1
|
Li YK, Ge FJ, Liu XN, Zeng CM, Qian MJ, Li YH, Zheng MM, Qu JJ, Fang LJ, Lu JJ, Yang B, He QJ, Zhou JY, Zhu H. Ivacaftor, a CFTR potentiator, synergizes with osimertinib against acquired resistance to osimertinib in NSCLC by regulating CFTR-PTEN-AKT axis. Acta Pharmacol Sin 2024:10.1038/s41401-024-01427-0. [PMID: 39627385 DOI: 10.1038/s41401-024-01427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 01/05/2025] Open
Abstract
Osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has demonstrated significant clinical benefits in the treatment of EGFR-mutated non-small cell lung cancer (NSCLC). However, inevitable acquired resistance to osimertinib limits its clinical utility, and there is a lack of effective countermeasures. Here, we established osimertinib-resistant cell lines and performed drug library screening. This screening identified ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator, as a synergistic enhancer of osimertinib-induced anti-tumor activity both in vitro and in vivo. Mechanistically, ivacaftor facilitated the colocalization of CFTR and PTEN on the plasma membrane to promote the function of PTEN, subsequently inhibiting the PI3K/AKT signaling pathway and suppressing tumor growth. In summary, our study suggests that activating CFTR enhances osimertinib-induced anti-tumor activity by regulating the PTEN-AKT axis. Furthermore, ivacaftor and osimertinib constitute a potential combination strategy for treating osimertinib-resistant EGFR-mutated NSCLC patients.
Collapse
Affiliation(s)
- Yue-Kang Li
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, 310003, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Fu-Jing Ge
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Xiang-Ning Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Chen-Ming Zeng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Mei-Jia Qian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Yong-Hao Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Ming-Ming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
| | - Jing-Jing Qu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, 310003, China
| | - Liang-Jie Fang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, 310003, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, 310003, China.
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Alqasmi M. Therapeutic Interventions for Pseudomonas Infections in Cystic Fibrosis Patients: A Review of Phase IV Trials. J Clin Med 2024; 13:6530. [PMID: 39518670 PMCID: PMC11547045 DOI: 10.3390/jcm13216530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudomonas aeruginosa (Pa) poses a significant threat to individuals with cystic fibrosis (CF), as this bacterium is highly adaptable and resistant to antibiotics. While early-stage Pa infections can often be eradicated with aggressive antibiotic therapy, chronic infections are nearly impossible to eliminate and require treatments that focus on long-term bacterial suppression. Without such suppression, these persistent infections can severely damage the lungs, leading to serious complications and a reduced life expectancy for CF patients. Evidence for a specific treatment regimen for managing Pa infections in CF patients remains limited. This narrative review provides a detailed analysis of antimicrobial therapies assessed in completed phase IV trials, focusing on their safety and efficacy, especially with prolonged use. Key antibiotics, including tobramycin, colistin, meropenem, aztreonam, ceftolozane/tazobactam, ciprofloxacin, and azithromycin, are discussed, emphasizing their use, side effects, and delivery methods. Inhaled antibiotics are preferred for their targeted action and minimal side effects, while systemic antibiotics offer potency but carry risks like nephrotoxicity. The review also explores emerging treatments, such as phage therapy and antibiofilm agents, which show promise in managing chronic infections. Nonetheless, further research is necessary to enhance the safety and effectiveness of existing therapies while investigating new approaches for better long-term outcomes.
Collapse
Affiliation(s)
- Mohammed Alqasmi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
3
|
Iyer AG, Yu B, Reddy A, Khera M. Optimizing sexual reproductive health of men and women with cystic fibrosis: A systematic review. J Cyst Fibros 2024; 23:633-638. [PMID: 38311513 DOI: 10.1016/j.jcf.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
This systematic review summarizes the impact of cystic fibrosis (CF) on sexual and reproductive health (SRH) in males and females, covering pubertal development, hormonal function, family planning, and fertility. Included articles featured historical CF diagnostic criteria, preclinical or clinical data (retrospective cohorts or open label trials), while excluded articles lacked full text availability, explicit methodology, or comparisons between CF and non-CF patients. Genotype differences in CFTR mutations influenced symptom severity. Males with CF experienced delayed puberty, hypogonadism, infertility from obstructive azoospermia, and semen parameter issues. Female CF patients showed decreased fertility, possibly linked to disrupted ionic balance and ovarian cystic disease. Assistive reproductive technologies addressed fertility issues, but success varied based on disease severity and genotype. CFTR modulators aided pulmonary function and sexual health but require further assessment for fertility benefits.
Collapse
Affiliation(s)
- Anand G Iyer
- School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Benjamin Yu
- Department of Urology, Baylor College of Medicine, 2457 S Braeswood Blvd, Houston, TX 77030, USA
| | - Amit Reddy
- Department of Urology, Baylor College of Medicine, 2457 S Braeswood Blvd, Houston, TX 77030, USA
| | - Mohit Khera
- Department of Urology, Baylor College of Medicine, 2457 S Braeswood Blvd, Houston, TX 77030, USA
| |
Collapse
|
4
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Pozniak J, Ryšánek P, Smrčka D, Kozlík P, Křížek T, Šmardová J, Nováková A, Das D, Bobek D, Arora M, Hofmann J, Doušová T, Šíma M, Slanař O. Ivacaftor pharmacokinetics and lymphatic transport after enteral administration in rats. Front Pharmacol 2024; 15:1331637. [PMID: 38444938 PMCID: PMC10912587 DOI: 10.3389/fphar.2024.1331637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Background: Ivacaftor is a modern drug used in the treatment of cystic fibrosis. It is highly lipophilic and exhibits a strong positive food effect. These characteristics can be potentially connected to a pronounced lymphatic transport after oral administration. Methods: A series of studies was conducted to describe the basic pharmacokinetic parameters of ivacaftor in jugular vein cannulated rats when dosed in two distinct formulations: an aqueous suspension and an oil solution. Additionally, an anesthetized mesenteric lymph duct cannulated rat model was studied to precisely assess the extent of lymphatic transport. Results: Mean ± SD ivacaftor oral bioavailability was 18.4 ± 3.2% and 16.2 ± 7.8%, respectively, when administered as an aqueous suspension and an oil solution. The relative contribution of the lymphatic transport to the overall bioavailability was 5.91 ± 1.61% and 4.35 ± 1.84%, respectively. Conclusion: Lymphatic transport plays only a minor role in the process of ivacaftor intestinal absorption, and other factors are, therefore, responsible for its pronounced positive food effect.
Collapse
Affiliation(s)
- Jiří Pozniak
- Third Department of Surgery, First Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czechia
| | - Pavel Ryšánek
- First Faculty of Medicine, Institute of Pharmacology, General University Hospital in Prague, Charles University, Prague, Czechia
| | | | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Jaroslava Šmardová
- First Faculty of Medicine, Institute of Pharmacology, General University Hospital in Prague, Charles University, Prague, Czechia
| | - Anežka Nováková
- First Faculty of Medicine, Institute of Pharmacology, General University Hospital in Prague, Charles University, Prague, Czechia
| | - Debanjan Das
- First Faculty of Medicine, Institute of Pharmacology, General University Hospital in Prague, Charles University, Prague, Czechia
| | - Daniel Bobek
- First Faculty of Medicine, Institute of Pharmacology, General University Hospital in Prague, Charles University, Prague, Czechia
| | - Mahak Arora
- First Faculty of Medicine, Institute of Pharmacology, General University Hospital in Prague, Charles University, Prague, Czechia
| | | | - Tereza Doušová
- Department of Pediatrics, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czechia
| | - Martin Šíma
- First Faculty of Medicine, Institute of Pharmacology, General University Hospital in Prague, Charles University, Prague, Czechia
| | - Ondřej Slanař
- First Faculty of Medicine, Institute of Pharmacology, General University Hospital in Prague, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
7
|
Nakhla DS, Mekkawy AI, Naguib YW, Silva AD, Gao D, Ah Kim J, Alhaj-Suliman SO, Acri TM, Kumar Patel K, Ernst S, Stoltz DA, Welsh MJ, Salem AK. Injectable long-acting ivacaftor-loaded poly (lactide-co-glycolide) microparticle formulations for the treatment of cystic fibrosis: In vitro characterization and in vivo pharmacokinetics in mice. Int J Pharm 2024; 650:123693. [PMID: 38081555 PMCID: PMC10843602 DOI: 10.1016/j.ijpharm.2023.123693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
Optimizing a sustained-release drug delivery system for the treatment of cystic fibrosis (CF) is crucial for decreasing the dosing frequency and improving patients' compliance with the treatment regimen. In the current work, we developed an injectable poly(D,L-lactide-co-glycolide) (PLGA) microparticle formulation loaded with ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator that increases the open probability of the CFTR anion channel, using a single emulsion solvent evaporation technique. We aimed to study the effect of different parameters on the characteristics of the prepared formulations to select an optimized microparticle formulation to be used in an in vivo pharmacokinetic study in mice. First, a suite of ivacaftor-loaded microparticles were prepared using different formulation parameters in order to study the effect of varying these parameters on microparticle size, morphology, drug loading, encapsulation efficiency, and in vitro release profiles. Prepared microparticles were spherical with diameters ranging from 1.91-6.93 µm, percent drug loading (% DL) of 3.91-10.3%, percent encapsulation efficiencies (% EE) of 26.6-100%, and an overall slow cumulative release profile. We selected the formulation that demonstrated optimal combined % DL and % EE values (8.25 and 90.7%, respectively) for further studies. These microparticles had an average particle size of 6.83 µm and a slow tri-phasic in vitro release profile (up to 6 weeks). In vivo pharmacokinetic studies in mice showed that the subcutaneously injected microparticles resulted in steady plasma levels of ivacaftor over a period of 28 days, and a 6-fold increase in AUC 0 - t (71.6 µg/mL*h) compared to the intravenously injected soluble ivacaftor (12.3 µg/mL*h). Our results suggest that this novel ivacaftor-loaded microparticle formulation could potentially eliminate the need for the frequent daily administration of ivacaftor to people with CF thus improving their compliance and ensuring successful treatment outcomes.
