1
|
Winegar PH, Hudson GA, Dell LB, Astolfi MCT, Reed J, Payet RD, Ombredane HCJ, Iavarone AT, Chen Y, Gin JW, Petzold CJ, Osbourn AE, Keasling JD. Verazine biosynthesis from simple sugars in engineered Saccharomyces cerevisiae. Metab Eng 2024; 85:145-158. [PMID: 39074544 PMCID: PMC11421371 DOI: 10.1016/j.ymben.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Steroidal alkaloids are FDA-approved drugs (e.g., Zytiga) and promising drug candidates/leads (e.g., cyclopamine); yet many of the ≥697 known steroidal alkaloid natural products remain underutilized as drugs because it can be challenging to scale their biosynthesis in their producing organisms. Cyclopamine is a steroidal alkaloid produced by corn lily (Veratrum spp.) plants, and it is an inhibitor of the Hedgehog (Hh) signaling pathway. Therefore, cyclopamine is an important drug candidate/lead to treat human diseases that are associated with dysregulated Hh signaling, such as basal cell carcinoma and acute myeloid leukemia. Cyclopamine and its semi-synthetic derivatives have been studied in (pre)clinical trials as Hh inhibitor-based drugs. However, challenges in scaling the production of cyclopamine have slowed efforts to improve its efficacy and safety profile through (bio)synthetic derivatization, often limiting drug development to synthetic analogs of cyclopamine such as the FDA-approved drugs Odomzo, Daurismo, and Erivedge. If a platform for the scalable and sustainable production of cyclopamine were established, then its (bio)synthetic derivatization, clinical development, and, ultimately, widespread distribution could be accelerated. Ongoing efforts to achieve this goal include the biosynthesis of cyclopamine in Veratrum plant cell culture and the semi-/total chemical synthesis of cyclopamine. Herein, this work advances efforts towards a promising future approach: the biosynthesis of cyclopamine in engineered microorganisms. We completed the heterologous microbial production of verazine (biosynthetic precursor to cyclopamine) from simple sugars (i.e., glucose and galactose) in engineered Saccharomyces cerevisiae (S. cerevisiae) through the inducible upregulation of the native yeast mevalonate and lanosterol biosynthetic pathways, diversion of biosynthetic flux from ergosterol (i.e., native sterol in S. cerevisiae) to cholesterol (i.e., biosynthetic precursor to verazine), and expression of a refactored five-step verazine biosynthetic pathway. The engineered S. cerevisiae strain that produced verazine contains eight heterologous enzymes sourced from seven different species. Importantly, S. cerevisiae-produced verazine was indistinguishable via liquid chromatography-mass spectrometry from both a commercial standard (Veratrum spp. plant-produced) and Nicotiana benthamiana-produced verazine. To the best of our knowledge, this is the first report describing the heterologous production of a steroidal alkaloid in an engineered yeast. Verazine production was ultimately increased through design-build-test-learn cycles to a final titer of 83 ± 3 μg/L (4.1 ± 0.1 μg/g DCW). Together, this research lays the groundwork for future microbial biosynthesis of cyclopamine, (bio)synthetic derivatives of cyclopamine, and other steroidal alkaloid natural products.
Collapse
Affiliation(s)
- Peter H Winegar
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Luisa B Dell
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Maria C T Astolfi
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - James Reed
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rocky D Payet
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne E Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens, Lyngby, 2800, Denmark.
| |
Collapse
|
2
|
Thakur N, Singh P, Bagri A, Srivastava S, Dwivedi V, Singh A, Jaiswal SK, Dholpuria S. Therapy resistance in prostate cancer: mechanism, signaling and reversal strategies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1110-1134. [PMID: 39351434 PMCID: PMC11438573 DOI: 10.37349/etat.2024.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Prostate cancer (PC) depicts a major health challenge all over the globe due to its complexities in the treatment and diverse clinical trajectories. Even in the advances in the modern treatment strategies, the spectrum of resistance to the therapies continues to be a significant challenge. This review comprehensively examines the underlying mechanisms of the therapy resistance occurred in PC, focusing on both the tumor microenvironment and the signaling pathways implicated in the resistance. Tumor microenvironment comprises of stromal and epithelial cells, which influences tumor growth, response to therapy and progression. Mechanisms such as microenvironmental epithelial-mesenchymal transition (EMT), anoikis suppression and stimulation of angiogenesis results in therapy resistance. Moreover, dysregulation of signaling pathways including androgen receptor (AR), mammalian target of rapamycin/phosphoinositide 3 kinase/AKT (mTOR/PI3K/AKT), DNA damage repair and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways drive therapy resistance by promoting tumor survival and proliferation. Understanding these molecular pathways is important for developing targeted therapeutic interventions which overcomes resistance. In conclusion, a complete grasp of mechanisms and pathways underlying medication resistance in PC is important for the development of individualized treatment plans and enhancements of clinical outcomes. By studying and understanding the complex mechanisms of signaling pathways and microenvironmental factors contributing to therapy resistance, this study focuses and aims to guide the development of innovative therapeutic approaches to effectively overcome the PC progression and improve the survival rate of patients.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Aditi Bagri
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Saumya Srivastava
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Asha Singh
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Sunil Kumar Jaiswal
