allows this RBP to be engaged in a large interaction network with numerous proteins and mRNAs or non-coding RNAs. Insights into the three-dimensional (3D) structure of parts of its three domains (N-terminus, central domain and C-terminus) were obtained using Nuclear Magnetic Resonance and X-ray diffraction, but the complete 3D arrangement of each domain with respect to the others is still missing. Here, we review the structural features of FMRP and of the network of its protein and RNA interactions. Understanding these aspects is the first necessary step towards the design of novel compounds for new therapeutic interventions in FXS.
Collapse
|
17
|
Dominick KC, Wink LK, Pedapati EV, Shaffer R, Sweeney JA, Erickson CA. Risperidone Treatment for Irritability in Fragile X Syndrome. J Child Adolesc Psychopharmacol 2018; 28:274-278. [PMID: 29394101 DOI: 10.1089/cap.2017.0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The goal of this study was to assess the effectiveness of risperidone monoantipsychotic therapy targeting irritability in patients with Fragile X syndrome (FXS) in a naturalistic outpatient clinical setting. METHODS We examined the use of risperidone, predominantly in combination with other nonantipsychotic psychotropic agents, targeting irritability in 21 male patients with FXS with a retrospective analysis of a prospectively collected large developmental disabilities-specific treatment database. Mean age at start of treatment, treatment duration, final dose, body mass index (BMI), and Clinical Global Impressions-Improvement (CGI-I) Scale score at final visit were determined, and changes with treatment were analyzed using paired t-tests. RESULTS Mean age at start of treatment was 14.0 years. The final mean dose of risperidone was 2.5 mg/day. The mean duration of treatment was 22 months. Seven (33.33%) participants were considered treatment responders based on the CGI-I. Change in BMI between initiation and cessation of treatment episode was not significant, however, these data were only available for a subset (n = 11) of patients. CONCLUSIONS Risperidone may be effective in the treatment of irritability in males with FXS. The overall effectiveness of monoantipsychotic treatment with risperidone was limited in this study compared with previous published reports; however, this may be the result of differences in outcome measures as well as a reflection of the level of functioning and severity of irritability in this sample.
Collapse
Affiliation(s)
- Kelli C Dominick
- 1 Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Logan K Wink
- 1 Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Ernest V Pedapati
- 1 Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Rebecca Shaffer
- 1 Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - John A Sweeney
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| | - Craig A Erickson
- 1 Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| |
Collapse
|
18
|
Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov 2017; 17:280-299. [PMID: 29217836 DOI: 10.1038/nrd.2017.221] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders such as fragile X syndrome (FXS) result in lifelong cognitive and behavioural deficits and represent a major public health burden. FXS is the most frequent monogenic form of intellectual disability and autism, and the underlying pathophysiology linked to its causal gene, FMR1, has been the focus of intense research. Key alterations in synaptic function thought to underlie this neurodevelopmental disorder have been characterized and rescued in animal models of FXS using genetic and pharmacological approaches. These robust preclinical findings have led to the implementation of the most comprehensive drug development programme undertaken thus far for a genetically defined neurodevelopmental disorder, including phase IIb trials of metabotropic glutamate receptor 5 (mGluR5) antagonists and a phase III trial of a GABAB receptor agonist. However, none of the trials has been able to unambiguously demonstrate efficacy, and they have also highlighted the extent of the knowledge gaps in drug development for FXS and other neurodevelopmental disorders. In this Review, we examine potential issues in the previous studies and future directions for preclinical and clinical trials. FXS is at the forefront of efforts to develop drugs for neurodevelopmental disorders, and lessons learned in the process will also be important for such disorders.