Collapse
Affiliation(s)
- David S Nakhla
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Sohag 82524, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aaron D Silva
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Dylan Gao
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jeong Ah Kim
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Timothy M Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Krishna Kumar Patel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah Ernst
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - David A Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Michael J Welsh
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Wang D, Lyu X, Sun M, Liang Y. Spectral Analysis on Cuba-Lumacaftor: Cubane as Benzene Bioisosteres of Lumacaftor. ACS OMEGA 2023; 8:43332-43340. [PMID: 38024720 PMCID: PMC10652726 DOI: 10.1021/acsomega.3c07532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
In this paper, we theoretically investigate the electronic structure and physical properties of cuba-lumacaftor, cubane as benzene bioisosteres of lumacaftor, stimulated by recent experimental reports [Wiesenfeldt M. P.; Nature2023, 618, 513-518]. The permanent electric dipole moments of cuba-lumacaftor in neutral, acidic, and alkaline environments are significantly enlarged than that of lumacaftor, significantly promoting the interaction between cuba-lumacaftor and surrounding polar solvent environments and resulting in pH-independent high solubility and pharmacological activity. Furthermore, electronic circular dichroism (ECD) spectra reveal that the chirality of cuba-lumacaftor is much decreased compared to that of lumacaftor. Raman spectra and resonance Raman spectra combined with polarizability also reveal the vibrational information on cuba-lumacaftor. Our results promote a deeper understanding of better pharmacological activity.
Collapse
Affiliation(s)
- Dongdong Wang
- Department
of Radiology, The First Affiliated Hospital
of Jinzhou Medical University, Jinzhou, Liaoning 121004, China
| | - Xiaohong Lyu
- Department
of Radiology, The First Affiliated Hospital
of Jinzhou Medical University, Jinzhou, Liaoning 121004, China
| | - Mengtao Sun
- School
of Mathematics and Physics, University of
Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Liang
- Department
of Central Sterile Supply, The First Affiliated
Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121004, China
| |
Collapse
|
9
|
Özcan S, Erdoğan Uzunoğlu Ü, Levent S, Can NÖ. Liquid chromatographic determination of lumacaftor in the presence of ivacaftor and identification of five novel degradation products using high-performance liquid chromatography ion trap time-of-flight mass spectrometry. J Sep Sci 2023; 46:e2300228. [PMID: 37409384 DOI: 10.1002/jssc.202300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
Lumacaftor is a transmembrane conductance regulator potentiator drug, prescribed for the treatment of cystic fibrosis in patients who are homozygous for the F508del mutation. Quantitation of lumacaftor besides its degradation products and ivacaftor was achieved on a fused-core silica particle column packed with pentafluorophenylpropyl stationary phase (Ascentis Express F5, 2.7 μm particle size 100 mm × 4.6 mm; Supelco) using gradient elution (A: 0.1% [v/v] formic acid in water, B: 0.1% [v/v] formic acid in acetonitrile [the mobile phase pH 2.5]). A constant flow rate at 1 mL/min was applied, and the detection was realized using a photodiode array detector set at 216 nm. The pseudo tablet formulation of the lumacaftor/ivacaftor fixed-dose combination preparation, namely, Orkambi®, was prepared in vitro and used for the analytical performance validation and method application studies. In addition, five novel degradation products, four of which even have no Chemical Abstracts Services registry number, were identified using high-resolution mass spectrometry instrument, and their possible mechanisms of formation were proposed. According to current literature, this paper can be regarded as the most comprehensive liquid chromatographic study on lumacaftor determination, among its counterparts.
Collapse
Affiliation(s)
- Saniye Özcan
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Türkiye
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| | - Ülfet Erdoğan Uzunoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Türkiye
| | - Serkan Levent
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Türkiye
| | - Nafiz Öncü Can
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Türkiye
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| |
Collapse
|
10
|
Nikonova AS, Deneka AY, Silva FN, Pirestani S, Tricarico R, Kiseleva AA, Zhou Y, Nicolas E, Flieder DB, Grivennikov SI, Golemis EA. Loss of Pkd1 limits susceptibility to colitis and colorectal cancer. Oncogenesis 2023; 12:40. [PMID: 37542051 PMCID: PMC10403611 DOI: 10.1038/s41389-023-00486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with an annual incidence of ~135,000 in the US, associated with ~50,000 deaths. Autosomal dominant polycystic kidney disease (ADPKD), associated with mutations disabling the PKD1 gene, affects as many as 1 in 1000. Intriguingly, some studies have suggested that individuals with germline mutations in PKD1 have reduced incidence of CRC, suggesting a genetic modifier function. Using mouse models, we here establish that loss of Pkd1 greatly reduces CRC incidence and tumor growth induced by loss of the tumor suppressor Apc. Growth of Pkd1-/-;Apc-/- organoids was reduced relative to Apc-/- organoids, indicating a cancer cell-intrinsic activity, even though Pkd1 loss enhanced activity of pro-oncogenic signaling pathways. Notably, Pkd1 loss increased colon barrier function, with Pkd1-deficient animals resistant to DSS-induced colitis, associated with upregulation of claudins that decrease permeability, and reduced T cell infiltration. Notably, Pkd1 loss caused greater sensitivity to activation of CFTR, a tumor suppressor in CRC, paralleling signaling relations in ADPKD. Overall, these data and other data suggest germline and somatic mutations in PKD1 may influence incidence, presentation, and treatment response in human CRC and other pathologies involving the colon.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alexander Y Deneka
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Flaviane N Silva
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shabnam Pirestani
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Rossella Tricarico
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna A Kiseleva
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Emmanuelle Nicolas
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Douglas B Flieder
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sergei I Grivennikov
- Departments of Medicine and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erica A Golemis
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Elverson K, Warwicker J, Freeman S, Manson F. Tadalafil Rescues the p.M325T Mutant of Best1 Chloride Channel. Molecules 2023; 28:molecules28083317. [PMID: 37110551 PMCID: PMC10142963 DOI: 10.3390/molecules28083317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Bestrophin 1 (Best1) is a chloride channel that localises to the plasma membrane of retinal pigment epithelium (RPE) cells. Mutations in the BEST1 gene are associated with a group of untreatable inherited retinal dystrophies (IRDs) called bestrophinopathies, caused by protein instability and loss-of-function of the Best1 protein. 4PBA and 2-NOAA have been shown to rescue the function, expression, and localisation of Best1 mutants; however, it is of interest to find more potent analogues as the concentration of the drugs required is too high (2.5 mM) to be given therapeutically. A virtual docking model of the COPII Sec24a site, where 4PBA has been shown to bind, was generated and a library of 1416 FDA-approved compounds was screened at the site. The top binding compounds were tested in vitro in whole-cell patch-clamp experiments of HEK293T cells expressing mutant Best1. The application of 25 μM tadalafil resulted in full rescue of Cl- conductance, comparable to wild type Best1 levels, for p.M325T mutant Best1 but not for p.R141H or p.L234V mutants.
Collapse
Affiliation(s)
- Kathleen Elverson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Forbes Manson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Mteremko D, Chilongola J, Paluch AS, Chacha M. Targeting human thymidylate synthase: Ensemble-based virtual screening for drug repositioning and the role of water. J Mol Graph Model 2023; 118:108348. [PMID: 36257147 DOI: 10.1016/j.jmgm.2022.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
A drug repositioning computational approach was carried to search inhibitors for human thymidylate synthase. An ensemble-based virtual screening of FDA-approved drugs showed the drugs Imatinib, Lumacaftor and Naldemedine to be likely candidates for repurposing. The role of water in the drug-receptor interactions was revealed by the application of an extended AutoDock scoring function that included the water forcefield. The binding affinity scores when hydrated ligands were docked were improved in the drugs considered. Further binding free energy calculations based on the Molecular Mechanics Poisson-Boltzmann Surface Area method revealed that Imatinib, Lumacaftor and Naldemedine scored -130.7 ± 28.1, -210.6 ± 29.9 and -238.0 ± 25.4 kJ/mol, respectively, showing good binding affinity for the candidates considered. Overall, the analysis of the molecular dynamics trajectory of the receptor-drug complexes revealed stable structures for Imatinib, Lumacaftor and Naldemedine, for the entire simulation time.