- School of Biological and Life Sciences, Galgotias University, Greater Noida, Uttar Pradesh 203201, India
| | - Sunny Dholpuria
- Department of Life Sciences, J. C. Bose University of Science and Technology, YMCA Faridabad, Faridabad, Haryana 121006, India
| |
Collapse
|
3
|
Guengerich FP, Tateishi Y, McCarty KD, Yoshimoto FK. Updates on Mechanisms of Cytochrome P450 Catalysis of Complex Steroid Oxidations. Int J Mol Sci 2024; 25:9020. [PMID: 39201706 PMCID: PMC11354347 DOI: 10.3390/ijms25169020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Cytochrome P450 (P450) enzymes dominate steroid metabolism. In general, the simple C-hydroxylation reactions are mechanistically straightforward and are generally agreed to involve a perferryl oxygen species (formally FeO3+). Several of the steroid transformations are more complex and involve C-C bond scission. We initiated mechanistic studies with several of these (i.e., 11A1, 17A1, 19A1, and 51A1) and have now established that the dominant modes of catalysis for P450s 19A1 and 51A1 involve a ferric peroxide anion (i.e., Fe3+O2¯) instead of a perferryl ion complex (FeO3+), as demonstrated with 18O incorporation studies. P450 17A1 is less clear. The indicated P450 reactions all involve sequential oxidations, and we have explored the processivity of these multi-step reactions. P450 19A1 is distributive, i.e., intermediate products dissociate and reassociate, but P450s 11A1 and 51A1 are highly processive. P450 17A1 shows intermediate processivity, as expected from the release of 17-hydroxysteroids for the biosynthesis of key molecules, and P450 19A1 is very distributive. P450 11B2 catalyzes a processive multi-step oxidation process with the complexity of a chemical closure of an intermediate to a locked lactol form.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Kevin D. McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Francis K. Yoshimoto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
4
|
Ostios-Garcia L, Pérez DM, Castelo B, Herradón NH, Zamora P, Feliu J, Espinosa E. Classification of anticancer drugs: an update with FDA- and EMA-approved drugs. Cancer Metastasis Rev 2024:10.1007/s10555-024-10188-5. [PMID: 38965194 DOI: 10.1007/s10555-024-10188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/03/2024] [Indexed: 07/06/2024]
Abstract
Anticancer systemic therapy comprises a complex and growing group of drugs. Some of the new agents with novel mechanisms of action that have appeared are difficult to fit in the groups of classical chemotherapy, hormones, tyrosine-kinase inhibitors, and monoclonal antibodies. We propose a classification based on two levels of information: the site of action and the mechanism of action. Regarding the former, drugs can exert their action in the tumor cell, the tumor vasculature, the immune system, or the endocrine system. The mechanism of action refers to the molecular target.
Collapse
Affiliation(s)
| | | | - Beatriz Castelo
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain
| | | | - Pilar Zamora
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain
| | - Jaime Feliu
- Universidad Autónoma de Madrid, School of Medicine - Department of Medical Oncology, Hospital Universitario La Paz, Madrid - CIBERONC, Madrid, Spain
| | - Enrique Espinosa
- Universidad Autónoma de Madrid, School of Medicine - Department of Medical Oncology, Hospital Universitario La Paz, Madrid - CIBERONC, Madrid, Spain.
| |
Collapse
|
5
|
Arafa AT, Blader LR, Ramakrishna K, Engle J, Ryan CJ, Zorko NA, Jha G, Antonarakis ES. Clinical outcomes in patients with metastatic castrate-resistant prostate cancer treated with abiraterone with or without ongoing androgen deprivation therapy: A retrospective case-control study. Prostate 2023; 83:1279-1284. [PMID: 37337669 PMCID: PMC10914526 DOI: 10.1002/pros.24589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Abiraterone and concurrent androgen deprivation therapy (ADT) are used in the treatment of patients with metastatic castration-resistant prostate cancer. Recently, it has been suggested that the use of abiraterone alone (without ADT) may have comparable efficacy to abiraterone with ongoing ADT. Here, we sought to assess the impact of ADT cessation in patients beginning abiraterone for castration-resistant prostate cancer. METHODS We identified 39 patients at our institution who received abiraterone alone (with discontinuation of ADT) between 2011 and 2022. We then procured a comparable group of 39 patients (matched by age, Gleason score, and prostate-specific antigen [PSA] level) who received abiraterone with ongoing ADT during the same period. We assessed and compared clinical outcomes in the two groups (abiraterone-alone vs. abiraterone-ADT) with respect to PSA response rates, PSA progression-free survival, and overall survival. Results were adjusted using Cox proportional-hazards multivariable models. RESULTS The median PSA before treatment initiation was 12.7 (range: 0.2-199) ng/mL in the abiraterone-alone group and 15.5 (range: 0.6-212) ng/mL in the abiraterone-ADT group. Use of abiraterone alone adequately suppressed testosterone levels in 35/37 (94.6%) patients. Patients receiving abiraterone alone had a median PSA reduction of 80.2% versus 79.5% in patients receiving abiraterone plus ADT. The median PSA progression-free survival in patients receiving abiraterone alone was 27.4 versus 25.8 months in patients receiving abiraterone plus ADT (hazard ratio [HR] 1.10; 95% confidence interval [CI] 0.65-1.71; p = 0.82). In addition, abiraterone alone was associated with an overall survival of 3.6 versus 3.1 years in patients receiving abiraterone plus ADT (HR 0.90; 95% CI 0.50-1.62; p = 0.72). There were no differences in PFS or OS between groups after performing Cox multivariable regression analyses. CONCLUSION Use of abiraterone alone was associated with comparable clinical outcomes to patients who received abiraterone together with ADT. Further prospective studies are warranted to evaluate the impact of abiraterone alone on treatment outcomes and cost savings.
