1
|
Inchiosa MA. Beta 2-Adrenergic Suppression of Neuroinflammation in Treatment of Parkinsonism, with Relevance for Neurodegenerative and Neoplastic Disorders. Biomedicines 2024; 12:1720. [PMID: 39200184 PMCID: PMC11351568 DOI: 10.3390/biomedicines12081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/02/2024] Open
Abstract
There is a preliminary record suggesting that β2-adrenergic agonists may have therapeutic value in Parkinson's disease; recent studies have proposed a possible role of these agents in suppressing the formation of α-synuclein protein, a component of Lewy bodies. The present study focuses on the importance of the prototypical β2-adrenergic agonist epinephrine in relation to the incidence of Parkinson's disease in humans, and its further investigation via synthetic selective β2-receptor agonists, such as levalbuterol. Levalbuterol exerts significant anti-inflammatory activity, a property that may suppress cytokine-mediated degeneration of dopaminergic neurons and progression of Parkinsonism. In a completely novel finding, epinephrine and certain other adrenergic agents modeled in the Harvard/MIT Broad Institute genomic database, CLUE, demonstrated strong associations with the gene-expression signatures of anti-inflammatory glucocorticoids. This prompted in vivo confirmation in mice engrafted with human peripheral blood mononuclear cells (PBMCs). Upon toxic activation with mononuclear antibodies, levalbuterol inhibited (1) the release of the eosinophil attractant chemokine eotaxin-1, which is implicated in CNS and peripheral inflammatory disorders, (2) elaboration of the tumor-promoting angiogenic factor VEGFa, and (3) release of the pro-inflammatory cytokine IL-13 from activated PBMCs. These observations suggest possible translation to Parkinson's disease, other neurodegenerative syndromes, and malignancies, via several mechanisms.
Collapse
Affiliation(s)
- Mario A Inchiosa
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
2
|
Pena N, Richbourg T, Gonzalez-Hunt CP, Qi R, Wren P, Barlow C, Shanks NF, Carlisle HJ, Sanders LH. G2019S selective LRRK2 kinase inhibitor abrogates mitochondrial DNA damage. NPJ Parkinsons Dis 2024; 10:49. [PMID: 38429321 PMCID: PMC10907374 DOI: 10.1038/s41531-024-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
Pathogenic mutations in LRRK2 cause Parkinson's disease (PD). The G2019S variant is the most common, which results in abnormally high kinase activity. Compounds that target LRRK2 kinase activity are currently being developed and tested in clinical trials. We recently found that G2019S LRRK2 causes mitochondrial DNA (mtDNA) damage and treatment with multiple classes of LRRK2 kinase inhibitors at concentrations associated with dephosphorylation of LRRK2 reversed mtDNA damage to healthy control levels. Because maintaining the normal function of LRRK2 in heterozygous G2019S LRRK2 carriers while specifically targeting the G2019S LRRK2 activity could have an advantageous safety profile, we explored the efficacy of a G2019S mutant selective LRRK2 inhibitor to reverse mtDNA damage in G2019S LRRK2 models and patient cells relative to non-selective LRRK2 inhibitors. Potency of LRRK2 kinase inhibition by EB-42168, a G2019S mutant LRRK2 kinase inhibitor, and MLi-2, a non-selective inhibitor, was determined by measuring phosphorylation of LRRK2 at Ser935 and/or Ser1292 using quantitative western immunoblot analysis. The Mito DNADX assay, which allows for the accurate real-time quantification of mtDNA damage in a 96-well platform, was performed in parallel. We confirmed that EB-42168 selectively inhibits LRRK2 phosphorylation on G2019S LRRK2 relative to wild-type LRRK2. On the other hand, MLi-2 was equipotent for wild-type and G2019S LRRK2. Acute treatment with EB-42168 inhibited LRRK2 phosphorylation and also restored mtDNA damage to healthy control levels. We further investigated the relationship between LRRK2 kinase activity, mtDNA damage and mitophagy. Levels of mtDNA damage caused by G2019S LRRK2 were fully re-established within 2 h of a LRRK2 inhibitor wash out and recovery experiment, indicating the mtDNA damage phenotype is highly dynamic. G2019S LRRK2 mitophagy defects were not alleviated with LRRK2 kinase inhibition, suggesting that mitophagy is not mechanistically regulating LRRK2 kinase-mediated reversal of mtDNA damage in this acute timeframe. Abrogation of mtDNA damage with the mutant selective tool inhibitor EB-42168 demonstrates the potential of a precision medicine approach for LRRK2 G2019S PD. Levels of mtDNA damage may serve as a potential pharmacodynamic biomarker of altered kinase activity that could be useful for small molecule development and clinical trials.