Collapse
Affiliation(s)
- Denis Mteremko
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| | - Jaffu Chilongola
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Andrew S Paluch
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA
| | - Musa Chacha
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania; Arusha Technical College, Arusha, Tanzania
| |
Collapse
|
13
|
Rani R, Long S, Pareek A, Dhaka P, Singh A, Kumar P, McInerney G, Tomar S. Multi-target direct-acting SARS-CoV-2 antivirals against the nucleotide-binding pockets of virus-specific proteins. Virology 2022; 577:1-15. [PMID: 36244310 PMCID: PMC9539459 DOI: 10.1016/j.virol.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
The nucleotide-binding pockets (NBPs) in virus-specific proteins have proven to be the most successful antiviral targets for several viral diseases. Functionally important NBPs are found in various structural and non-structural proteins of SARS-CoV-2. In this study, the first successful multi-targeting attempt to identify effective antivirals has been made against NBPs in nsp12, nsp13, nsp14, nsp15, nsp16, and nucleocapsid (N) proteins of SARS-CoV-2. A structure-based drug repurposing in silico screening approach with ADME analysis identified small molecules targeting NBPs in SARS-CoV-2 proteins. Further, isothermal titration calorimetry (ITC) experiments validated the binding of top hit molecules to the purified N-protein. Importantly, cell-based antiviral assays revealed antiviral potency for INCB28060, darglitazone, and columbianadin with EC50 values 15.71 μM, 5.36 μM, and 22.52 μM, respectively. These effective antivirals targeting multiple proteins are envisioned to direct the development of antiviral therapy against SARS-CoV-2 and its emerging variants.
Collapse
Affiliation(s)
- Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Siwen Long
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Akshay Pareek
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
14
|
Vaccarin C, Gabbia D, Franceschinis E, De Martin S, Roverso M, Bogialli S, Sacchetti G, Tupini C, Lampronti I, Gambari R, Cabrini G, Dechecchi MC, Tamanini A, Marzaro G, Chilin A. Improved Trimethylangelicin Analogs for Cystic Fibrosis: Design, Synthesis and Preliminary Screening. Int J Mol Sci 2022; 23:ijms231911528. [PMID: 36232826 PMCID: PMC9570109 DOI: 10.3390/ijms231911528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
A small library of new angelicin derivatives was designed and synthesized with the aim of bypassing the side effects of trimethylangelicin (TMA), a promising agent for the treatment of cystic fibrosis. To prevent photoreactions with DNA, hindered substituents were inserted at the 4 and/or 6 positions. Unlike the parent TMA, none of the new derivatives exhibited significant cytotoxicity or mutagenic effects. Among the synthesized compounds, the 4-phenylderivative 12 and the 6-phenylderivative 25 exerted a promising F508del CFTR rescue ability. On these compounds, preliminary in vivo pharmacokinetic (PK) studies were carried out, evidencing a favorable PK profile per se or after incorporation into lipid formulations. Therefore, the selected compounds are good candidates for future extensive investigation to evaluate and develop novel CFTR correctors based on the angelicin structure.
Collapse
Affiliation(s)
- Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Chiara Tupini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Maria Cristina Dechecchi
- Department of Neurosciences, Biomedicine and Movement, Section of Clinical Biochemistry, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Anna Tamanini
- Department of Neurosciences, Biomedicine and Movement, Section of Clinical Biochemistry, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
15
|
Bao ZP, Zhang Y, Wu XF. Palladium-catalyzed difluoroalkylative carbonylation of styrenes toward difluoropentanedioates. Chem Sci 2022; 13:9387-9391. [PMID: 36093028 PMCID: PMC9384137 DOI: 10.1039/d2sc02665a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
The introduction of fluorine atoms into organic molecules is an attractive but challenging topic. In this work, an interesting palladium-catalyzed difluoroalkylative carbonylation of aryl olefins has been developed. A wide range of aryl olefins were transformed into the corresponding difluoropentanedioate compounds with good functional-group tolerance and excellent regioselectivity. Inexpensive ethyl bromodifluoroacetate acts both as a difluoroalkyl precursor and a nucleophile here. Additionally, a scale-up reaction was also performed successfully, and further transformations of the obtained product were shown as well.
Collapse
Affiliation(s)
- Zhi-Peng Bao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| | - Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| |
Collapse
|
16
|
Therapeutic Drug Monitoring of Ivacaftor, Lumacaftor, Tezacaftor, and Elexacaftor in Cystic Fibrosis: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14081674. [PMID: 36015300 PMCID: PMC9412421 DOI: 10.3390/pharmaceutics14081674] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Drugs modulating the cystic fibrosis transmembrane conductance regulator (CFTR) protein, namely ivacaftor, lumacaftor, tezacaftor, and elexacaftor, are currently revolutionizing the management of patients with cystic fibrosis (CF), particularly those with at least one F508del variant (up to 85% of patients). These “caftor” drugs are mainly metabolized by cytochromes P450 3A, whose enzymatic activity is influenced by environmental factors, and are sensitive to inhibition and induction. Hence, CFTR modulators are characterized by an important interindividual pharmacokinetic variability and are also prone to drug–drug interactions. However, these CFTR modulators are given at standardized dosages, while they meet all criteria for a formal therapeutic drug monitoring (TDM) program that should be considered in cases of clinical toxicity, less-than-expected clinical response, drug or food interactions, distinct patient subgroups (i.e., pediatrics), and for monitoring short-term adherence. While the information on CFTR drug exposure–clinical response relationships is still limited, we review the current evidence of the potential interest in the TDM of caftor drugs in real-life settings.
Collapse
|
17
|
Fitzgerald DA. In modulators we trust. Paediatr Respir Rev 2022; 42:1-2. [PMID: 35491312 DOI: 10.1016/j.prrv.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Dominic A Fitzgerald
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, NSW, 2145, Australia.
| |
Collapse
|
18
|
Losurdo G, Gravina AG, Maroni L, Gabrieletto EM, Ianiro G, Ferrarese A. Future challenges in gastroenterology and hepatology, between innovations and unmet needs: A SIGE Young Editorial Board's perspective. Dig Liver Dis 2022; 54:583-597. [PMID: 34509394 DOI: 10.1016/j.dld.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Gastroenterology, Digestive Endoscopy and Hepatology have faced significant improvements in terms of diagnosis and therapy in the last decades. However, many fields still remain poorly explored, and many questions unanswered. Moreover, basic-science, as well as translational and clinical discoveries, together with technology advancement will determine further steps toward a better, refined care for many gastroenterological disorders in the future. Therefore, the Young Investigators of the Italian Society of Gastroenterology (SIGE) joined together, offering a perspective on major future innovations in some hot clinical topics in Gastroenterology, Endoscopy, and Hepatology, as well as the current pitfalls and the grey zones.
Collapse
Affiliation(s)
- Giuseppe Losurdo
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University 'Aldo Moro' of Bari; PhD Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Emergency and Organ Transplantation, University 'Aldo Moro' of Bari.
| | - Antonietta Gerarda Gravina
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Maroni
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | | | - Gianluca Ianiro
- Digestive Disease Center, Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alberto Ferrarese
- Gastroenterology and Hepatology, Azienda Ospedaliera Universitaria Integrata, Ospedale Borgo Trento, Verona, Italy
| |
Collapse
|
19
|
Grant JJ, McDade EJ, Zobell JT, Young DC. The indispensable role of pharmacy services and medication therapy management in cystic fibrosis. Pediatr Pulmonol 2022; 57 Suppl 1:S17-S39. [PMID: 34347382 DOI: 10.1002/ppul.25613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
Care for people with cystic fibrosis (PWCF) is highly complex and requires a multidisciplinary approach where the pharmacist plays a vital role. The purpose of this manuscript is to serve as a guideline for pharmacists and pharmacy technicians who provide care for PWCF by providing background and current recommendations for the use of cystic fibrosis (CF)-specific medications in both the acute and ambulatory care settings. The article explores current literature surrounding the role of pharmacists and pharmacy technicians, proven pharmacy models to emulate, and pharmacokinetic idiosyncrasies unique to the CF population while also identifying areas of future research. Clinical recommendations for the use of CF-specific medications are broken down by organ system including mechanism of action, adverse events, dosages, and monitoring parameters. The article also includes quick reference tables essential to the acute and chronic medication therapy management of PWCF.
Collapse
Affiliation(s)
- Jonathan J Grant
- Department of Outpatient Pharmacy-Specialty Services, The John's Hopkins Hospital, Baltimore, Maryland, USA
| | - Erin J McDade
- Pharmacy Department, Texas Children's Hospital, Houston, Texas, USA
| | - Jeffery T Zobell
- Pharmacy Department, Intermountain Primary Children's Hospital, Salt Lake City, Utah, USA
| | - David C Young
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
Roy B, Woo MS, Vacas S, Eshaghian P, Rao AP, Kumar R. Regional brain tissue changes in patients with cystic fibrosis. J Transl Med 2021; 19:419. [PMID: 34627274 PMCID: PMC8502335 DOI: 10.1186/s12967-021-03092-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) patients present with a variety of symptoms, including mood and cognition deficits, in addition to classical respiratory, and autonomic issues. This suggests that brain injury, which can be examined with non-invasive magnetic resonance imaging (MRI), is a manifestation of this condition. However, brain tissue integrity in sites that regulate cognitive, autonomic, respiratory, and mood functions in CF patients is unclear. Our aim was to assess regional brain changes using high-resolution T1-weighted images based gray matter (GM) density and T2-relaxometry procedures in CF over control subjects. METHODS We acquired high-resolution T1-weighted images and proton-density (PD) and T2-weighted images from 5 CF and 15 control subjects using a 3.0-Tesla MRI. High-resolution T1-weighted images were partitioned to GM-tissue type, normalized to a common space, and smoothed. Using PD- and T2-weighted images, whole-brain T2-relaxation maps were calculated, normalized, and smoothed. The smoothed GM-density and T2-relaxation maps were compared voxel-by-voxel between groups using analysis of covariance (covariates, age and sex; SPM12, p < 0.001). RESULTS Significantly increased GM-density, indicating tissues injury, emerged in multiple brain regions, including the cerebellum, hippocampus, amygdala, basal forebrain, insula, and frontal and prefrontal cortices. Various brain areas showed significantly reduced T2-relaxation values in CF subjects, indicating predominant acute tissue changes, in the cerebellum, cerebellar tonsil, prefrontal and frontal cortices, insula, and corpus callosum. CONCLUSIONS Cystic fibrosis subjects show predominant acute tissue changes in areas that control mood, cognition, respiratory, and autonomic functions and suggests that tissue changes may contribute to symptoms resulting from ongoing hypoxia accompanying the condition.