Collapse
Affiliation(s)
- Ali T. Arafa
- University of Minnesota Masonic Cancer Center, Minneapolis, MN
| | - Leah R. Blader
- University of Minnesota Masonic Cancer Center, Minneapolis, MN
| | | | - Jeff Engle
- University of Minnesota Masonic Cancer Center, Minneapolis, MN
| | - Charles J. Ryan
- University of Minnesota Masonic Cancer Center, Minneapolis, MN
- Prostate Cancer Foundation, Santa Monica, CA
| | | | - Gautam Jha
- University of Minnesota Masonic Cancer Center, Minneapolis, MN
| | | |
Collapse
|
6
|
Wu ZX, Wang CJ, Shi P, Liu YP, Li T, Sun FF, Fu Y, Gao XM, Ma YP, Cao Y. Pharmacokinetics and Bioequivalence of Abiraterone Acetate Tablets in Healthy Chinese Volunteers: An Open, Randomized, Single-Dose, Three-Period, Three-Sequence Crossover Study. Drugs R D 2023:10.1007/s40268-023-00418-6. [PMID: 37012461 DOI: 10.1007/s40268-023-00418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Abiraterone acetate tablet is an inhibitor of androgen synthesis, primarily for the treatment of metastatic castration-resistant prostate cancer (mCRPC). This study evaluated the bioequivalence and pharmacokinetics of the reference and test formulations of abiraterone acetate tablets in healthy Chinese volunteers. METHODS A single-center, open, single-dose, randomized, three-period, three-sequence, semi-repeat (only repeated reference formulations), and reference formulation-corrected fasting reference-scaled average bioequivalence test was conducted in 36 healthy volunteers included in this study. Volunteers were randomly assigned to one of three groups in a 1:1:1 ratio. There was a minimum 7-day washout period between each dose. Blood samples were collected at prescribed time intervals, the plasma concentration of abiraterone acetate tablets was determined by liquid chromatography-tandem mass spectrometry, and adverse events were recorded. RESULTS Under fasting conditions, the maximum plasma concentration (Cmax) was 27.02 ± 14.21 ng/mL, area under the concentration-time curve from time zero to time t (AUCt) was 125.30 ± 82.41 h·ng/mL, and AUC from time zero to infinity (AUC∞) was 133.70 ± 83.99 h·ng/mL. The 90% confidence intervals (CIs) of the geometric mean ratio (GMR) of AUCt and AUC∞ were in the range of 0.8000-1.2500, and the coefficient of variation (CVWR) of Cmax was more than 30%. The Critbound result was - 0.0522, and the GMR was between 0.8000 and 1.2500. CONCLUSION Both test and reference formulations of abiraterone acetate tablets were bioequivalent in healthy Chinese subjects under fasting conditions. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT04863105, registered 26 April 2021-retrospectively registered ( https://register. CLINICALTRIALS gov/prs/app/action/SelectProtocol?sid=S000ARAA&selectaction=Edit&uid=U00050YQ&ts=2&cx=-vbtjri.
Collapse
Affiliation(s)
- Zhao-Xin Wu
- School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Chen-Jing Wang
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ping Shi
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan-Ping Liu
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ting Li
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fei-Fei Sun
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yao Fu
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao-Meng Gao
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ya-Ping Ma
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Cao
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Kumawat G, Yadav SS, Jaiswal S, Sahu R, Garg A, Tomar V. Evaluation of factors predicting response to abiraterone acetate in metastatic castration-resistant prostate cancer: A prospective study. JOURNAL OF CLINICAL UROLOGY 2022. [DOI: 10.1177/20514158221129743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background/Objectives: In the current era, abiraterone acetate is mainstay of the treatment strategies of castration-resistant prostate cancer and proven to prolong overall survival. We aimed to prospectively identify factors associated with duration of response to abiraterone. Patients and methods: All metastatic castration-resistant prostate cancer patients eligible for abiraterone were included in the study from February 2019 till March 2020. All baseline data and potential factors associated recorded and follow-up with prostate-specific antigen (PSA), and required investigations were done at 1 month interval. Duration of PSA response was recorded, and patients were divided in five groups on the basis of duration of response. Univariate and multivariate analyses of potential factors were done, and data analysis was done with SPSS (Statistical Package for the Social Sciences) version 21.0. Results: In this study, after univariate analysis, seven factors were associated with longer duration of response to abiraterone. These were PSA at diagnosis (hazard ratio (HR) = −1.011 (95% confidence interval (CI) = 1.003–1.020), p-value = 0.008), PSA at start of abiraterone (HR = −1.018 (95% CI = 1.011–1.025), p-value = 0.0001), nadir PSA (HR = −1.063 (95% CI = 1.024–1.104), p-value = 0.001), prostate-specific antigen doubling (PSAD) time (HR = −0.745 (95% CI = 0.672–0.827), p-value = 0.001), raised alkaline phosphatase (ALP) (HR = −1.002 (95% CI = 1.001–1.003), p-value = 0.001), neutrophil/lymphocyte ratio (NLR) (HR = −2.16 (95% CI = 1.672–2.81), p-value = 0.001) and <5 bone metastasis (HR = −0.235 (95% CI = 0.130–0.422), p-value = 0.01). But after multivariate analysis, nadir PSA achieved, PSAD, NLR and ⩽5 bone metastasis were predictors of better response to abiraterone. Conclusion: This study had identified that less nadir PSA achieved, long PSAD time, low NLR and limited number of skeletal metastases were potential factors for better PSA response to abiraterone. Level of evidence: 1
Collapse
Affiliation(s)
| | - SS Yadav
- Sawai Man Singh Medical College and Hospital, India
| | | | | | - Anurag Garg