Collapse
Affiliation(s)
- Nicholas Pena
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA
| | - Tara Richbourg
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA
| | - Claudia P Gonzalez-Hunt
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA
| | - Rui Qi
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA
| | - Paul Wren
- ESCAPE Bio, Inc., South San Francisco, CA, 94080, USA
| | | | | | | | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Baidya AT, Deshwal S, Das B, Mathew AT, Devi B, Sandhir R, Kumar R. Catalyzing a Cure: Discovery and development of LRRK2 inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 143:106972. [PMID: 37995640 DOI: 10.1016/j.bioorg.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Parkinson's disease (PD) is an age-related second most common progressive neurodegenerative disorder that affects millions of people worldwide. Despite decades of research, no effective disease modifying therapeutics have reached clinics for treatment/management of PD. Leucine-rich repeat kinase 2 (LRRK2) which controls membrane trafficking and lysosomal function and its variant LRRK2-G2019S are involved in the development of both familial and sporadic PD. LRRK2, is therefore considered as a legitimate target for the development of therapeutics against PD. During the last decade, efforts have been made to develop effective, safe and selective LRRK2 inhibitors and also our understanding about LRRK2 has progressed. However, there is an urge to learn from the previously designed and reported LRRK2 inhibitors in order to effectively approach designing of new LRRK2 inhibitors. In this review, we have aimed to cover the pre-clinical studies undertaken to develop small molecule LRRK2 inhibitors by screening the patents and other available literature in the last decade. We have highlighted LRRK2 as targets in the progress of PD and subsequently covered detailed design, synthesis and development of diverse scaffolds as LRRK2 inhibitors. Moreover, LRRK2 inhibitors under clinical development has also been discussed. LRRK2 inhibitors seem to be potential targets for future therapeutic interventions in the treatment and management of PD and this review can act as a cynosure for guiding discovery, design, and development of selective and non-toxic LRRK2 inhibitors. Although, there might be challenges in developing effective LRRK2 inhibitors, the opportunity to successfully develop novel therapeutics targeting LRRK2 against PD has never been greater.
Collapse
Affiliation(s)
- Anurag Tk Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Sonam Deshwal
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Alen T Mathew
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Bharti Devi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India.
| |
Collapse
|
4
|
Huang G, Hucek D, Cierpicki T, Grembecka J. Applications of oxetanes in drug discovery and medicinal chemistry. Eur J Med Chem 2023; 261:115802. [PMID: 37713805 DOI: 10.1016/j.ejmech.2023.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Devon Hucek
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Majrashi TA, Wahab S, Almoyad MAA, Alkhathami AG, Alshahrani MY. Exploring natural compound, Panicutine as leucine-rich repeat kinase 2 inhibitor against Parkinson's disease: a structure-guided approach. J Biomol Struct Dyn 2023; 42:12154-12163. [PMID: 37837424 DOI: 10.1080/07391102.2023.2268183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a promising drug target for the therapeutic management of Parkinson's disease (PD) and other neurodegenerative disorders. LRRK2 inhibitors have the potential to modulate neuroinflammation, reduce alpha-synuclein aggregation and improve motor symptoms in PD patients. Although LRRK2 inhibitors are still in the early stages of clinical development, the identification of potent and selective inhibitors through structure-guided approaches provides a promising avenue for the development of effective therapies for PD and other neurodegenerative disorders. In this study, natural compounds from the IMPPAT database were screened using a state-of-the-art computational virtual screening approach to identify potential inhibitors of LRRK2. We carried out a docking screening on a library of natural compounds and identified a few compounds with strong binding affinity, docking score and specificity towards LRRK2 as the top hits. These hits were then subjected to further analysis based on multiple parameters for the Pan-assay interference compounds and their physicochemical and pharmacokinetics evaluation followed by a detailed interaction analysis. After careful evaluation, one natural compound, Panicutine, was identified as a promising candidate for LRRK2 due to its significant affinity and specificity towards the LRRK2 binding pocket. Additionally, it exhibited drug-like properties with blood-brain barrier permeability as determined by ADMET properties. To gain a deeper understanding of the stability and conformational changes of the LRRK2-ligand complex, MD simulations were conducted for 100 nanoseconds under explicit solvent conditions followed by principal component analysis and free energy dynamics. The simulation results demonstrated that the LRRK2-Panicutine complex remained stable throughout the simulation trajectories. Based on these findings, it is concluded that Panicutine has the potential to act as a LRRK2 inhibitor against PD and other neurodegenerative disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Saudi Arabia
| | - Ali Gaithan Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Mata I, Salles P, Cornejo-Olivas M, Saffie P, Ross OA, Reed X, Bandres-Ciga S. LRRK2: Genetic mechanisms vs genetic subtypes. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:133-154. [PMID: 36803807 DOI: 10.1016/b978-0-323-85555-6.00018-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In 2004, the identification of pathogenic variants in the LRRK2 gene across several families with autosomal dominant late-onset Parkinson's disease (PD) revolutionized our understanding of the role of genetics in PD. Previous beliefs that genetics in PD was limited to rare early-onset or familial forms of the disease were quickly dispelled. Currently, we recognize LRRK2 p.G2019S as the most common genetic cause of both sporadic and familial PD, with more than 100,000 affected carriers across the globe. The frequency of LRRK2 p.G2019S is also highly variable across populations, with some regions of Asian or Latin America reporting close to 0%, contrasting to Ashkenazi Jews or North African Berbers reporting up to 13% and 40%, respectively. Patients with LRRK2 pathogenic variants are clinically and pathologically heterogeneous, highlighting the age-related variable penetrance that also characterizes LRRK2-related disease. Indeed, the majority of patients with LRRK2-related disease are characterized by a relatively mild Parkinsonism with less motor symptoms with variable presence of α-synuclein and/or tau aggregates, with pathologic pleomorphism widely described. At a functional cellular level, it is likely that pathogenic variants mediate a toxic gain-of-function of the LRRK2 protein resulting in increased kinase activity perhaps in a cell-specific manner; by contrast, some LRRK2 variants appear to be protective reducing PD risk by decreasing the kinase activity. Therefore, employing this information to define appropriate patient populations for clinical trials of targeted kinase LRRK2 inhibition strategies is very promising and demonstrates a potential future application for PD using precision medicine.