Collapse
Affiliation(s)
- Bhaswati Roy
- Department of Anesthesiology and Perioperative Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Marlyn S Woo
- Department of Pediatric Pulmonology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Susana Vacas
- Department of Anesthesiology and Perioperative Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Patricia Eshaghian
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Adupa P Rao
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Rajesh Kumar
- Department of Anesthesiology and Perioperative Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA. .,The Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Spray-freeze-dried inhalable composite microparticles containing nanoparticles of combinational drugs for potential treatment of lung infections caused by Pseudomonas aeruginosa. Int J Pharm 2021; 610:121160. [PMID: 34624446 DOI: 10.1016/j.ijpharm.2021.121160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 12/24/2022]
Abstract
The multi-drug resistance of Pseudomonas aeruginosa is an overwhelming cause of terminal and persistent lung infections in cystic fibrosis (CF) patients. Antimicrobial synergy has been shown for colistin and ivacaftor, and our study designed a relatively high drug-loading dry powder inhaler formulation containing nanoparticles of ivacaftor and colistin. The ivacaftor-colistin nanosuspensions (Iva-Col-NPs) were prepared by the anti-solvent method with different stabilizers. Based on the aggregation data, the formulation 7 (F7) with DSPG-PEG-OMe as the stabilizer was selected for further studies. The F7 consisted of ivacaftor, colistin and DSPG-PEG-OMe with a mass ratio of 1:1:1. The F7 powder formulation was developed using the ultrasonic spray-freeze-drying method and exhibited a rough surface with relatively high fine particle fraction values of 61.4 ± 3.4% for ivacaftor and 63.3 ± 3.3% for colistin, as well as superior emitted dose of 97.8 ± 0.3% for ivacaftor and 97.6 ± 0.5% for colistin. The F7 showed very significant dissolution improvement for poorly water soluble ivacaftor than the physical mixture. Incorporating two drugs in a single microparticle with synchronized dissolution and superior aerosol performance will maximize the synergy and bioactivity of those two drugs. Minimal cytotoxicity in Calu-3 human lung epithelial cells and enhanced antimicrobial activity against colistin-resistant P. aeruginosa suggested that our formulation has potential to improve the treatment of CF patients with lung infections.
Collapse
|
22
|
Hanafin PO, Sermet-Gaudelus I, Griese M, Kappler M, Ellemunter H, Schwarz C, Wilson J, Tan M, Velkov T, Rao GG, Schneider-Futschik EK. Insights Into Patient Variability During Ivacaftor-Lumacaftor Therapy in Cystic Fibrosis. Front Pharmacol 2021; 12:577263. [PMID: 34408649 PMCID: PMC8365608 DOI: 10.3389/fphar.2021.577263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 05/28/2021] [Indexed: 01/29/2023] Open
Abstract
Background: The advent of cystic fibrosis transmembrane conductance regulator protein (CFTR) modulators like ivacaftor have revolutionised the treatment of cystic fibrosis (CF). However, due to the plethora of variances in disease manifestations in CF, there are inherent challenges in unified responses under CFTR modulator treatment arising from variability in patient outcomes. The pharmacokinetic (PK) data available for ivacaftor-lumacaftor cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drug combination is limited. Methods: Secondary objectives were to identify (1) patient characteristics and (2) the interactions between ivacaftor-lumacaftor responsible for interindividual variability (IIV). Results: Peak plasma concentrations (Cmax) of ivacaftor - lumacaftor were >10 fold lower than expected compared to label information. The one-way ANOVA indicated that the patient site had an effect on Cmax values of ivacaftor metabolites ivacaftor-M1, ivacaftor-M6, and lumacaftor (p < 0.001, p < 0.001, and p < 0.001, respectively). The Spearman's rho test indicated that patient weight and age have an effect on the Cmax of lumacaftor (p = 0.003 and p < 0.001, respectively) and ivacaftor metabolite M1 (p = 0.020 and p < 0.001, respectively). Age (p < 0.001) was found to effect on Cmax of ivacaftor M6 and on Tmax of ivacaftor M1 (p = 0.026). A large impact of patient characteristics on the IIV of PK parameters Cmax and Tmax, was observed among the CF patients. Conclusion: Understanding the many sources of variability can help reduce this individual patient variability and ensure consistent patient outcomes.
Collapse
Affiliation(s)
- Patrick O. Hanafin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Isabelle Sermet-Gaudelus
- Centre Maladie Rare Mucoviscidose, Hôpital Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, Paris, France, Institut Necker-Enfants Malades, INSERM U1151, Université Paris Sorbonne, Paris, France
| | - Matthias Griese
- Dr. von Hauner Children’s Hospital, University Hospital, LMU, Munich, German Center for Lung Research, München, Germany
| | - Matthias Kappler
- Dr. von Hauner Children’s Hospital, University Hospital, LMU, Munich, German Center for Lung Research, München, Germany
| | - Helmut Ellemunter
- Department of Child and Adolescent Health, Division of Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Cystic Fibrosis Centre, Medical University of Innsbruck, Innsbruck, Austria
| | - Carsten Schwarz
- Division of Cystic Fibrosis, Department of Pediatric Pneumology, Immunology and Intensive Care, Universitaetsmedizin-Berlin, Berlin, Germany
- CF Center Westbrandenburg, Campus Potsdam, Berlin, Germany
| | - John Wilson
- Department of Medicine, Monash University, The Alfred Hospital, Melbourne, VIC, Australia
- Cystic Fibrosis Service, The Alfred Hospital, Melbourne, VIC, Australia
| | - Marsha Tan
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Elena K. Schneider-Futschik
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Abstract
Cystic fibrosis (CF) is a relatively common disease seen in Whites of northern European descent. Classically, it was a lethal disease and uncommon for the orthopedic practitioner to interact with CF patients. Recent pharmaceutical breakthroughs targeting the CF transmembrane conductance regulator (CFTR) gene have significantly prolonged patient life expectancy. This makes it increasingly likely that orthopedic surgeons will encounter CF patients in their clinic. In this article, the authors discuss pertinent musculoskeletal manifestations of the CF population, including the increased risk of decreased bone mineral density and bone mineral content, muscle deconditioning, spinal kyphosis, fractures, and elevated systemic inflammation predisposing these individuals to CF-related arthralgia. The diagnoses are grouped into subspecialties (arthroplasty, pediatrics, spine, sports, and trauma) most likely to evaluate the patient. Additionally, the authors review treatment options for these conditions and discuss the need for these patients to be seen in the perioperative period by their CF care team for patient optimization due to their diminished pulmonary function. Interspersed with this literature review, the authors present 2 unique cases. The first case details a patient with pain over her spine due to multilevel spinous process bursitis caused by a high-frequency chest wall oscillation system, which masquerades as an infection. The second case is a non-contact midsubstance rectus femoris tear in an athlete. These cases highlight the need for increased vigilance for uncommon diagnoses in the CF patient population. [Orthopedics. 2021;44(3):e440-e445.].
Collapse
|
24
|
Zaher A, ElSaygh J, Elsori D, ElSaygh H, Sanni A. A Review of Trikafta: Triple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulator Therapy. Cureus 2021; 13:e16144. [PMID: 34268058 PMCID: PMC8266292 DOI: 10.7759/cureus.16144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is a potentially fatal genetic disease that causes serious lung damage. With time, researchers have a more complete understanding of the molecular-biological defects that underlie CF. This knowledge is leading to alternative approaches regarding the treatment of this condition. Trikafta is the third FDA-approved drug that targets the F508del mutation of the CFTR gene. The drug is a combination of three individual drugs which are elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA). This trio increases the activity of the cystic fibrosis transmembrane conductance regulator (CFTR) protein and reduces the mortality and morbidity rates in CF patients. The effectiveness of Trikafta, seen in clinical trials, outperforms currently available therapies in terms of lung function, quality of life, sweat chloride reduction, and pulmonary exacerbation reduction. The safety and efficacy of CFTR modulators in children with CF have also been studied. Continued evaluation of patient data is needed to confirm its long-term safety and efficacy. In this study, we will focus on reviewing data from clinical trials regarding the benefits of CFTR modulator therapy. We address the impact of Trikafta on lung function, pulmonary exacerbations, and quality of life. Adverse events of the different CFTR modulators are discussed.
Collapse
Affiliation(s)
- Anas Zaher
- Internal Medicine, University of Debrecen, Debrecen, HUN
| | - Jude ElSaygh
- Internal Medicine, University of Debrecen, Debrecen, HUN
| | - Dalal Elsori
- Pediatrics, Rhode Island Hospital, Brown University, Rhode Island, USA
| | - Hassan ElSaygh
- Internal Medicine, University of Debrecen, Debrecen, HUN
| | | |
Collapse
|
25
|
Kalari S, Balasubramanian S, Rode HB. Difluorinative-hydroxylation and C-3 functionalization (halogenation/SCN/NO) of imidazopyridine using Selectfluor as fluorine source or oxidant respectively. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Flick AC, Leverett CA, Ding HX, McInturff E, Fink SJ, Mahapatra S, Carney DW, Lindsey EA, DeForest JC, France SP, Berritt S, Bigi-Botterill SV, Gibson TS, Liu Y, O'Donnell CJ. Synthetic Approaches to the New Drugs Approved during 2019. J Med Chem 2021; 64:3604-3657. [PMID: 33783211 DOI: 10.1021/acs.jmedchem.1c00208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New drugs introduced to the market are privileged structures having affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This review is part of a continuing series presenting the most likely process-scale synthetic approaches to 40 NCEs approved for the first time anywhere in the world in 2019.