- Sawai Man Singh Medical College and Hospital, India
| | - Vinay Tomar
- Sawai Man Singh Medical College and Hospital, India
| |
Collapse
|
8
|
Fan A, Zhang Y, Cheng J, Li Y, Chen W. A novel prognostic model for prostate cancer based on androgen biosynthetic and catabolic pathways. Front Oncol 2022; 12:950094. [PMID: 36439479 PMCID: PMC9685527 DOI: 10.3389/fonc.2022.950094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/20/2022] [Indexed: 08/14/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies in males globally, and its pathogenesis is significantly related to androgen. As one of the important treatments for prostate cancer, androgen deprivation therapy (ADT) inhibits tumor proliferation by controlling androgen levels, either surgically or pharmacologically. However, patients treated with ADT inevitably develop biochemical recurrence and advance to castration-resistant prostate cancer which has been reported to be associated with androgen biosynthetic and catabolic pathways. Thus, gene expression profiles and clinical information of PCa patients were collected from TCGA, MSKCC, and GEO databases for consensus clustering based on androgen biosynthetic and catabolic pathways. Subsequently, a novel prognostic model containing 13 genes (AFF3, B4GALNT4, CD38, CHRNA2, CST2, ADGRF5, KLK14, LRRC31, MT1F, MT1G, SFTPA2, SLC7A4, TDRD1) was constructed by univariate cox regression, lasso regression, and multivariate cox regression. Patients were divided into two groups based on their risk scores: high risk (HS) and low risk (LS), and survival analysis was used to determine the difference in biochemical recurrence-free time between the two. The results were validated on the MSKCC dataset and the GEO dataset. Functional enrichment analysis revealed some pivotal pathways that may have an impact on the prognosis of patients including the CDK-RB-E2F axis, G2M checkpoint, and KRAS signaling. In addition, somatic mutation, immune infiltration, and drug sensitivity analyses were performed to further explore the characteristics of HS and LS groups. Besides, two potential therapeutic targets, BIRC5 and RHOC, were identified by us in prostate cancer. These results indicate that the prognostic model may serve as a predictive tool to guide clinical treatment and provide new insight into the basic research in prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Wei Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Wu Q, Qian W, Sun X, Jiang S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J Hematol Oncol 2022; 15:143. [PMID: 36209184 PMCID: PMC9548212 DOI: 10.1186/s13045-022-01362-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/02/2022] [Indexed: 11/10/2022] Open
Abstract
The United States Food and Drug Administration (US FDA) has always been a forerunner in drug evaluation and supervision. Over the past 31 years, 1050 drugs (excluding vaccines, cell-based therapies, and gene therapy products) have been approved as new molecular entities (NMEs) or biologics license applications (BLAs). A total of 228 of these 1050 drugs were identified as cancer therapeutics or cancer-related drugs, and 120 of them were classified as therapeutic drugs for solid tumors according to their initial indications. These drugs have evolved from small molecules with broad-spectrum antitumor properties in the early stage to monoclonal antibodies (mAbs) and antibody‒drug conjugates (ADCs) with a more precise targeting effect during the most recent decade. These drugs have extended indications for other malignancies, constituting a cancer treatment system for monotherapy or combined therapy. However, the available targets are still mainly limited to receptor tyrosine kinases (RTKs), restricting the development of antitumor drugs. In this review, these 120 drugs are summarized and classified according to the initial indications, characteristics, or functions. Additionally, RTK-targeted therapies and immune checkpoint-based immunotherapies are also discussed. Our analysis of existing challenges and potential opportunities in drug development may advance solid tumor treatment in the future.
Collapse
Affiliation(s)
- Qing Wu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Wei Qian
- Department of Radiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Xiaoli Sun
- Department of Radiation Oncology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
10
|
Ling R, Chen G, Tang X, Liu N, Zhou Y, Chen D. Acetyl-CoA synthetase 2(ACSS2): a review with a focus on metabolism and tumor development. Discov Oncol 2022; 13:58. [PMID: 35798917 PMCID: PMC9263018 DOI: 10.1007/s12672-022-00521-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Acetyl-CoA synthetase 2 (ACSS2), an important member of the acetyl-CoA synthetase (ACSS) family, can catalyze the conversion of acetate to acetyl coenzyme A (acetyl-CoA). Currently, acetyl-CoA is considered an important intermediate metabolite in the metabolism of energy substrates. In addition, nutrients converge through acetyl-CoA into a common metabolic pathway, the tricarboxylic acid cycle and oxidative phosphorylation. Not only does ACSS2 play a crucial role in material energy metabolism, it is also involved in the regulation of various acetylation processes, such as regulation of histone and transcription factor acetylation. ACSS2-mediated regulation of acetylation is related to substance metabolism and tumorigenesis. In mammalian cells, ACSS2 utilizes intracellular acetate to synthesize acetyl-CoA, a step in the process of DNA and histone acetylation. In addition, studies in tumors have shown that cancer cells adapt to the growth conditions in the tumor microenvironment (TME) by activating or increasing the expression level of ACSS2 under metabolic stress. Therefore, this review mainly outlines the role of ACSS2 in substance metabolism and tumors and provides insights useful for investigating ACSS2 as a therapeutic target.