Collapse
Affiliation(s)
- Ignacio Mata
- Genomic Medicine Institute (GMI), Cleveland Clinic, Cleveland, OH, United States.
| | - Philippe Salles
- Corporación Centro de Trastornos del Movimiento (CETRAM), Lo Espejo, Santiago, Chile
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | - Paula Saffie
- Corporación Centro de Trastornos del Movimiento (CETRAM), Lo Espejo, Santiago, Chile
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics and Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Mancini A, Stoops E, Demeyer L, Bellomo G, Paolini Paoletti F, Gaetani L, Di Filippo M, Parnetti L. LRRK2 Quantification in Cerebrospinal Fluid of Patients with Parkinson's Disease and Atypical Parkinsonian Syndromes. Mov Disord 2023; 38:682-688. [PMID: 36808643 DOI: 10.1002/mds.29336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND The alteration of leucine-rich repeat kinase 2 (LRRK2) kinase activity is thought to be involved in Parkinson's disease (PD) pathogenesis beyond familiar cases, and LRRK2 inhibitors are currently under investigation. Preliminary data suggest a relationship between LRRK2 alteration and cognitive impairment in PD. OBJECTIVE To investigate cerebrospinal fluid (CSF) LRRK2 levels in PD and other parkinsonian disorders, also correlating them with cognitive impairment. METHODS In this study, we retrospectively investigated by means of a novel highly sensitive immunoassay the levels of total and phosphorylated (pS1292) LRRK2 in CSF of cognitively unimpaired PD (n = 55), PD with mild cognitive impairment (n = 49), PD with dementia (n = 18), dementia with Lewy bodies (n = 12), atypical parkinsonian syndromes (n = 35), and neurological controls (n = 30). RESULTS Total and pS1292 LRRK2 levels were significantly higher in PD with dementia with respect to PD with mild cognitive impairment and PD, and also showed a correlation with cognitive performances. CONCLUSIONS The tested immunoassay may represent a reliable method for assessing CSF LRRK2 levels. The results appear to confirm an association of LRRK2 alteration with cognitive impairment in PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Giovanni Bellomo
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Federico Paolini Paoletti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
Kulcsarova K, Bang C, Berg D, Schaeffer E. Pesticides and the Microbiome-Gut-Brain Axis: Convergent Pathways in the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1079-1106. [PMID: 37927277 PMCID: PMC10657696 DOI: 10.3233/jpd-230206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The increasing global burden of Parkinson's disease (PD), termed the PD pandemic, is exceeding expectations related purely to population aging and is likely driven in part by lifestyle changes and environmental factors. Pesticides are well recognized risk factors for PD, supported by both epidemiological and experimental evidence, with multiple detrimental effects beyond dopaminergic neuron damage alone. The microbiome-gut-brain axis has gained much attention in recent years and is considered to be a significant contributor and driver of PD pathogenesis. In this narrative review, we first focus on how both pesticides and the microbiome may influence PD initiation and progression independently, describing pesticide-related central and peripheral neurotoxicity and microbiome-related local and systemic effects due to dysbiosis and microbial metabolites. We then depict the bidirectional interplay between pesticides and the microbiome in the context of PD, synthesizing current knowledge about pesticide-induced dysbiosis, microbiome-mediated alterations in pesticide availability, metabolism and toxicity, and complex systemic pesticide-microbiome-host interactions related to inflammatory and metabolic pathways, insulin resistance and other mechanisms. An overview of the unknowns follows, and the role of pesticide-microbiome interactions in the proposed body-/brain-first phenotypes of PD, the complexity of environmental exposures and gene-environment interactions is discussed. The final part deals with possible further steps for translation, consisting of recommendations on future pesticide use and research as well as an outline of promising preventive/therapeutic approaches targeted on strengthening or restoring a healthy gut microbiome, closing with a summary of current gaps and future perspectives in the field.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
- Department of Clinical Neurosciences, University Scientific Park MEDIPARK, P. J. Safarik University, Kosice, Slovak Republic
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Schaeffer
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
9
|
Park Y, Liao J, Hoang QQ. Roc, the G-domain of the Parkinson's disease-associated protein LRRK2. Trends Biochem Sci 2022; 47:1038-1047. [PMID: 35840518 PMCID: PMC9669111 DOI: 10.1016/j.tibs.2022.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022]
Abstract
Mutation in leucine-rich repeat (LRR) kinase 2 (LRRK2) is a common cause of Parkinson's disease (PD). Aberrant LRRK2 kinase activity is associated with disease pathogenesis and thus it is an attractive drug target for combating PD. Intense efforts in the past nearly two decades have focused on the development of small-molecule inhibitors of the kinase domain of LRRK2 and have identified potent kinase inhibitors. However, most LRRK2 kinase inhibitors have shown adverse effects; therefore, alternative-mechanism-based strategies are desperately needed. In this review, we discuss the new insights gleaned from recent cryoelectron microscope (cryo-EM) structures of LRRK2 towards understanding the mechanisms of actions of LRRK2 and explore the potential new therapeutic avenues.