Collapse
Affiliation(s)
- Andrew C Flick
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Carolyn A Leverett
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Hong X Ding
- Pharmacodia (Beijing) Co., Ltd., Beijing 100085, China
| | - Emma McInturff
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sarah J Fink
- Takeda Pharmaceuticals, 125 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Subham Mahapatra
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W Carney
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Erick A Lindsey
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Jacob C DeForest
- Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Scott P France
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simon Berritt
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | | | - Tony S Gibson
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Yiyang Liu
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J O'Donnell
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
27
|
Lauwers E, Belmans D, Mignot B, Ides K, Van Hoorenbeeck K, Snoeckx A, Van Holsbeke C, Nowé V, Van Braeckel E, De Backer W, De Backer J, Verhulst S. The short-term effects of ORKAMBI (lumacaftor/ivacaftor) on regional and distal lung structures using functional respiratory imaging. Ther Adv Respir Dis 2021; 15:17534666211046774. [PMID: 34541955 PMCID: PMC8461124 DOI: 10.1177/17534666211046774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Lumacaftor/ivacaftor (LUM/IVA) has shown modest benefits in previous research, but the exact effects in the cystic fibrosis (CF) lung remain unclear. This study aims to offer novel information on the mode of action of the cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drug by assessing lung structure and function using functional respiratory imaging (FRI). METHODS CF patients aged ⩾12 years homozygous for F508del were recruited in an open-label study. Before and after 12 weeks of treatment with LUM/IVA, FRI was used to visualize regional information, such as air trapping, lobar volume and airway wall volume. Secondary outcomes included the CF-CT scoring system, spirometry, the Cystic Fibrosis Questionnaire-Revised (CFQ-R) questionnaire, exercise tolerance and nutritional status. RESULTS Of the 12 patients enrolled in the study, 11 completed all study visits. Concerning the FRI parameters, hyperinflation of the lung decreased, indicated by a reduction in air trapping and lobar volume at expiration. Also, a decrease in airway wall volume and a redistribution of pulmonary blood volume were noted, which might be related to a decrease in mucus impaction. Airway resistance, airway volume, internal airflow distribution and aerosol deposition pattern did not show significant changes. No significant improvements were found in any of the CF-CT scores or in the spirometric parameters. Other secondary outcomes showed similar results compared with previous research. Correlations at baseline were found between FRI and conventional outcomes, including physical functioning, spirometry and CF-CT scores. CONCLUSIONS LUM/IVA decreased lung hyperinflation in combination with a potential decrease in mucus impaction, which can be related to an improved mucociliary transport. These results indicate that several FRI parameters, reflecting regional and distal lung structures, are more sensitive to changes caused by LUM/IVA than conventional respiratory outcomes.
Collapse
Affiliation(s)
- Eline Lauwers
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2160 Antwerp, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | | | | | - Kris Ides
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
- CoSys Research Lab, Faculty of Applied Engineering, University of Antwerp, Antwerp, Belgium
- Flanders Make Strategic Research Center, Lommel, Belgium
| | - Kim Van Hoorenbeeck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Annemiek Snoeckx
- Department of Radiology, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Vicky Nowé
- Department of Pulmonology, GZA Hospital, Antwerp, Belgium
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wilfried De Backer
- FLUIDDA NV, Kontich, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Stijn Verhulst
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
28
|
Amaral MB, Rego S. [Rare diseases on the agenda for innovation in health: progress and challenges with cystic fibrosis]. CAD SAUDE PUBLICA 2020; 36:e00115720. [PMID: 33331552 DOI: 10.1590/0102-311x00115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022] Open
Abstract
The article proposes to discuss the many complexities involved in the incorporation of new health technologies for rare diseases, with a central focus on the case of cystic fibrosis. Cystic fibrosis was chosen because it is a autosomal recessive genetic disorder, considered the most common of the rare diseases. The disease has also benefited greatly from investments in research in the field of molecular biology, mainly in the United States, but also among European research groups, which resulted in the registration and marketing of four new drugs. These new drugs act for the first time on the basic defect in cystic fibrosis. From a perspective that views rare diseases as a field of research woven among many others, the article aims to problematize cystic fibrosis from a more person-centered approach, the duality of witnessing from afar the molecularization of life, the emergence of last-generation drugs that interrupt, at the molecular level, the cascade of errors and thus the symptoms and evolution of the disease. The article aims to bring various elements to the debate that traverse the complex local reality of Brazilian cystic fibrosis patients in a global context of technological innovation and with a break in the treatment paradigm. Based on the field of rare diseases, including the presentation of cystic fibrosis in the age of precision medicine, alongside discussions on biopolitics in a context of health innovation and high-cost drugs, the article aims to shed light on the current challenges and possibilities.
Collapse
Affiliation(s)
- Marise Basso Amaral
- Faculdade de Educação, Universidade Federal Fluminense, Niterói, Brasil.,Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Sergio Rego
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| |
Collapse
|
29
|
Çobanoğlu N, Özçelik U, Çakır E, Şişmanlar Eyüboğlu T, Pekcan S, Cinel G, Yalçın E, Kiper N, Emiralioğlu N, Şen V, Şen HS, Ercan Ö, Çokuğraş H, Kılınç AA, Al Shadfan LM, Yazan H, Altıntaş DU, Karagöz D, Demir E, Kartal Öztürk G, Bingöl A, Başaran AE, Sapan N, Çekiç Ş, Çelebioğlu E, Aslan AT, Gürsoy TR, Tuğcu G, Özdemir A, Harmancı K, Yıldırım GK, Köse M, Hangül M, Tamay Z, Süleyman A, Yüksel H, Yılmaz Ö, Özcan G, Topal E, Can D, Korkmaz Ekren P, Çaltepe G, Kılıç M, Özdoğan Ş, Doğru D. Patients eligible for modulator drugs: Data from cystic fibrosis registry of Turkey. Pediatr Pulmonol 2020; 55:2302-2306. [PMID: 32453906 DOI: 10.1002/ppul.24854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Accepted: 05/09/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND A better understanding of cystic fibrosis transmembrane conductance regulator biology has led to the development of modulator drugs such as ivacaftor, lumacaftor-ivacaftor, tezacaftor-ivacaftor, and elexacaftor-tezacaftor-ivacaftor. This cross-sectional study evaluated cystic fibrosis (CF) patients eligible for modulator drugs. METHODS Data for age and genetic mutations from the Cystic Fibrosis Registry of Turkey collected in 2018 were used to find out the number of patients who are eligible for modulator therapy. RESULTS Of registered 1488 CF patients, genetic analysis was done for 1351. The numbers and percentages of patients and names of the drugs, that the patients are eligible for, are as follows: 122 (9.03%) for ivacaftor, 156 (11.54%) for lumacaftor-ivacaftor, 163 (11.23%) for tezacaftor-ivacaftor, and 57 (4.21%) for elexacaftor-tezacaftor-ivacaftor. Among 1351 genotyped patients total of 313 (23.16%) patients are eligible for currently licensed modulator therapies (55 patients were shared by ivacaftor and tezacaftor-ivacaftor, 108 patients were shared by lumacaftor-ivacaftor and tezacaftor-ivacaftor, and 22 patients were shared by tezacaftor-ivacaftor and elexacaftor-tezacaftor-ivacaftor groups). CONCLUSIONS The present study shows that approximately one-fourth of the registered CF patients in Turkey are eligible for modulator drugs. As, frequent mutations that CF patients have in Turkey are different from North American and European CF patients, developing modulator drugs effective for those mutations is necessary. Furthermore, as modulator drugs are very expensive currently, financial support of the government in developing countries like Turkey is noteworthy.