Collapse
|
19
|
Wilkerson JR, Albanesi JP, Huber KM. Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease. Semin Cell Dev Biol 2017; 77:51-62. [PMID: 28969983 DOI: 10.1016/j.semcdb.2017.09.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
The Arc gene is robustly transcribed in specific neural ensembles in response to experience-driven activity. Upon induction, Arc mRNA is transported to dendrites, where it can be rapidly and locally translated by activation of metabotropic glutamate receptors (mGluR1/5). mGluR-induced dendritic synthesis of Arc is implicated in weakening or elimination of excitatory synapses by triggering endocytosis of postsynaptic AMPARs in both hippocampal CA1 and cerebellar Purkinje neurons. Importantly, CA1 neurons with experience-induced Arc mRNA are susceptible, or primed for mGluR-induced long-term synaptic depression (mGluR-LTD). Here we review mechanisms and function of Arc in mGluR-LTD and synapse elimination and propose roles for these forms of plasticity in Arc-dependent formation of sparse neural representations of learned experience. We also discuss accumulating evidence linking dysregulation of Arc and mGluR-LTD in human cognitive disorders such as intellectual disability, autism and Alzheimer's disease.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Joseph P Albanesi
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Kimberly M Huber
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
20
|
Mila M, Alvarez-Mora M, Madrigal I, Rodriguez-Revenga L. Fragile X syndrome: An overview and update of the FMR1
gene. Clin Genet 2017; 93:197-205. [DOI: 10.1111/cge.13075] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 01/31/2023]
Affiliation(s)
- M. Mila
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - M.I. Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - I. Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - L. Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
21
|
Benke D, Möhler H. Impact on GABA systems in monogenetic developmental CNS disorders: Clues to symptomatic treatment. Neuropharmacology 2017; 136:46-55. [PMID: 28764992 DOI: 10.1016/j.neuropharm.2017.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/26/2022]
Abstract
Animal studies of several single-gene disorders demonstrate that reversing the molecular signaling deficits can result in substantial symptomatic improvements in function. Focusing on the ratio of excitation to inhibition as a potential pathophysiological hallmark, seven single-gene developmental CNS disorders are reviewed which are characterized by a striking dysregulation of neuronal inhibition. Deficits in inhibition and excessive inhibition are found. The examples of developmental disorders encompass Neurofibromatosis type 1, Fragile X syndrome, Rett syndrome, Dravet syndrome including autism-like behavior, NONO-mutation-induced intellectual disability, Succinic semialdehyde dehydrogenase deficiency and Congenital nystagmus due to FRMD7 mutations. The phenotype/genotype correlations observed in animal models point to potential treatment options and will continue to inspire clinical research. Three drugs are presently in clinical trials: acamprosate and ganoxolon for Fragile X syndrome and SGS-742 for SSADH deficiency. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Drug Discovery Network Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Hanns Möhler
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 10, 8023 Zurich, Switzerland.
| |
Collapse
|
22
|
Erickson CA, Davenport MH, Schaefer TL, Wink LK, Pedapati EV, Sweeney JA, Fitzpatrick SE, Brown WT, Budimirovic D, Hagerman RJ, Hessl D, Kaufmann WE, Berry-Kravis E. Fragile X targeted pharmacotherapy: lessons learned and future directions. J Neurodev Disord 2017; 9:7. [PMID: 28616096 PMCID: PMC5467059 DOI: 10.1186/s11689-017-9186-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/18/2017] [Indexed: 01/04/2023] Open
Abstract
Our understanding of fragile X syndrome (FXS) pathophysiology continues to improve and numerous potential drug targets have been identified. Yet, current prescribing practices are only symptom-based in order to manage difficult behaviors, as no drug to date is approved for the treatment of FXS. Drugs impacting a diversity of targets in the brain have been studied in recent FXS-specific clinical trials. While many drugs have focused on regulation of enhanced glutamatergic or deficient GABAergic neurotransmission, compounds studied have not been limited to these mechanisms. As a single-gene disorder, it was thought that FXS would have consistent drug targets that could be modulated with pharmacotherapy and lead to significant improvement. Unfortunately, despite promising results in FXS animal models, translational drug treatment development in FXS has largely failed. Future success in this field will depend on learning from past challenges to improve clinical trial design, choose appropriate outcome measures and age range choices, and find readily modulated drug targets. Even with many negative placebo-controlled study results, the field continues to move forward exploring both the new mechanistic drug approaches combined with ways to improve trial execution. This review summarizes the known phenotype and pathophysiology of FXS and past clinical trial rationale and results, and discusses current challenges facing the field and lessons from which to learn for future treatment development efforts.