Collapse
Affiliation(s)
- Rui Ling
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Gong Chen
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Tang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Na Liu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
11
|
Fontana F, Anselmi M, Limonta P. Molecular mechanisms and genetic alterations in prostate cancer: From diagnosis to targeted therapy. Cancer Lett 2022; 534:215619. [PMID: 35276289 DOI: 10.1016/j.canlet.2022.215619] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
Prostate cancer remains one of the most lethal malignancies among men worldwide. Although the primary tumor can be successfully managed by surgery and radiotherapy, advanced metastatic carcinoma requires better therapeutic approaches. In this context, a deeper understanding of the molecular mechanisms that underlie the initiation and progression of this disease is urgently needed, leading to the identification of new diagnostic/prognostic markers and the development of more effective treatments. Herein, the current state of knowledge of prostate cancer genetic alterations is discussed, with a focus on their potential in tumor detection and staging as well as in the screening of novel therapeutics.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Martina Anselmi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Safarulla S, Khillar PS, Kini S, Jaiswal AK. Tissue engineered scaffolds as 3D models for prostate cancer metastasis to bone. MATERIALS TODAY COMMUNICATIONS 2021; 28:102641. [DOI: 10.1016/j.mtcomm.2021.102641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
|
13
|
Scailteux LM, Despas F, Balusson F, Campillo-Gimenez B, Mathieu R, Vincendeau S, Happe A, Nowak E, Kerbrat S, Oger E. Hospitalization for adverse events under abiraterone or enzalutamide exposure in real-world setting: A French population-based study on prostate cancer patients. Br J Clin Pharmacol 2021; 88:336-346. [PMID: 34224605 DOI: 10.1111/bcp.14972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Safety profiles of abiraterone and enzalutamide rely mainly on Phase III clinical trials. Our objective was to estimate the incidence rate ratio (IRR) for certain adverse events leading in real life to hospitalization (atrial fibrillation, acute heart failure, ischaemic heart disease, acute kidney injury [AKI], ischaemic stroke, torsade de pointe/QT interval prolongation, hepatitis and seizure), comparing abiraterone to enzalutamide. We also set out to discuss previously identified safety signals. METHOD Using the French National Health Insurance System database, all patients newly exposed to abiraterone or enzalutamide between 2013 and 2017 and followed until 31 December 2018 were targeted. IRRs for each event were estimated using a Poisson model in a sub-population of patients without contraindications or precautions for use for either treatment. RESULTS Among 11 534 new users of abiraterone and enzalutamide, AKI (IRR 1.42, 95% CI: 1.01-2.00), liver monitoring suggestive of hepatic damage (IRR 3.06, 95% CI: 2.66-3.53) and atrial fibrillation (IRR 1.12, 95% CI: 1.05-1.19) were significantly more often observed with abiraterone than with enzalutamide. CONCLUSION Our study provides knowledge on abiraterone and enzalutamide real-life safety profiles, especially for events leading to hospitalization. Despite several limitations, including the lack of clinical data, the safety signal for AKI under abiraterone is in line with results of an analysis of the French pharmacovigilance database, which requires further specific investigations. Enlightening the clinicians' therapeutic choices for patients treated for prostate cancer, our study should lead to clinicians being cautious in the use of abiraterone.
Collapse
Affiliation(s)
- Lucie-Marie Scailteux
- Pharmacovigilance, Pharmacoepidemiology and Drug Information Centre, Department of Clinical Pharmacology, Rennes University Hospital, Rennes, France.,EA 7449 REPERES 'Pharmacoepidemiology and Health Services Research', Univ Rennes, Rennes, France.,PEPS research consortium, Rennes, France
| | - Fabien Despas
- Department of Clinical Pharmacology, Toulouse University Hospital, Toulouse, France.,INSERM CIC 1436 Toulouse, Centre d'Investigation Clinique de Toulouse, Centre Hospitalier Universitaire de Toulouse, France
| | - Frédéric Balusson
- EA 7449 REPERES 'Pharmacoepidemiology and Health Services Research', Univ Rennes, Rennes, France
| | - Boris Campillo-Gimenez
- Eugène Marquis Comprehensive Cancer Regional Center, Rennes, France.,INSERM 1099 'LTSI', Univ Rennes, Rennes, France
| | - Romain Mathieu
- Urology Department, Rennes University Hospital, Rennes, France.,CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, Rennes, France
| | | | - André Happe
- EA 7449 REPERES 'Pharmacoepidemiology and Health Services Research', Univ Rennes, Rennes, France.,PEPS research consortium, Rennes, France
| | - Emmanuel Nowak
- PEPS research consortium, Rennes, France.,Université de Bretagne Loire, Université de Brest, INSERM CIC 1412, CHRU de Brest, France