Collapse
Affiliation(s)
- Nazan Çobanoğlu
- Division of Pediatric Pulmonology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Uğur Özçelik
- Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Erkan Çakır
- Division of Pediatric Pulmonology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey
| | | | - Sevgi Pekcan
- Division of Pediatric Pulmonology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Güzin Cinel
- Division of Pediatric Pulmonology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Ebru Yalçın
- Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nural Kiper
- Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nagehan Emiralioğlu
- Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Velat Şen
- Division of Pediatric Pulmonology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Hadice Selimoğlu Şen
- Department of Pulmonology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Ömür Ercan
- Division of Pediatric Pulmonology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Haluk Çokuğraş
- Division of Pediatric Pulmonology, Cerrahpaşa Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ayşe Ayzıt Kılınç
- Division of Pediatric Pulmonology, Cerrahpaşa Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | | | - Hakan Yazan
- Division of Pediatric Pulmonology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey
| | - Derya Ufuk Altıntaş
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Dilek Karagöz
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Esen Demir
- Division of Pediatric Pulmonology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Gökçen Kartal Öztürk
- Division of Pediatric Pulmonology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Ayşen Bingöl
- Division of Pediatric Pulmonology, Allergy and Immunology, Faculty of Medicine Akdeniz University, Antalya, Turkey
| | - Abdurrahman Erdem Başaran
- Division of Pediatric Pulmonology, Allergy and Immunology, Faculty of Medicine Akdeniz University, Antalya, Turkey
| | - Nihat Sapan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Şükrü Çekiç
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Ebru Çelebioğlu
- Department of Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ayşe Tana Aslan
- Division of Pediatric Pulmonology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Tuğba Ramaslı Gürsoy
- Division of Pediatric Pulmonology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gökçen Tuğcu
- Division of Pediatric Pulmonology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Ali Özdemir
- Division of Pediatric Pulmonology, Mersin City Training and Research Hospital, Mersin, Turkey
| | - Koray Harmancı
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Gonca Kılıç Yıldırım
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Mehmet Köse
- Division of Pediatric Pulmonology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Melih Hangül
- Division of Pediatric Pulmonology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Zeynep Tamay
- Division of Pediatric Allergy and Pulmonology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ayşe Süleyman
- Division of Pediatric Allergy and Pulmonology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Hasan Yüksel
- Division of Pediatric Pulmonology, Allergy and Immunology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Özge Yılmaz
- Division of Pediatric Pulmonology, Allergy and Immunology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Gizem Özcan
- Division of Pediatric Pulmonology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erdem Topal
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Demet Can
- Division of Pediatric Pulmonology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | | | - Gönül Çaltepe
- Division of Pediatric Gastroenterology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mehmet Kılıç
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Şebnem Özdoğan
- Division of Pediatric Pulmonology, Sarıyer Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey
| | - Deniz Doğru
- Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
30
|
Drug efficacy and toxicity prediction: an innovative application of transcriptomic data. Cell Biol Toxicol 2020; 36:591-602. [PMID: 32780246 PMCID: PMC7661398 DOI: 10.1007/s10565-020-09552-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Drug toxicity and efficacy are difficult to predict partly because they are both poorly defined, which I aim to remedy here from a transcriptomic perspective. There are two major categories of drugs: (1) restorative drugs aiming to restore an abnormal cell, tissue, or organ to normal function (e.g., restoring normal membrane function of epithelial cells in cystic fibrosis), and (2) disruptive drugs aiming to kill pathogens or malignant cells. These two types of drugs require different definition of efficacy and toxicity. I outlined rationales for defining transcriptomic efficacy and toxicity and illustrated numerically their application with two sets of transcriptomic data, one for restorative drugs (treating cystic fibrosis with lumacaftor/ivacaftor aiming to restore the cellular function of epithelial cells) and the other for disruptive drugs (treating acute myeloid leukemia with prexasertib). The conceptual framework presented will help and sensitize researchers to collect data required for determining drug toxicity.
Collapse
|
31
|
Sharma J, Keeling KM, Rowe SM. Pharmacological approaches for targeting cystic fibrosis nonsense mutations. Eur J Med Chem 2020; 200:112436. [PMID: 32512483 DOI: 10.1016/j.ejmech.2020.112436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder. The clinical manifestations of the disease are caused by ∼2,000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. It is unlikely that any one approach will be efficient in correcting all defects. The recent approvals of ivacaftor, lumacaftor/ivacaftor and elexacaftor/tezacaftor/ivacaftor represent the genesis of a new era of precision combination medicine for the CF patient population. In this review, we discuss targeted translational readthrough approaches as mono and combination therapies for CFTR nonsense mutations. We examine the current status of efficacy of translational readthrough/nonsense suppression therapies and their limitations, including non-native amino acid incorporation at PTCs and nonsense-mediated mRNA decay (NMD), along with approaches to tackle these limitations. We further elaborate on combining various therapies such as readthrough agents, NMD inhibitors, and corrector/potentiators to improve the efficacy and safety of suppression therapy. These mutation specific strategies that are directed towards the basic CF defects should positively impact CF patients bearing nonsense mutations.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Medicine, University of Alabama at Birmingham (UAB), USA; Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), USA
| | - Kim M Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), USA; Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham (UAB), USA; Department of Pediatrics, University of Alabama at Birmingham (UAB), USA; Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), USA.
| |
Collapse
|
32
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
33
|
Zhang J, Zhu F, Tian G, Jiang X, Shen J. Improved Synthesis of 6-Chloro-5-methylpyridin-2-amine: A Key Intermediate for Making Lumacaftor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junchi Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai 201203, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People’s Republic of China
| | - Fuqiang Zhu
- Topharman Shanghai Co., Ltd., Building 1, No. 388 Jialilue Road, Zhangjiang Hitech Park, Shanghai 201203, People’s Republic of China
| | - Guanghui Tian
- Topharman Shanghai Co., Ltd., Building 1, No. 388 Jialilue Road, Zhangjiang Hitech Park, Shanghai 201203, People’s Republic of China
| | - Xiangrui Jiang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai 201203, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People’s Republic of China
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai 201203, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People’s Republic of China
| |
Collapse
|
34
|
Mehta A, Ramachandra CJA, Singh P, Chitre A, Lua CH, Mura M, Crotti L, Wong P, Schwartz PJ, Gnecchi M, Shim W. Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur Heart J 2019; 39:1446-1455. [PMID: 29020304 DOI: 10.1093/eurheartj/ehx394] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
Aims Loss-of-function mutations in the hERG gene causes long-QT syndrome type 2 (LQT2), a condition associated with reduced IKr current. Four different mutation classes define the molecular mechanisms impairing hERG. Among them, Class 2 mutations determine hERG trafficking defects. Lumacaftor (LUM) is a drug acting on channel trafficking already successfully tested for cystic fibrosis and its safety profile is well known. We hypothesize that LUM might rescue also hERG trafficking defects in LQT2 and exert anti-arrhythmic effects. Methods and results From five LQT2 patients, we generated lines of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) harbouring Class 1 and 2 mutations. The effects of LUM on corrected field potential durations (cFPD) and calcium-handling irregularities were verified by multi electrode array and by calcium transients imaging, respectively. Molecular analysis was performed to clarify the mechanism of action of LUM on hERG trafficking and calcium handling. Long-QT syndrome type 2 induced pluripotent stem cell-derived cardiomyocytes mimicked the clinical phenotypes and showed both prolonged cFPD (grossly equivalent to the QT interval) and increased arrhythmias. Lumacaftor significantly shortened cFPD in Class 2 iPSC-CMs by correcting the hERG trafficking defect. Furthermore, LUM seemed to act also on calcium handling by reducing RyR2S2808 phosphorylation in both Class 1 and 2 iPSC-CMs. Conclusion Lumacaftor, a drug already in clinical use, can rescue the pathological phenotype of LQT2 iPSC-CMs, particularly those derived from Class 2 mutated patients. Our results suggest that the use of LUM in LQT2 patients not protected by β-blockers is feasible and may represent a novel therapeutic option.
Collapse
Affiliation(s)
- Ashish Mehta
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Pritpal Singh
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Anuja Chitre
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Chong Hui Lua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Manuela Mura
- Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS, Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences-Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi, 19, 27100, Pavia, Italy
| | - Lia Crotti
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi, 19, 27100, Pavia, Italy.,IRCCS Istituto Auxologico Italiano, San Luca Hospital, Piazzale Brescia 20, 20149 Milan, Italy.,IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, via Pier Lombardo 22, 20135 Milan, Italy
| | - Philip Wong
- Department of Cardiology, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, via Pier Lombardo 22, 20135 Milan, Italy
| | - Massimiliano Gnecchi
- Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS, Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences-Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi, 19, 27100, Pavia, Italy.,Department of Medicine, University of Cape Town, Old main Building, J-Floor Groote Schuur Hospital Observatory Cape Town 7925, South Africa
| | - Winston Shim
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
35
|
Hughes DL. Patent Review of Synthetic Routes and Crystalline Forms of the CFTR-Modulator Drugs Ivacaftor, Lumacaftor, Tezacaftor, and Elexacaftor. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David L. Hughes
- Cidara Therapeutics, 6310 Nancy Ridge Drive, Suite 101, San Diego, California 92121, United States
| |
Collapse
|
36
|
Masson A, Schneider-Futschik EK, Baatallah N, Nguyen-Khoa T, Girodon E, Hatton A, Flament T, Le Bourgeois M, Chedevergne F, Bailly C, Kyrilli S, Achimastos D, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Predictive factors for lumacaftor/ivacaftor clinical response. J Cyst Fibros 2018; 18:368-374. [PMID: 30595473 DOI: 10.1016/j.jcf.2018.12.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/09/2018] [Accepted: 12/22/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Ivacaftor-lumacaftor combination therapy corrects the F508 del-CFTR mutated protein which causes Cystic Fibrosis. The clinical response of the patients treated with the combination therapy is highly variable. This study aimed to determine factors involved in the individual's response to lumacaftor-ivacaftor therapy. METHODS Sweat test was assessed at baseline and after 6 months of ivacaftor-lumacaftor treatment in 41 homozygous F508del children and young adults. β-adrenergic peak sweat secretion, nasal potential difference (NPD) and intestinal current measurements (ICM) were performed in patients accepting these tests. Seric level of lumacaftor and ivacaftor were determined and additional CFTR variant were searched. RESULTS Sweat chloride concentration significantly decreased after treatment, whereas the β-adrenergic peak sweat response did not vary in 9 patients who underwent these tests. The average level of F508del-CFTR activity rescue reached up to 15% of the normal level in intestinal epithelium, as studied by ICM in 12 patients (p = .03) and 20% of normal in the nasal epithelium in NPD tests performed in 21 patients (NS). There was no significant correlation between these changes and improvements in FEV1 at 6 months. Serum drug levels did not correlate with changes in FEV1, BMI-Zscore or other CFTR activity biomarkers. Additional exonic variants were identified in 4 patients. The F87L-I1027T-F508del-CFTR complex allele abolished the lumacaftor corrector effect. CONCLUSION This observational study investigates a number of potential factors linked to the clinical response of F508del homozygous patients treated with lumacaftor-ivacaftor combination therapy. Lumacaftor and ivacaftor blood levels are not associated with the clinical response. Additional exonic variants may influence protein correction.