Collapse
Affiliation(s)
- Craig A Erickson
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Matthew H Davenport
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH USA
| | - Tori L Schaefer
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Logan K Wink
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - John A Sweeney
- Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Sarah E Fitzpatrick
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - W Ted Brown
- Institute for Basic Research in Developmental Disabilities, New York, NY USA
| | - Dejan Budimirovic
- Clinical Research Center, Clinical Trials Unit, Fragile X Clinic, Kennedy Krieger Institute, The Johns Hopkins Medical Institutions, Baltimore, MD USA.,Departments of Psychiatry & Behavioral Sciences, Child Psychiatry, The Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Davis Medical Center, University of California, Sacramento, CA USA.,Department of Pediatrics, Davis Medical Center, University of California, Sacramento, California USA
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Davis Medical Center, University of California, Sacramento, CA USA.,Department of Psychiatry and Behavioral Sciences, Davis Medical Center, University of California, Sacramento, California USA
| | - Walter E Kaufmann
- Greenwood Genetic Center, Greenwood, SC USA.,Boston Children's Hospital, Boston, Massachusetts USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, Illinois USA
| |
Collapse
|
23
|
Budimirovic DB, Berry-Kravis E, Erickson CA, Hall SS, Hessl D, Reiss AL, King MK, Abbeduto L, Kaufmann WE. Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J Neurodev Disord 2017; 9:14. [PMID: 28616097 PMCID: PMC5467057 DOI: 10.1186/s11689-017-9193-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/22/2017] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Fragile X syndrome (FXS) has been the neurodevelopmental disorder with the most active translation of preclinical breakthroughs into clinical trials. This process has led to a critical assessment of outcome measures, which resulted in a comprehensive review published in 2013. Nevertheless, the disappointing outcome of several recent phase III drug trials in FXS, and parallel efforts at evaluating behavioral endpoints for trials in autism spectrum disorder (ASD), has emphasized the need for re-assessing outcome measures and revising recommendations for FXS. METHODS After performing an extensive database search (PubMed, Food and Drug Administration (FDA)/National Institutes of Health (NIH)'s www.ClinicalTrials.gov, etc.) to determine progress since 2013, members of the Working Groups who published the 2013 Report evaluated the available outcome measures for FXS and related neurodevelopmental disorders using the COSMIN grading system of levels of evidence. The latter has also been applied to a British survey of endpoints for ASD. In addition, we also generated an informal classification of outcome measures for use in FXS intervention studies as instruments appropriate to detect shorter- or longer-term changes. RESULTS To date, a total of 22 double-blind controlled clinical trials in FXS have been identified through www.ClinicalTrials.gov and an extensive literature search. The vast majority of these FDA/NIH-registered clinical trials has been completed between 2008 and 2015 and has targeted the core excitatory/inhibitory imbalance present in FXS and other neurodevelopmental disorders. Limited data exist on reliability and validity for most tools used to measure cognitive, behavioral, and other problems in FXS in these trials and other studies. Overall, evidence for most tools supports a moderate tool quality grading. Data on sensitivity to treatment, currently under evaluation, could improve ratings for some cognitive and behavioral tools. Some progress has also been made at identifying promising biomarkers, mainly on blood-based and neurophysiological measures. CONCLUSION Despite the tangible progress in implementing clinical trials in FXS, the increasing data on measurement properties of endpoints, and the ongoing process of new tool development, the vast majority of outcome measures are at the moderate quality level with limited information on reliability, validity, and sensitivity to treatment. This situation is not unique to FXS, since reviews of endpoints for ASD have arrived at similar conclusions. These findings, in conjunction with the predominance of parent-based measures particularly in the behavioral domain, indicate that endpoint development in FXS needs to continue with an emphasis on more objective measures (observational, direct testing, biomarkers) that reflect meaningful improvements in quality of life. A major continuous challenge is the development of measurement tools concurrently with testing drug safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Dejan B. Budimirovic
- Departments of Psychiatry and Behavioral Sciences, Kennedy Krieger Institute and Child Psychiatry, Johns Hopkins University School of Medicine, 716 N. Broadway, Baltimore, MD 21205 USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, 1725 West Harrison, Suite 718, Chicago, IL 60612 USA
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, 3333 Burnet Avenue MLC 4002, Cincinnati, OH 45229 USA
| | - Scott S. Hall
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305 USA
| | - David Hessl
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, 2825 50th Street, Sacramento, CA 95817 USA
| | - Allan L. Reiss
- Division of Interdisciplinary Brain Sciences, Departments of Psychiatry and Behavioral Sciences, Radiology and Pediatrics, Stanford University, 401 Quarry Road, Stanford, CA 94305 USA