Collapse
Affiliation(s)
- Yangshin Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jingling Liao
- Department of Public Health, Academy of Nutrition and Health, Wuhan University of Science and Technology School of Medicine, 430074 Wuhan, China.
| | - Quyen Q Hoang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Smith LJ, Lee CY, Menozzi E, Schapira AHV. Genetic variations in GBA1 and LRRK2 genes: Biochemical and clinical consequences in Parkinson disease. Front Neurol 2022; 13:971252. [PMID: 36034282 PMCID: PMC9416236 DOI: 10.3389/fneur.2022.971252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Variants in the GBA1 and LRRK2 genes are the most common genetic risk factors associated with Parkinson disease (PD). Both genes are associated with lysosomal and autophagic pathways, with the GBA1 gene encoding for the lysosomal enzyme, glucocerebrosidase (GCase) and the LRRK2 gene encoding for the leucine-rich repeat kinase 2 enzyme. GBA1-associated PD is characterized by earlier age at onset and more severe non-motor symptoms compared to sporadic PD. Mutations in the GBA1 gene can be stratified into severe, mild and risk variants depending on the clinical presentation of disease. Both a loss- and gain- of function hypothesis has been proposed for GBA1 variants and the functional consequences associated with each variant is often linked to mutation severity. On the other hand, LRRK2-associated PD is similar to sporadic PD, but with a more benign disease course. Mutations in the LRRK2 gene occur in several structural domains and affect phosphorylation of GTPases. Biochemical studies suggest a possible convergence of GBA1 and LRRK2 pathways, with double mutant carriers showing a milder phenotype compared to GBA1-associated PD. This review compares GBA1 and LRRK2-associated PD, and highlights possible genotype-phenotype associations for GBA1 and LRRK2 separately, based on biochemical consequences of single variants.
Collapse
Affiliation(s)
- Laura J. Smith
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Chiao-Yin Lee
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Anthony H. V. Schapira
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
11
|
Thakur G, Kumar V, Lee KW, Won C. Structural Insights and Development of LRRK2 Inhibitors for Parkinson's Disease in the Last Decade. Genes (Basel) 2022; 13:1426. [PMID: 36011337 PMCID: PMC9408223 DOI: 10.3390/genes13081426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the specific loss of dopaminergic neurons in the midbrain. The pathophysiology of PD is likely caused by a variety of environmental and hereditary factors. Many single-gene mutations have been linked to this disease, but a significant number of studies indicate that mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a potential therapeutic target for both sporadic and familial forms of PD. Consequently, the identification of potential LRRK2 inhibitors has been the focus of drug discovery. Various investigations have been conducted in academic and industrial organizations to investigate the mechanism of LRRK2 in PD and further develop its inhibitors. This review summarizes the role of LRRK2 in PD and its structural details, especially the kinase domain. Furthermore, we reviewed in vitro and in vivo findings of selected inhibitors reported to date against wild-type and mutant versions of the LRRK2 kinase domain as well as the current trends researchers are employing in the development of LRRK2 inhibitors.
Collapse
Affiliation(s)
- Gunjan Thakur
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Keun Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Chungkil Won
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
12
|
Herbst S, Lewis P, Morris H. The emerging role of LRRK2 in tauopathies. Clin Sci (Lond) 2022; 136:1071-1079. [PMID: 35815712 PMCID: PMC9274527 DOI: 10.1042/cs20220067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/11/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is conventionally described as an α-synuclein aggregation disorder, defined by Lewy bodies and neurites, and mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common autosomal dominant cause of PD. However, LRRK2 mutations may be associated with diverse pathologies in patients with Parkinson's syndrome including tau pathology resembling progressive supranuclear palsy (PSP). The recent discovery that variation at the LRRK2 locus is associated with the progression of PSP highlights the potential importance of LRRK2 in tauopathies. Here, we review the emerging evidence and discuss the potential impact of LRRK2 dysfunction on tau aggregation, lysosomal function, and endocytosis and exocytosis.
Collapse
Affiliation(s)
- Susanne Herbst
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, U.K
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| | - Patrick A. Lewis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, U.K
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| | - Huw R. Morris
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, U.K
| |
Collapse
|
13
|
Schalkamp AK, Rahman N, Monzón-Sandoval J, Sandor C. Deep phenotyping for precision medicine in Parkinson's disease. Dis Model Mech 2022; 15:dmm049376. [PMID: 35647913 PMCID: PMC9178512 DOI: 10.1242/dmm.049376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major challenge in medical genomics is to understand why individuals with the same disorder have different clinical symptoms and why those who carry the same mutation may be affected by different disorders. In every complex disorder, identifying the contribution of different genetic and non-genetic risk factors is a key obstacle to understanding disease mechanisms. Genetic studies rely on precise phenotypes and are unable to uncover the genetic contributions to a disorder when phenotypes are imprecise. To address this challenge, deeply phenotyped cohorts have been developed for which detailed, fine-grained data have been collected. These cohorts help us to investigate the underlying biological pathways and risk factors to identify treatment targets, and thus to advance precision medicine. The neurodegenerative disorder Parkinson's disease has a diverse phenotypical presentation and modest heritability, and its underlying disease mechanisms are still being debated. As such, considerable efforts have been made to develop deeply phenotyped cohorts for this disorder. Here, we focus on Parkinson's disease and explore how deep phenotyping can help address the challenges raised by genetic and phenotypic heterogeneity. We also discuss recent methods for data collection and computation, as well as methodological challenges that have to be overcome.