| | - Sandrine Kerbrat
- EA 7449 REPERES 'Pharmacoepidemiology and Health Services Research', Univ Rennes, Rennes, France.,PEPS research consortium, Rennes, France
| | - Emmanuel Oger
- Pharmacovigilance, Pharmacoepidemiology and Drug Information Centre, Department of Clinical Pharmacology, Rennes University Hospital, Rennes, France.,EA 7449 REPERES 'Pharmacoepidemiology and Health Services Research', Univ Rennes, Rennes, France.,PEPS research consortium, Rennes, France
| |
Collapse
|
14
|
Kim D, Kim V, McCarty KD, Guengerich FP. Tight binding of cytochrome b 5 to cytochrome P450 17A1 is a critical feature of stimulation of C21 steroid lyase activity and androgen synthesis. J Biol Chem 2021; 296:100571. [PMID: 33753170 PMCID: PMC8080067 DOI: 10.1016/j.jbc.2021.100571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
It has been recognized for >50 years that cytochrome b5 (b5) stimulates some cytochrome P450 (P450)–catalyzed oxidations, but the basis of this function is still not understood well. The strongest stimulation of catalytic activity by b5 is in the P450 17A1 lyase reaction, an essential step in androgen synthesis from 21-carbon (C21) steroids, making this an excellent model system to interrogate b5 function. One of the issues in studying b5–P450 interactions has been the limited solution assay methods. We constructed a fluorescently labeled variant of human b5 that can be used in titrations. The labeled b5 bound to WT P450 17A1 with a Kd of 2.5 nM and rapid kinetics, on the order of 1 s−1. Only weak binding was observed with the clinical P450 17A1 variants E305G, R347H, and R358Q; these mutants are deficient in lyase activity, which has been hypothesized to be due to attenuated b5 binding. Kd values were not affected by the presence of P450 17A1 substrates. A peptide containing the P450 17A1 Arg-347/Arg-358 region attenuated Alexa 488-T70C-b5 fluorescence at higher concentrations. The addition of NADPH–P450 reductase (POR) to an Alexa 488-T70C-b5:P450 17A1 complex resulted in a concentration-dependent partial restoration of b5 fluorescence, indicative of a ternary P450:b5:POR complex, which was also supported by gel filtration experiments. Overall, these results are interpreted in the context of a dynamic and tight P450 17A1:b5 complex that also binds POR to form a catalytically competent ternary complex, and variants that disrupt this interaction have low catalytic activity.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
15
|
Saini NK, Gabani BB, Todmal U, Sulochana SP, Kiran V, Zainuddin M, Balaji N, Polina SB, Srinivas NR, Mullangi R. Pharmacokinetics of Darolutamide in Mouse - Assessment of the Disposition of the Diastereomers, Key Active Metabolite and Interconversion Phenomenon: Implications to Cancer Patients. Drug Metab Lett 2021; 14:54-65. [PMID: 32436836 DOI: 10.2174/1872312814666200521091236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Darolutamide is recently approved for the treatment of non-metastatic castrate resistance prostate cancer. Hitherto, no stereoselective pharmacokinetic data have been published pertaining to darolutamide and its diastereomers in animals or humans. The key aims of the experiment were to examine darolutamide, S,S-darolutamide and S,R-darolutamide with respect to (a) assessment of in vitro metabolic stability and protein binding and (b) characterization of in vivo oral and intravenous pharmacokinetics in mice. METHODS In vitro (liver microsomes stability and protein binding) and in vivo experiments (oral/intravenous dosing to mice) were carried out using darolutamide, S,S-darolutamide and S,Rdarolutamide. Besides, tissue levels of darolutamide, S,S-darolutamide and S,R-darolutamide were measured following oral and intravenous dosing. Appropriate plasma/tissue samples served to determine the pharmacokinetics of various analytes in mice. Liquid chromatography in tandem with mass spectrometry procedures enabled the delineation of the plasma pharmacokinetics, in vitro and tissue uptake data of the various analytes. RESULTS Chiral inversion was absent in the metabolic stability study. However, darolutamide showed profound stereoselectivity (S,S-darolutamide greater than S,R-darolutamide) after either intravenous or oral dosing. S,R-darolutamide but not S,S-darolutamide showed conversion to its antipode post oral and intravenous dosing to mice. Regardless of oral or intravenous dosing, active keto darolutamide formation was evident after administration of darolutamide, S,S-darolutamide or S,R- darolutamide. Tissue data supported the observations in plasma; however, tissue exposure of darolutamide, S,Sdarolutamide and S,R-darolutamide was much lower as compared to plasma. CONCLUSION In lieu of the human pharmacokinetic data, although the administration of diastereomeric darolutamide was justified, it is proposed to delineate the clinical pharmacokinetics of S,Rdarolutamide and S,S-darolutamide relative to darolutamide in future clinical pharmacology studies.