| | - Margaret K. King
- Autism & Developmental Medicine Institute, Geisinger Health System, Present address: Novartis Pharmaceuticals Corporation, US Medical, One Health Plaza, East Hanover, NJ 07936 USA
| | - Leonard Abbeduto
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, 2825 50th Street, Sacramento, CA 95817 USA
| | - Walter E. Kaufmann
- Center for Translational Research, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646 USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115 USA
| |
Collapse
|
24
|
AlOlaby RR, Sweha SR, Silva M, Durbin-Johnson B, Yrigollen CM, Pretto D, Hagerman RJ, Tassone F. Molecular biomarkers predictive of sertraline treatment response in young children with fragile X syndrome. Brain Dev 2017; 39:483-492. [PMID: 28242040 PMCID: PMC5420478 DOI: 10.1016/j.braindev.2017.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Several neurotransmitters involved in brain development are altered in fragile X syndrome (FXS), the most common monogenic cause of autism spectrum disorder (ASD). Serotonin plays a vital role in synaptogenesis and postnatal brain development. Deficits in serotonin synthesis and abnormal neurogenesis were shown in young children with autism, suggesting that treating within the first years of life with a selective serotonin reuptake inhibitor might be the most effective time. In this study we aimed to identify molecular biomarkers involved in the serotonergic pathway that could predict the response to sertraline treatment in young children with FXS. METHODS Genotypes were determined for several genes involved in serotonergic pathway in 51 children with FXS, ages 24-72months. Correlations between genotypes and deviations from baseline in primary and secondary outcome measures were modeled using linear regression models. RESULTS A significant association was observed between a BDNF polymorphism and improvements for several clinical measures, including the Clinical Global Impression scale (P=0.008) and the cognitive T score (P=0.017) in those treated with sertraline compared to those in the placebo group. Additionally, polymorphisms in the MAOA, Cytochrome P450 2C19 and 2D6, and in the 5-HTTLPR gene showed a significant correlation with some of the secondary measures included in this study. CONCLUSION This study shows that polymorphisms of genes involved in the serotonergic pathway could play a potential role in predicting response to sertraline treatment in young children with FXS. Larger studies are warranted to confirm these initial findings.
Collapse
Affiliation(s)
- Reem Rafik AlOlaby
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Stefan R Sweha
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Marisol Silva
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Blythe Durbin-Johnson
- Department of Biostatistics, University of California Davis, School of Medicine, Davis, CA, USA
| | - Carolyn M Yrigollen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Dalyir Pretto
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Randi J Hagerman
- MIND Institute, University of California Davis Medical Center, Davis, CA, USA,Department of Pediatrics, University of California Davis, School of Medicine, Davis, CA, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA; MIND Institute, University of California Davis Medical Center, Davis, CA, USA.
| |
Collapse
|
25
|
Ciaccio C, Fontana L, Milani D, Tabano S, Miozzo M, Esposito S. Fragile X syndrome: a review of clinical and molecular diagnoses. Ital J Pediatr 2017; 43:39. [PMID: 28420439 PMCID: PMC5395755 DOI: 10.1186/s13052-017-0355-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/07/2017] [Indexed: 12/24/2022] Open
Abstract
Background Fragile X Syndrome (FXS) is the second cause of intellectual disability after Down syndrome and the most prevalent cause of intellectual disability in males, affecting 1:5000–7000 men and 1:4000–6000 women. It is caused by an alteration of the FMR1 gene, which maps at the Xq27.3 band: more than 99% of individuals have a CGG expansion (>200 triplets) in the 5′ UTR of the gene, and FMR1 mutations and duplication/deletion are responsible for the remaining (<1%) molecular diagnoses of FXS. The aim of this review was to gather the current clinical and molecular knowledge about FXS to provide clinicians with a tool to guide the initial assessment and follow-up of FXS and to offer to laboratory workers and researchers an update about the current diagnostic procedures. Discussion FXS is a well-known condition; however, most of the studies thus far have focused on neuropsychiatric features. Unfortunately, some of the available studies have limitations, such as the paucity of patients enrolled or bias due to the collection of the data in a single-country population, which may be not representative of the average global FXS population. In recent years, insight into the adult presentation of the disease has progressively increased. Pharmacological treatment of FXS is essentially symptom based, but the growing understanding of the molecular and biological mechanisms of the disease are paving the way to targeted therapy, which may reverse the effects of FMRP deficiency and be a real cure for the disease itself, not just its symptoms. Conclusions The clinical spectrum of FXS is wide, presenting not only as an isolated intellectual disability but as a multi-systemic condition, involving predominantly the central nervous system but potentially affecting any apparatus. Given the relative high frequency of the condition and its complex clinical management, FXS appears to have an important economic and social burden.