Collapse
Affiliation(s)
- Alexandra Masson
- Centre Maladie Rare Mucoviscidose, Hôpital Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, 149 rue de sèvres, 75015 Paris, France; Centre de Référence et de Compétence de la Mucoviscidose, Hôpital Dupuytren, 8 avenue Dominique Larrey, 87042 Limoges, France
| | - Elena K Schneider-Futschik
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Lung Health Research Center, Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Nesrine Baatallah
- Institut Necker-Enfants Malades, INSERM U1151, 149 rue de Sèvres, 75015 Paris, France.
| | - Thao Nguyen-Khoa
- Centre Maladie Rare Mucoviscidose, Hôpital Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, 149 rue de sèvres, 75015 Paris, France; Institut Necker-Enfants Malades, INSERM U1151, 149 rue de Sèvres, 75015 Paris, France; Laboratoire de Biochimie Générale, Hôpital Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, 149 rue de Sèvres, 75015 Paris, France.
| | - Emmanuelle Girodon
- Institut Necker-Enfants Malades, INSERM U1151, 149 rue de Sèvres, 75015 Paris, France; Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance-Publique Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France.
| | - Aurélie Hatton
- Institut Necker-Enfants Malades, INSERM U1151, 149 rue de Sèvres, 75015 Paris, France.
| | - Thomas Flament
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire, 2 boulevard Tonnellé, 37000 Tours, France.
| | - Muriel Le Bourgeois
- Centre Maladie Rare Mucoviscidose, Hôpital Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, 149 rue de sèvres, 75015 Paris, France.
| | - Frederique Chedevergne
- Centre Maladie Rare Mucoviscidose, Hôpital Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, 149 rue de sèvres, 75015 Paris, France.
| | - Céline Bailly
- Centre Maladie Rare Mucoviscidose, Hôpital Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, 149 rue de sèvres, 75015 Paris, France.
| | - Sylvia Kyrilli
- Centre Maladie Rare Mucoviscidose, Hôpital Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, 149 rue de sèvres, 75015 Paris, France
| | - Diane Achimastos
- Centre Maladie Rare Mucoviscidose, Hôpital Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, 149 rue de sèvres, 75015 Paris, France.
| | - Alexandre Hinzpeter
- Institut Necker-Enfants Malades, INSERM U1151, 149 rue de Sèvres, 75015 Paris, France.
| | - Aleksander Edelman
- Institut Necker-Enfants Malades, INSERM U1151, 149 rue de Sèvres, 75015 Paris, France.
| | - Isabelle Sermet-Gaudelus
- Centre Maladie Rare Mucoviscidose, Hôpital Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, 149 rue de sèvres, 75015 Paris, France; Institut Necker-Enfants Malades, INSERM U1151, 149 rue de Sèvres, 75015 Paris, France; Université Paris Sorbonne, 75005 Paris, France.
| |
Collapse
|
37
|
Brand JD, Lazrak A, Trombley JE, Shei RJ, Adewale AT, Tipper JL, Yu Z, Ashtekar AR, Rowe SM, Matalon S, Harrod KS. Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight 2018; 3:123467. [PMID: 30333319 DOI: 10.1172/jci.insight.123467] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
Severe influenza (IAV) infection can develop into bronchopneumonia and edema, leading to acquired respiratory distress syndrome (ARDS) and pathophysiology. Underlying causes for pulmonary edema and aberrant fluid regulation largely remain unknown, particularly regarding the role of viral-mediated mechanisms. Herein, we show that distinct IAV strains reduced the functions of the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane regulator (CFTR) in murine respiratory and alveolar epithelia in vivo, as assessed by measurements of nasal potential differences and single-cell electrophysiology. Reduced ion channel activity was distinctly limited to virally infected cells in vivo and not bystander uninfected lung epithelium. Multiple lines of evidence indicated ENaC and CFTR dysfunction during the acute infection period; however, only CFTR dysfunction persisted beyond the infection period. ENaC, CFTR, and Na,K-ATPase activities and protein levels were also reduced in virally infected human airway epithelial cells. Reduced ENaC and CFTR led to changes in airway surface liquid morphology of human tracheobronchial cultures and airways of IAV-infected mice. Pharmacologic correction of CFTR function ameliorated IAV-induced physiologic changes. These changes are consistent with mucous stasis and pulmonary edema; furthermore, they indicate that repurposing therapeutic interventions correcting CFTR dysfunction may be efficacious for treatment of IAV lung pathophysiology.
Collapse
Affiliation(s)
- Jeffrey D Brand
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - John E Trombley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Ren-Jay Shei
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Timothy Adewale
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Tipper
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Amit R Ashtekar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Steven M Rowe
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| |
Collapse
|
38
|
Polverino E, Dimakou K, Hurst J, Martinez-Garcia MA, Miravitlles M, Paggiaro P, Shteinberg M, Aliberti S, Chalmers JD. The overlap between bronchiectasis and chronic airway diseases: state of the art and future directions. Eur Respir J 2018; 52:13993003.00328-2018. [PMID: 30049739 DOI: 10.1183/13993003.00328-2018] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/10/2018] [Indexed: 11/05/2022]
Abstract
Bronchiectasis is a clinical and radiological diagnosis associated with cough, sputum production and recurrent respiratory infections. The clinical presentation inevitably overlaps with other respiratory disorders such as asthma and chronic obstructive pulmonary disease (COPD). In addition, 4-72% of patients with severe COPD are found to have radiological bronchiectasis on computed tomography, with similar frequencies (20-30%) now being reported in cohorts with severe or uncontrolled asthma. Co-diagnosis of bronchiectasis with another airway disease is associated with increased lung inflammation, frequent exacerbations, worse lung function and higher mortality. In addition, many patients with all three disorders have chronic rhinosinusitis and upper airway disease, resulting in a complex "mixed airway" phenotype.The management of asthma, bronchiectasis, COPD and upper airway diseases has traditionally been outlined in separate guidelines for each individual disorder. Recognition that the majority of patients have one or more overlapping pathologies requires that we re-evaluate how we treat airway disease. The concept of treatable traits promotes a holistic, pathophysiology-based approach to treatment rather than a syndromic approach and may be more appropriate for patients with overlapping features.Here, we review the current clinical definition, diagnosis, management and future directions for the overlap between bronchiectasis and other airway diseases.
Collapse
Affiliation(s)
- Eva Polverino
- Pneumology Dept, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain.,Institut de Recerca Vall d'Hebron (VHIR), Barcelona, Spain.,CIBER, Spain
| | | | - John Hurst
- UCL Respiratory, University College London, London, UK
| | | | - Marc Miravitlles
- Pneumology Dept, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain.,Institut de Recerca Vall d'Hebron (VHIR), Barcelona, Spain.,CIBER, Spain
| | - Pierluigi Paggiaro
- Dept of Surgery, Medicine, Molecular Biology and Critical Care, University of Pisa, Pisa, Italy
| | - Michal Shteinberg
- Pulmonology Institute and Cystic Fibrosis Center, Carmel Medical Center, Haifa, Israel.,Technion-Israel Institute of Technology, The B. Rappaport Faculty of Medicine, Haifa, Israel
| | - Stefano Aliberti
- Dept of Pathophysiology and Transplantation, University of Milan Internal Medicine Dept, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
39
|
Winquist RJ, Cohen CJ. Integration of biological/pathophysiological contexts to help clarify genotype-phenotype mismatches in monogenetic diseases. Childhood epilepsies associated with SCN2A as a case study. Biochem Pharmacol 2018; 151:252-262. [DOI: 10.1016/j.bcp.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
|
40
|
Meanwell NA. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J Med Chem 2018; 61:5822-5880. [PMID: 29400967 DOI: 10.1021/acs.jmedchem.7b01788] [Citation(s) in RCA: 1433] [Impact Index Per Article: 204.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Discovery Chemistry and Molecular Technologies Bristol-Myers Squibb Research and Development P.O. Box 4000, Princeton , New Jersey 08543-4000 , United States
| |
Collapse
|
41
|
Hanrahan JW, Matthes E, Carlile G, Thomas DY. Corrector combination therapies for F508del-CFTR. Curr Opin Pharmacol 2017; 34:105-111. [PMID: 29080476 DOI: 10.1016/j.coph.2017.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
These are exciting times in the development of therapeutics for cystic fibrosis (CF). New correctors and potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) are being developed in academic laboratories and pharmaceutical companies, and the field is just beginning to understand their mechanisms of action. Studies of CFTR modulators are also yielding insight into the general principles and strategies that can be used when developing pharmacological chaperones, a new class of drugs. Combining two or even three correctors with a potentiator is an especially promising approach which should lead to further improvements in efficacy and clinical benefit for patients.