Collapse
Affiliation(s)
- Neeraj K Saini
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Bhavesh B Gabani
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Umesh Todmal
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Suresh P Sulochana
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Vinay Kiran
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Mohd Zainuddin
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Narayanan Balaji
- Analytical Department, Yeshwanthpur, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | - Sai B Polina
- Chemistry Department, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| | | | - Ramesh Mullangi
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd., Industrial Suburb, Yeshwanthpur, Bangalore-560 022, India
| |
Collapse
|
16
|
Child SA, Guengerich FP. Multistep Binding of the Non-Steroidal Inhibitors Orteronel and Seviteronel to Human Cytochrome P450 17A1 and Relevance to Inhibition of Enzyme Activity. J Med Chem 2020; 63:6513-6522. [PMID: 32223238 DOI: 10.1021/acs.jmedchem.9b01849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Orteronel (TAK-700) is a substituted imidazole that was developed for the treatment of castration-resistant prostate cancer but was dropped in phase III clinical trials. Both enantiomers of this inhibitor of cytochrome P450 (P450) 17A1 show some selectivity in differentially blocking the 17α-hydroxylation and lyase activities of the enzyme. Although both enantiomers of this compound have sub-micromolar IC50 values and bind to the enzyme with a type II spectral change (indicative of nitrogen-iron bonding) and reported Kd values of 56 and 40 nM (R and S, respectively), the rates of binding to P450 17A1 were relatively slow. We considered the possibility that the drug is a slow, tight-binding inhibitor. Analysis of the kinetics of binding revealed rapid formation of an initial complex, presumably in the substrate binding site, followed by a slower change to the spectrum of a final iron complex. Similar kinetics were observed in the interaction of another inhibitor, the triazole (S)-seviteronel (VT-464), with P450 17A1. Kinetic tests and modeling indicate that the further change to the iron-complexed form of the orteronel- or seviteronel-P450 complex is not a prerequisite for enzyme inhibition. Accordingly, the inclusion of heme-binding heterocyclic nitrogen moieties in P450 17A1 inhibitors may not be necessary to achieve inhibition but may nevertheless augment the process.
Collapse
Affiliation(s)
- Stella A Child
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
17
|
Castellan P, Castellucci R, Marchioni M, De Nunzio C, Tema G, Primiceri G, Schips L, Cindolo L. A drug safety evaluation of abiraterone acetate in the treatment of prostate cancer. Expert Opin Drug Saf 2019; 18:759-767. [DOI: 10.1080/14740338.2019.1648428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | | | - Cosimo De Nunzio
- Department of Urology, Sant’Andrea Hospital, University “La Sapienza”, Rome, Italy
| | - Giorgia Tema
- Department of Urology, Sant’Andrea Hospital, University “La Sapienza”, Rome, Italy
| | - Giulia Primiceri
- Department of Urology, University “G. d’Annunzio”, Chieti, Italy
| | - Luigi Schips
- Department of Urology, SS. Annunziata Hospital, Chieti, Italy
- Department of Urology, University “G. d’Annunzio”, Chieti, Italy
| | - Luca Cindolo
- Department of Urology, SS. Annunziata Hospital, Chieti, Italy
| |
Collapse
|
18
|
Abstract
Oral enzalutamide (Xtandi®), a second generation androgen receptor inhibitor, is indicated for the treatment of castration-resistant prostate cancer (CRPC) in numerous countries worldwide, with specific indications in this patient population varying between individual countries. Based on extensive experience in the clinical trial and/or real-world settings, oral enzalutamide 160 mg once daily is an effective and generally well tolerated treatment in a broad spectrum of patients with CRPC, including in nonmetastatic and metastatic disease and in chemotherapy-naive and -experienced metastatic CRPC. Enzalutamide is an emerging option for the treatment of men with nonmetastatic CRPC who are at high-risk for developing metastatic disease, and remains an important first-line option in chemotherapy-naive or -experienced patients with metastatic CRPC.
Collapse
Affiliation(s)
- Lesley J Scott
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
19
|
Guengerich FP, Wilkey CJ, Glass SM, Reddish MJ. Conformational selection dominates binding of steroids to human cytochrome P450 17A1. J Biol Chem 2019; 294:10028-10041. [PMID: 31072872 DOI: 10.1074/jbc.ra119.008860] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 (P450, CYP) enzymes are the major catalysts involved in the oxidation of steroids as well as many other compounds. Their versatility has been explained in part by flexibility of the proteins and complexity of the binding mechanisms. However, whether these proteins bind their substrates via induced fit or conformational selection is not understood. P450 17A1 has a major role in steroidogenesis, catalyzing the two-step oxidations of progesterone and pregnenolone to androstenedione and dehydroepiandrosterone, respectively, via 17α-hydroxy (OH) intermediates. We examined the interaction of P450 17A1 with its steroid substrates by analyzing progress curves (UV-visible spectroscopy), revealing that the rates of binding of any of these substrates decreased with increasing substrate concentration, a hallmark of conformational selection. Further, when the concentration of 17α-OH pregnenolone was held constant and the P450 concentration increased, the binding rate increased, and such opposite patterns are also diagnostic of conformational selection. Kinetic simulation modeling was also more consistent with conformational selection than with an induced-fit mechanism. Cytochrome b 5 partially enhances P450 17A1 lyase activity by altering the P450 17A1 conformation but did not measurably alter the binding of 17α-OH pregnenolone or 17α-OH progesterone, as judged by the apparent Kd and binding kinetics. The P450 17A1 inhibitor abiraterone also bound to P450 17A1 in a multistep manner, and modeling indicated that the selective inhibition of the two P450 17A1 steps by the drug orteronel can be rationalized only by a multiple-conformation model. In conclusion, P450 17A1 binds its steroid substrates via conformational selection.
Collapse
Affiliation(s)
- F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Clayton J Wilkey
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Sarah M Glass
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Michael J Reddish
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
20
|
Castellan P, Marchioni M, Castellucci R, De Francesco P, Iantorno R, Schips L, Cindolo L. Abiraterone acetate for early stage metastatic prostate cancer: patient selection and special considerations. Ther Clin Risk Manag 2018; 14:2341-2347. [PMID: 30584309 PMCID: PMC6287515 DOI: 10.2147/tcrm.s159824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent years, therapeutic advances, together with new medication sequences and combinations, have improved outcomes for prostate cancer. For a long time, androgen deprivation therapy (ADT) has been the standard of care for newly diagnosed, metastatic prostate cancer, first as a standalone therapy and then in combination with taxane-based regimens. More recently, the addition of abiraterone acetate to ADT to achieve complete androgen blockade has proven beneficial for the treatment of metastatic hormone-resistant prostate cancer and metastatic hormone-sensitive prostate cancer (mHSPC). In this review, we summarize recent findings on the early use of abiraterone in mHSPC and discuss survival benefits as reported in clinical trials. On the basis of existing data, abiraterone in combination with ADT could be considered a new standard of care for patients affected by mHSPC.