Collapse
Affiliation(s)
- Claudia Ciaccio
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Laura Fontana
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Silvia Tabano
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Miozzo
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Lucio Severi 1, Loc. S. Andrea delle Fratte, 06132, Perugia, Italy.
| |
Collapse
|
26
|
Bu B, Zhang L. A New Link Between Insulin Signaling and Fragile X Syndrome. Neurosci Bull 2016; 33:118-120. [PMID: 27838827 DOI: 10.1007/s12264-016-0083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Bei Bu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
27
|
Mor-Shaked H, Eiges R. Modeling Fragile X Syndrome Using Human Pluripotent Stem Cells. Genes (Basel) 2016; 7:genes7100077. [PMID: 27690107 PMCID: PMC5083916 DOI: 10.3390/genes7100077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from a loss-of-function mutation by a CGG repeat expansion at the 5′ untranslated region of the X-linked fragile X mental retardation 1 (FMR1) gene. Expansion of the CGG repeats beyond 200 copies results in protein deficiency by leading to aberrant methylation of the FMR1 promoter and the switch from active to repressive histone modifications. Additionally, the CGGs become increasingly unstable, resulting in high degree of variation in expansion size between and within tissues of affected individuals. It is still unclear how the FMR1 protein (FMRP) deficiency leads to disease pathology in neurons. Nor do we know the mechanisms by which the CGG expansion results in aberrant DNA methylation, or becomes unstable in somatic cells of patients, at least in part due to the lack of appropriate animal or cellular models. This review summarizes the current contribution of pluripotent stem cells, mutant human embryonic stem cells, and patient-derived induced pluripotent stem cells to disease modeling of FXS for basic and applied research, including the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Hagar Mor-Shaked
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel.
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel.
| |
Collapse
|
28
|
Wang L, Wang Y, Zhou S, Yang L, Shi Q, Li Y, Zhang K, Yang L, Zhao M, Yang Q. Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development. Genes (Basel) 2016; 7:genes7080045. [PMID: 27517961 PMCID: PMC4999833 DOI: 10.3390/genes7080045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS) is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the development of FXS. Although astrocytes affect neuronal dendrite development in Fmr1 knockout (KO) mice, the factors released by astrocytes are still unclear. We cultured wild type (WT) cortical neurons in astrocyte-conditioned medium (ACM) from WT or Fmr1 KO mice. Immunocytochemistry and Western blotting were performed to detect the dendritic growth of both WT and KO neurons. We determined glutamate and γ-aminobutyric acid (GABA) levels using high-performance liquid chromatography (HPLC). The total neuronal dendritic length was reduced when cultured in the Fmr1 KO ACM. This neurotoxicity was triggered by an imbalanced release of glutamate and GABA from Fmr1 KO astrocytes. We found increased glutaminase and GABA transaminase (GABA-T) expression and decreased monoamine oxidase B expression in Fmr1 KO astrocytes. The elevated levels of glutamate contributed to oxidative stress in the cultured neurons. Vigabatrin (VGB), a GABA-T inhibitor, reversed the changes caused by glutamate and GABA release in Fmr1 KO astrocytes and the abnormal behaviors in Fmr1 KO mice. Our results indicate that the imbalance in the astrocytic glutamate and GABA release may be involved in the neuropathology and the underlying symptoms of FXS, and provides a therapeutic target for treatment.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Yan Wang
- Department of Gastroenterology and Endoscopy Center, No. 323 Hospital of PLA, Xi'an 710054, China.
| | - Shimeng Zhou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Liukun Yang
- Fifth Company, Second Battalion, Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China.
| | - Qixin Shi
- Fifth Company, Second Battalion, Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China.
| | - Yujiao Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Minggao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|