Collapse
Affiliation(s)
- John W Hanrahan
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada; CF Translational Research Centre, McGill University, Canada; Research Institute of the McGill University Hospital Centre, Canada.
| | - Elizabeth Matthes
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada; CF Translational Research Centre, McGill University, Canada
| | - Graeme Carlile
- CF Translational Research Centre, McGill University, Canada; Department of Biochemistry, McGill University, Canada
| | - David Y Thomas
- CF Translational Research Centre, McGill University, Canada; Department of Biochemistry, McGill University, Canada
| |
Collapse
|
42
|
Guevera MT, McColley SA. The safety of lumacaftor and ivacaftor for the treatment of cystic fibrosis. Expert Opin Drug Saf 2017; 16:1305-1311. [PMID: 28846049 PMCID: PMC6209511 DOI: 10.1080/14740338.2017.1372419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Lumacaftor-ivacaftor is indicated for treatment of cystic fibrosis (CF) in patients homozygous for the Phe-508del cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. In clinical trials, treated patients showed improved pulmonary function, reduced pulmonary exacerbations, and other benefits. This article reviews safety of this therapy. Areas covered: Safety findings in ivacaftor, lumacaftor and combined therapy trials, and reported subsequently through post-approval evaluation, were accessed by PubMed and Google searches using key words 'VX-770', 'ivacaftor', 'VX-809', and 'lumacaftor'. Transaminitis was seen in ivacaftor and combination trials. Non-congenital cataracts were seen in pre-clinical animal studies and in children taking ivacaftor and combined therapy. Dyspnea occurs in some patients taking lumacaftor and combined therapy and usually resolves without stopping treatment. Lumacaftor is a strong inducer of CYP3A while ivacaftor is a CYP3A sensitive substrate. Combination therapy can decrease systemic exposure of medications that are substrates of CYP3A, decreasing therapeutic effect. Co-administration of lumacaftor-ivacaftor with sensitive CYP3A substrates or CYP3A substrates with narrow therapeutic index is not recommended. Expert opinion: Lumacaftor-ivacaftor therapy may be associated with ocular and hepatic side effects. Specific recommendations for monitoring are available. Dyspnea occurs, especially during initiation of treatment. Potential drug interactions should be evaluated in patients taking combination therapy. The risk benefit ratio of lumacaftor-ivacaftor favors therapy.
Collapse
Affiliation(s)
- Maria Talamo Guevera
- Fellow in Pulmonary Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Susanna A. McColley
- Professor of Pediatrics, Department of Pediatrics, Northwestern University Feinberg School of Medicine; Associate Chief Research Officer, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago
| |
Collapse
|
43
|
Delisle BP, January CT. Advancing precision medicine for the treatment of long-QT syndrome type 2: shedding light on lumacaftor. Eur Heart J 2017; 39:1456-1458. [DOI: 10.1093/eurheartj/ehx561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Craig T January
- Cellular and Molecular Arrhythmias Research Program, Department of Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
44
|
Marengo B, Speciale A, Senatore L, Garibaldi S, Musumeci F, Nieddu E, Pollarolo B, Pronzato MA, Schenone S, Mazzei M, Domenicotti C. Matrine in association with FD‑2 stimulates F508del‑cystic fibrosis transmembrane conductance regulator activity in the presence of corrector VX809. Mol Med Rep 2017; 16:8849-8853. [PMID: 29039559 PMCID: PMC5779973 DOI: 10.3892/mmr.2017.7736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/27/2017] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and the predominant mutation is termed Phe508del (F508del). Therapy for F508del‑CFTR patients is based on the use of Orkambi®, a combination of VX809 and VX770. However, though Orkambi leads to an improvement in the lung function of patients, a progressive reduction in its efficacy has been observed. In order to overcome this effect, the aim of the present study was to investigate the role of matrine and the in‑house compound FD‑2 in increasing the action of VX809 and VX770. Fischer rat thyroid cells overexpressing F508del‑CFTR were treated with matrine, VX809 (corrector) and/or with a number of potentiators (VX770, FD‑1 and FD‑2). The results demonstrated that matrine was able to stimulate CFTR activity and, in association with FD‑2, increased the functionality of the channel in the presence of VX809. Based on these results, it may be hypothesized that FD‑2 may be a novel and more effective potentiator compared with VX770.
Collapse
Affiliation(s)
- Barbara Marengo
- Department of Experimental Medicine, University of Genoa, I‑16132 Genoa, Italy
| | - Andrea Speciale
- Department of Experimental Medicine, University of Genoa, I‑16132 Genoa, Italy
| | - Lisa Senatore
- Department of Experimental Medicine, University of Genoa, I‑16132 Genoa, Italy
| | - Silvano Garibaldi
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, I‑16132 Genoa, Italy
| | | | - Erika Nieddu
- Department of Pharmacy, University of Genoa, I‑16132 Genoa, Italy
| | | | | | - Silvia Schenone
- Department of Pharmacy, University of Genoa, I‑16132 Genoa, Italy
| | - Mauro Mazzei
- Department of Pharmacy, University of Genoa, I‑16132 Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, I‑16132 Genoa, Italy
| |
Collapse
|
45
|
Lazo JS, McQueeney KE, Sharlow ER. New Approaches to Difficult Drug Targets: The Phosphatase Story. SLAS DISCOVERY 2017; 22:1071-1083. [DOI: 10.1177/2472555217721142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The drug discovery landscape is littered with promising therapeutic targets that have been abandoned because of insufficient validation, historical screening failures, and inferior chemotypes. Molecular targets once labeled as “undruggable” or “intractable” are now being more carefully interrogated, and while they remain challenging, many target classes are appearing more approachable. Protein tyrosine phosphatases represent an excellent example of a category of molecular targets that have emerged as druggable, with several small molecules and antibodies recently becoming available for further development. In this review, we examine some of the diseases that are associated with protein tyrosine phosphatase dysfunction and use some prototype contemporary strategies to illustrate approaches that are being used to identify small molecules targeting this enzyme class.
Collapse
Affiliation(s)
- John S. Lazo
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Kelley E. McQueeney
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth R. Sharlow
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
46
|
Walayat S, Hussain N, Patel J, Hussain F, Patel P, Dhillon S, Aulakh B, Chittivelu S. Drug-induced dyspnea versus cystic fibrosis exacerbation: a diagnostic dilemma. Int Med Case Rep J 2017; 10:243-246. [PMID: 28769592 PMCID: PMC5529089 DOI: 10.2147/imcrj.s139022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) is a disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator protein in the epithelial membrane, and affects at least 30,000 people in the USA. There are between 900 and 1000 new cases diagnosed every year. Traditionally, CF has been treated symptomatically with pancreatic enzymes, bronchodilators, hypertonic saline, and pulmozyme. In July 2015, the US Food and Drug Administration approved Orkambi (lumacaftor/ivacaftor), a combination drug that works on reversing the effects of the defective cystic fibrosis transmembrane conductance regulator protein. Orkambi and mucolytics decrease the viscosity of mucous secretions, leading to an accumulation of hypoviscous fluid in the alveoli, resulting in dyspnea. This presentation can be mistaken for an infective exacerbation. We present a case in which a young female with CF recently started on Orkambi therapy presented to her primary care physician with dyspnea and increased respiratory secretions and was admitted to the hospital for 2 weeks of intravenous and inhaled antibiotic therapy for a presumed CF exacerbation. We highlight this case to bring awareness and educate patients and clinicians of the side-effect profile of Orkambi therapy with an intent to avoid unnecessary hospitalizations, inpatient antibiotics, and other costly medical services.
Collapse
Affiliation(s)
- Saqib Walayat
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria
| | - Nooreen Hussain
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria
| | - Jaymon Patel
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria
| | - Faiz Hussain
- Department of Internal Medicine, West Suburban Medical Center, Oak Park
| | - Preeti Patel
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria
| | - Sonu Dhillon
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria
| | - Bhagat Aulakh
- Department of Pulmonary.,Department of Critical Care, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | | |
Collapse
|
47
|
Reznikov LR. Cystic Fibrosis and the Nervous System. Chest 2017; 151:1147-1155. [PMID: 27876591 PMCID: PMC5472519 DOI: 10.1016/j.chest.2016.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed.
Collapse
Affiliation(s)
- Leah R Reznikov
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL.
| |
Collapse
|
48
|
Tipirneni KE, Woodworth BA. Medical and Surgical Advancements in the Management of Cystic Fibrosis Chronic Rhinosinusitis. CURRENT OTORHINOLARYNGOLOGY REPORTS 2017; 5:24-34. [PMID: 28989817 PMCID: PMC5626435 DOI: 10.1007/s40136-017-0139-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide otolaryngologists with the most up-to-date advancements in both the medical and surgical management of CF-related sinus disease. RECENT FINDINGS Recent studies have supported more aggressive CRS management, often with a combination of both medical and surgical therapies. Comprehensive treatment strategies have been shown to reduce hospital admissions secondary to pulmonary exacerbations in addition to improving CRS symptoms. Still, current management strategies are lacking in both high-level evidence and standardized guidelines. SUMMARY The unified airway model describes the bi-directional relationship between the upper and lower airways as a single functional unit and suggests that CRS may play a pivotal role in both the development and progression of lower airway disease. Current strategies for CF CRS focus primarily on amelioration of symptoms with antibiotics, nasal saline and/or topical medicated irrigations, and surgery. However, there are no definitive management guidelines and there remains a persistent need for additional studies. Nevertheless, otolaryngologists have a significant role in the overall management of CF, which requires a multi-disciplinary approach and a combination of both surgical and medical interventions for optimal outcomes of airway disease. Here we present a review of currently available literature and summarize medical and surgical therapies best suited for the management of CF-related sinus disease.
Collapse
|
49
|
Bui S, Macey J, Fayon M, Bihouée T, Burgel PR, Colomb V, Corvol H, Durieu I, Hubert D, Marguet C, Mas E, Munck A, Murris-Espin M, Reix P, Sermet-Gaudelus I. Nouvelles thérapeutiques ciblant le canal chlorure dans la mucoviscidose. Arch Pediatr 2016; 23:12S47-12S53. [PMID: 28231894 DOI: 10.1016/s0929-693x(17)30062-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|