Collapse
Affiliation(s)
| | | | | | - Cynthia Sandor
- UK Dementia Research Institute at Cardiff University,Division of Psychological Medicine and Clinical Neuroscience, Haydn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
14
|
Galper J, Dean NJ, Pickford R, Lewis SJG, Halliday GM, Kim WS, Dzamko N. Lipid pathway dysfunction is prevalent in patients with Parkinson's disease. Brain 2022; 145:3472-3487. [PMID: 35551349 DOI: 10.1093/brain/awac176] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Many genetic risk factors for Parkinson's disease have lipid-related functions and lipid-modulating drugs such as statins may be protective against Parkinson's disease. Moreover, the hallmark Parkinson's disease pathological protein, α-synuclein, has lipid membrane function and pathways dysregulated in Parkinson's disease such as the endosome-lysosome system and synaptic signaling rely heavily on lipid dynamics. Despite the potential role for lipids in Parkinson's disease, most research to date has been protein-centric, with large-scale, untargeted serum and CSF lipidomic comparisons between genetic and idiopathic Parkinson's disease and neurotypical controls limited. In particular, the extent to which lipid dysregulation occurs in mutation carriers of one of the most common Parkinson's disease risk genes, LRRK2, is unclear. Further, the functional lipid pathways potentially dysregulated in idiopathic and LRRK2 mutation Parkinson's disease is underexplored. To better determine the extent of lipid dysregulation in Parkinson's disease, untargeted high performance liquid chromatography-tandem mass spectrometry was performed on serum (N = 221) and CSF (N = 88) obtained from a multiethnic population from the Michael J Fox Foundation LRRK2 Clinical Cohort Consortium. The cohort consisted of controls, asymptomatic LRRK2 G2019S carriers, LRRK2 G2019S carriers with Parkinson's disease and Parkinson's disease patients without a LRRK2 mutation. Age and sex were adjusted for in analyses where appropriate. Approximately one thousand serum lipid species per participant were analyzed. The main serum lipids that distinguished both Parkinson's disease patients and LRRK2 mutation carriers from controls included species of ceramide, triacylglycerol, sphingomyelin, acylcarnitine, phosphatidylcholine and lysophosphatidylethanolamine. Significant alterations in sphingolipids and glycerolipids were also reflected in Parkinson's disease and LRRK2 mutation carrier CSF, although no correlations were observed between lipids identified in both serum and CSF. Pathway analysis of altered lipid species indicated that sphingolipid metabolism, insulin signaling and mitochondrial function were the major metabolic pathways dysregulated in Parkinson's disease. Importantly, these pathways were also found to be dysregulated in serum samples from a second Parkinson's disease cohort (N = 315). Results from this study demonstrate that dysregulated lipids in Parkinson's disease generally, and in LRRK2 mutation carriers, are from functionally and metabolically related pathways. These findings provide new insight into the extent of lipid dysfunction in Parkinson's disease and therapeutics manipulating these pathways may potentially be beneficial for Parkinson's disease patients. Moreover, serum lipid profiles may be novel biomarkers for both genetic and idiopathic Parkinson's disease.