Collapse
Affiliation(s)
| | | | | | | | | | - Luigi Schips
- Department of Urology, ASL02 Abruzzo, Chieti, Italy, .,Department of Urology, University "G. d'Annunzio", Chieti, Italy
| | - Luca Cindolo
- Department of Urology, ASL02 Abruzzo, Chieti, Italy,
| |
Collapse
|
21
|
Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders. Sci Rep 2018; 8:14428. [PMID: 30258093 PMCID: PMC6158244 DOI: 10.1038/s41598-018-32776-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
The monitoring of intracellular cholesterol homeostasis and trafficking is of great importance because their imbalance leads to many pathologies. Reliable tools for cholesterol detection are in demand. This study presents the design and synthesis of fluorescent probes for cholesterol recognition and demonstrates their selectivity by a variety of methods. The construction of dedicated library of 14 probes was based on heterocyclic (pyridine)-sterol derivatives with various attached fluorophores. The most promising probe, a P1-BODIPY conjugate FP-5, was analysed in detail and showed an intensive labelling of cellular membranes followed by intracellular redistribution into various cholesterol rich organelles and vesicles. FP-5 displayed a stronger signal, with faster kinetics, than the commercial TF-Chol probe. In addition, cells with pharmacologically disrupted cholesterol transport, or with a genetic mutation of cholesterol transporting protein NPC1, exhibited strong and fast FP-5 signal in the endo/lysosomal compartment, co-localizing with filipin staining of cholesterol. Hence, FP-5 has high potential as a new probe for monitoring cholesterol trafficking and its disorders.
Collapse
|
22
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
23
|
Takagi K, Miki Y, Ishida T, Sasano H, Suzuki T. The interplay of endocrine therapy, steroid pathways and therapeutic resistance: Importance of androgen in breast carcinoma. Mol Cell Endocrinol 2018; 466:31-37. [PMID: 28918115 DOI: 10.1016/j.mce.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022]
Abstract
A great majority of breast carcinomas expresses estrogen receptor (ER) and estrogens have crucial roles in the progress of breast carcinomas. Endocrine therapy targeting ER and/or intratumoral estrogen production significantly improved clinical outcomes of the patients with ER-positive breast carcinomas. However, resistance to endocrine therapy is often observed and significant number of patients will recur after the treatment. In addition, treatment for the patients with triple-negative breast carcinomas (negative for all ER, progesterone receptor (PR) and HER2) are limited to cytotoxic chemotherapy and novel therapeutic targets need to be identified. In breast carcinoma tissues, not only ER but androgen receptor (AR) is frequently expressed, suggesting pivotal roles of androgens in the progress of breast carcinomas. Growing interest on androgen action as possible therapeutic target has been taken, but androgen action seems quite complicated in breast carcinomas and inconsistent findings has been also proposed. In this review, we will summarize recent studies regarding intratumoral androgen production and its regulation as well as distinct subset of breast carcinomas characterized by activated AR signaling and recent clinical trial targeting AR in the patients with either ER-positive and ER-negative breast carcinomas.
Collapse
Affiliation(s)
- Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
24
|
Nevedomskaya E, Baumgart SJ, Haendler B. Recent Advances in Prostate Cancer Treatment and Drug Discovery. Int J Mol Sci 2018; 19:ijms19051359. [PMID: 29734647 PMCID: PMC5983695 DOI: 10.3390/ijms19051359] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023] Open
Abstract
Novel drugs, drug sequences and combinations have improved the outcome of prostate cancer in recent years. The latest approvals include abiraterone acetate, enzalutamide and apalutamide which target androgen receptor (AR) signaling, radium-223 dichloride for reduction of bone metastases, sipuleucel-T immunotherapy and taxane-based chemotherapy. Adding abiraterone acetate to androgen deprivation therapy (ADT) in order to achieve complete androgen blockade has proven highly beneficial for treatment of locally advanced prostate cancer and metastatic hormone-sensitive prostate cancer (mHSPC). Also, ADT together with docetaxel treatment showed significant benefit in mHSPC. Ongoing clinical trials for different subgroups of prostate cancer patients include the evaluation of the second-generation AR antagonists enzalutamide, apalutamide and darolutamide, of inhibitors of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, of inhibitors of DNA damage response, of targeted alpha therapy and of prostate-specific membrane antigen (PSMA) targeting approaches. Advanced clinical studies with immune checkpoint inhibitors have shown limited benefits in prostate cancer and more trials are needed to demonstrate efficacy. The identification of improved, personalized treatments will be much supported by the major progress recently made in the molecular characterization of early- and late-stage prostate cancer using “omics” technologies. This has already led to novel classifications of prostate tumors based on gene expression profiles and mutation status, and should greatly help in the choice of novel targeted therapies best tailored to the needs of patients.
Collapse
Affiliation(s)
- Ekaterina Nevedomskaya
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Simon J Baumgart
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|