Collapse
Affiliation(s)
- Jasmin Galper
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Camperdown, NSW, 2050, Australia
| | - Nicholas J Dean
- University of Sydney, Faculty of Medicine and Health, Central Clinical School Camperdown, NSW, 2050, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Simon J G Lewis
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Camperdown, NSW, 2050, Australia
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Camperdown, NSW, 2050, Australia
| | - Woojin S Kim
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Camperdown, NSW, 2050, Australia
| | - Nicolas Dzamko
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Camperdown, NSW, 2050, Australia
| |
Collapse
|
15
|
Kumar S, Behl T, Sehgal A, Chigurupati S, Singh S, Mani V, Aldubayan M, Alhowail A, Kaur S, Bhatia S, Al-Harrasi A, Subramaniyan V, Fuloria S, Fuloria NK, Sekar M, Abdel Daim MM. Exploring the focal role of LRRK2 kinase in Parkinson's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32368-32382. [PMID: 35147886 DOI: 10.1007/s11356-022-19082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The major breakthroughs in our knowledge of how biology plays a role in Parkinson's disease (PD) have opened up fresh avenues designed to know the pathogenesis of disease and identify possible therapeutic targets. Mitochondrial abnormal functioning is a key cellular feature in the pathogenesis of PD. An enzyme, leucine-rich repeat kinase 2 (LRRK2), involved in both the idiopathic and familial PD risk, is a therapeutic target. LRRK2 has a link to the endolysosomal activity. Enhanced activity of the LRRK2 kinase, endolysosomal abnormalities and aggregation of autophagic vesicles with imperfectly depleted substrates, such as α-synuclein, are all seen in the substantia nigra dopaminergic neurons in PD. Despite the fact that LRRK2 is involved in endolysosomal and autophagic activity, it is undefined if inhibiting LRRK2 kinase activity will prevent endolysosomal dysfunction or minimise the degeneration of dopaminergic neurons. The inhibitor's capability of LRRK2 kinase to inhibit endolysosomal and neuropathological alterations in human PD indicates that LRRK2 inhibitors could have significant therapeutic usefulness in PD. G2019S is perhaps the maximum common mutation in PD subjects. Even though LRRK2's well-defined structure has still not been established, numerous LRRK2 inhibitors have been discovered. This review summarises the role of LRRK2 kinase in Parkinson's disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Ahmed Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Satvinder Kaur
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistrty, Faculty of Pharmacy and Health Science, Universiti Kuala Lumpur, Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Mohamed M Abdel Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
16
|
Effect of LRRK2 protein and activity on stimulated cytokines in human monocytes and macrophages. NPJ Parkinsons Dis 2022; 8:34. [PMID: 35347144 PMCID: PMC8960803 DOI: 10.1038/s41531-022-00297-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Leucine-rich-repeat kinase 2 (LRRK2), a potential therapeutic target for the treatment of Parkinson's disease (PD), is highly expressed in monocytes and macrophages and may play a role in the regulation of inflammatory pathways. To determine how LRRK2 protein levels and/or its activity modulate inflammatory cytokine/chemokine levels in human immune cells, isogenic human induced pluripotent stem cells (iPSC) with the LRRK2-activating G2019S mutation, wild-type LRRK2, and iPSC deficient in LRRK2 were differentiated to monocytes and macrophages and stimulated with inflammatory toll-like receptor (TLR) agonists in the presence and absence of LRRK2 kinase inhibitors. The effect of LRRK2 inhibitors and the effect of increasing LRRK2 levels with interferon gamma on TLR-stimulated cytokines were also assessed in primary peripheral blood-derived monocytes. Monocytes and macrophages with the LRRK2 G2019S mutation had significantly higher levels of cytokines and chemokines in tissue culture media following stimulation with TLR agonists compared to isogenic controls. Knockout of LRRK2 impaired phagocytosis but did not significantly affect TLR-mediated cytokine levels. Interferon gamma significantly increased the levels of LRRK2 and phosphorylation of its downstream Rab10 substrate, and potentiated TLR-mediated cytokine levels. LRRK2 kinase inhibitors did not have a major effect on TLR-stimulated cytokine levels. Results suggest that the LRRK2 G2019S mutation may potentiate inflammation following activation of TLRs. However, this was not dependent on LRRK2 kinase activity. Indeed, LRRK2 kinase inhibitors had little effect on TLR-mediated inflammation under the conditions employed in this study.
Collapse
|
17
|
Pang SYY, Lo RCN, Ho PWL, Liu HF, Chang EES, Leung CT, Malki Y, Choi ZYK, Wong WY, Kung MHW, Ramsden DB, Ho SL. LRRK2, GBA and their interaction in the regulation of autophagy: implications on therapeutics in Parkinson's disease. Transl Neurodegener 2022; 11:5. [PMID: 35101134 PMCID: PMC8805403 DOI: 10.1186/s40035-022-00281-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GBA) represent two most common genetic causes of Parkinson’s disease (PD). Both genes are important in the autophagic-lysosomal pathway (ALP), defects of which are associated with α-synuclein (α-syn) accumulation. LRRK2 regulates macroautophagy via activation of the mitogen activated protein kinase/extracellular signal regulated protein kinase (MAPK/ERK) kinase (MEK) and the calcium-dependent adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathways. Phosphorylation of Rab GTPases by LRRK2 regulates lysosomal homeostasis and endosomal trafficking. Mutant LRRK2 impairs chaperone-mediated autophagy, resulting in α-syn binding and oligomerization on lysosomal membranes. Mutations in GBA reduce glucocerebrosidase (GCase) activity, leading to glucosylceramide accumulation, α-syn aggregation and broad autophagic abnormalities. LRRK2 and GBA influence each other: GCase activity is reduced in LRRK2 mutant cells, and LRRK2 kinase inhibition can alter GCase activity in GBA mutant cells. Clinically, LRRK2 G2019S mutation seems to modify the effects of GBA mutation, resulting in milder symptoms than those resulting from GBA mutation alone. However, dual mutation carriers have an increased risk of PD and earlier age of onset compared with single mutation carriers, suggesting an additive deleterious effect on the initiation of PD pathogenic processes. Crosstalk between LRRK2 and GBA in PD exists, but its exact mechanism is unclear. Drugs that inhibit LRRK2 kinase or activate GCase are showing efficacy in pre-clinical models. Since LRRK2 kinase and GCase activities are also altered in idiopathic PD (iPD), it remains to be seen if these drugs will be useful in disease modification of iPD.
Collapse
|
18
|
Brown DG, Wobst HJ. A survey of the clinical pipeline in neuroscience. Bioorg Med Chem Lett 2022; 56:128482. [PMID: 34864194 DOI: 10.1016/j.bmcl.2021.128482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022]
Abstract
Many new first-in-class drugs for neuroscience indications have been introduced in the past decade including new treatments for migraine, amyotrophic lateral sclerosis, depression, and multiple sclerosis. However, significant unmet patient needs remain in areas such as chronic pain, neurodegeneration, psychiatric diseases, and epilepsy. This review summarizes some of the advanced clinical compounds for these indications. Additionally, current opportunities and challenges that remain with respect to genetic validation, biomarkers, and translational models are discussed.
Collapse
Affiliation(s)
- Dean G Brown
- Jnana Therapeutics, 6 Tide St, MA 02210, United States.
| | - Heike J Wobst
- Jnana Therapeutics, 6 Tide St, MA 02210, United States
| |
Collapse
|
19
|
LRRK2 signaling in neurodegeneration: two decades of progress. Essays Biochem 2021; 65:859-872. [PMID: 34897411 DOI: 10.1042/ebc20210013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a complex GTPase/kinase orchestrating cytoskeletal dynamics and multiple steps of the endolysosomal pathway through interaction with a host of partners and phosphorylation of a subset of Rab GTPases. Mutations in LRRK2 cause late-onset Parkinson's disease (PD) and common variants in the locus containing LRRK2 have been associated with sporadic PD, progressive supranuclear palsy as well as a number of inflammatory diseases. This review encompasses the major discoveries in the field of LRRK2 pathobiology, from the initial gene cloning to the latest progress in LRRK2 inhibition as a promising therapeutic approach to fight neurodegeneration.
Collapse
|
20
|
Brzozowski CF, Hijaz BA, Singh V, Gcwensa NZ, Kelly K, Boyden ES, West AB, Sarkar D, Volpicelli-Daley LA. Inhibition of LRRK2 kinase activity promotes anterograde axonal transport and presynaptic targeting of α-synuclein. Acta Neuropathol Commun 2021; 9:180. [PMID: 34749824 PMCID: PMC8576889 DOI: 10.1186/s40478-021-01283-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023] Open
Abstract
Pathologic inclusions composed of α-synuclein called Lewy pathology are hallmarks of Parkinson’s Disease (PD). Dominant inherited mutations in leucine rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. Lewy pathology is found in the majority of individuals with LRRK2-PD, particularly those with the G2019S-LRRK2 mutation. Lewy pathology in LRRK2-PD associates with increased non-motor symptoms such as cognitive deficits, anxiety, and orthostatic hypotension. Thus, understanding the relationship between LRRK2 and α-synuclein could be important for determining the mechanisms of non-motor symptoms. In PD models, expression of mutant LRRK2 reduces membrane localization of α-synuclein, and enhances formation of pathologic α-synuclein, particularly when synaptic activity is increased. α-Synuclein and LRRK2 both localize to the presynaptic terminal. LRRK2 plays a role in membrane traffic, including axonal transport, and therefore may influence α-synuclein synaptic localization. This study shows that LRRK2 kinase activity influences α-synuclein targeting to the presynaptic terminal. We used the selective LRRK2 kinase inhibitors, MLi-2 and PF-06685360 (PF-360) to determine the impact of reduced LRRK2 kinase activity on presynaptic localization of α-synuclein. Expansion microscopy (ExM) in primary hippocampal cultures and the mouse striatum, in vivo, was used to more precisely resolve the presynaptic localization of α-synuclein. Live imaging of axonal transport of α-synuclein-GFP was used to investigate the impact of LRRK2 kinase inhibition on α-synuclein axonal transport towards the presynaptic terminal. Reduced LRRK2 kinase activity increases α-synuclein overlap with presynaptic markers in primary neurons, and increases anterograde axonal transport of α-synuclein-GFP. In vivo, LRRK2 inhibition increases α-synuclein overlap with glutamatergic, cortico-striatal terminals, and dopaminergic nigral-striatal presynaptic terminals. The findings suggest that LRRK2 kinase activity plays a role in axonal transport, and presynaptic targeting of α-synuclein. These data provide potential mechanisms by which LRRK2-mediated perturbations of α-synuclein localization could cause pathology in both LRRK2-PD, and idiopathic PD.
Collapse
|
21
|
De Miranda BR, Goldman SM, Miller GW, Greenamyre JT, Dorsey ER. Preventing Parkinson's Disease: An Environmental Agenda. JOURNAL OF PARKINSONS DISEASE 2021; 12:45-68. [PMID: 34719434 PMCID: PMC8842749 DOI: 10.3233/jpd-212922] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fueled by aging populations and continued environmental contamination, the global burden of Parkinson's disease (PD) is increasing. The disease, or more appropriately diseases, have multiple environmental and genetic influences but no approved disease modifying therapy. Additionally, efforts to prevent this debilitating disease have been limited. As numerous environmental contaminants (e.g., pesticides, metals, industrial chemicals) are implicated in PD, disease prevention is possible. To reduce the burden of PD, we have compiled preclinical and clinical research priorities that highlight both disease prediction and primary prevention. Though not exhaustive, the "PD prevention agenda" builds upon many years of research by our colleagues and proposes next steps through the lens of modifiable risk factors. The agenda identifies ten specific areas of further inquiry and considers the funding and policy changes that will be necessary to help prevent the world's fastest growing brain disease.
Collapse
Affiliation(s)
- Briana R De Miranda
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama atBirmingham, Birmingham, AL, USA
| | - Samuel M Goldman
- Division of Occupational and Environmental Medicine, San Francisco VeteransAffairs Health Care System, School of Medicine, University ofCalifornia-San Francisco, San Francisco, CA, USA
| | - Gary W Miller
- Department of Environmnetal Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Universityof Pittsburgh, Pittsburgh, PA, USA
| | - E Ray Dorsey
- Center for Health+Technology and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
22
|
Senkevich K, Rudakou U, Gan-Or Z. New therapeutic approaches to Parkinson's disease targeting GBA, LRRK2 and Parkin. Neuropharmacology 2021; 202:108822. [PMID: 34626666 DOI: 10.1016/j.neuropharm.2021.108822] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is defined as a complex disorder with multifactorial pathogenesis, yet a more accurate definition could be that PD is not a single entity, but rather a mixture of different diseases with similar phenotypes. Attempts to classify subtypes of PD have been made based on clinical phenotypes or biomarkers. However, the most practical approach, at least for a portion of the patients, could be to classify patients based on genes involved in PD. GBA and LRRK2 mutations are the most common genetic causes or risk factors of PD, and PRKN is the most common cause of autosomal recessive form of PD. Patients carrying variants in GBA, LRRK2 or PRKN differ in some of their clinical characteristics, pathology and biochemical parameters. Thus, these three PD-associated genes are of special interest for drug development. Existing therapeutic approaches in PD are strictly symptomatic, as numerous clinical trials aimed at modifying PD progression or providing neuroprotection have failed over the last few decades. The lack of precision medicine approach in most of these trials could be one of the reasons why they were not successful. In the current review we discuss novel therapeutic approaches targeting GBA, LRRK2 and PRKN and discuss different aspects related to these genes and clinical trials.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
23
|
Verma A, Ebanks K, Fok CY, Lewis PA, Bettencourt C, Bandopadhyay R. In silico comparative analysis of LRRK2 interactomes from brain, kidney and lung. Brain Res 2021; 1765:147503. [PMID: 33915162 PMCID: PMC8212912 DOI: 10.1016/j.brainres.2021.147503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/06/2021] [Accepted: 04/23/2021] [Indexed: 01/11/2023]
Abstract
Mutations in LRRK2 are the most frequent cause of familial Parkinson's disease (PD), with common LRRK2 non-coding variants also acting as risk factors for idiopathic PD. Currently, therapeutic agents targeting LRRK2 are undergoing advanced clinical trials in humans, however, it is important to understand the wider implications of LRRK2 targeted treatments given that LRRK2 is expressed in diverse tissues including the brain, kidney and lungs. This presents challenges to treatment in terms of effects on peripheral organ functioning, thus, protein interactors of LRRK2 could be targeted in lieu to optimize therapeutic effects. Herein an in-silico analysis of LRRK2 direct interactors in brain tissue from various brain regionswas conducted along with a comparative analysis of the LRRK2 interactome in the brain, kidney, and lung tissues. This was carried out based on curated protein-protein interaction (PPI) data from protein interaction databases such as HIPPIE, human gene/protein expression databases and Gene ontology (GO) enrichment analysis using Bingo. Seven targets (MAP2K6, MATK, MAPT, PAK6, SH3GL2, CDC42EP3 and CHGB) were found to be viable objectives for LRRK2 based investigations for PD that would have minimal impact on optimal functioning within peripheral organs. Specifically, MAPT, CHGB, PAK6, and SH3GL2 interacted with LRRK2 in the brain and kidney but not in lung tissue whilst LRRK2-MAP2K6 interacted only in the cerebellum and MATK-LRRK2 interaction was absent in kidney tissues. CDC42EP3 expression levels were low in brain tissues compared to kidney/lung. The results of this computational analysis suggest new avenues for experimental investigations towards LRRK2-targeted therapeutics.
Collapse
Affiliation(s)
- Amrita Verma
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Kirsten Ebanks
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Chi-Yee Fok
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Patrick A Lewis
- Royal Veterinary College, Royal College Street, London NW10TV, United Kingdom; Department of Neurodegenerative Disease and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Conceicao Bettencourt
- Department of Neurodegenerative Disease and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom.
| |
Collapse
|
24
|
Kim H, Sim H, Lee JE, Seo MK, Lim J, Bang Y, Nam D, Lee SY, Chung SK, Choi HJ, Park SW, Son I, Kim J, Seol W. Ciliogenesis is Not Directly Regulated by LRRK2 Kinase Activity in Neurons. Exp Neurobiol 2021; 30:232-243. [PMID: 34230223 PMCID: PMC8278138 DOI: 10.5607/en21003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022] Open
Abstract
Mutations in the Leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of familial Parkinson’s disease (PD). The increase in LRRK2 kinase activity observed in the pathogenic G2019S mutation is important for PD development. Several studies have reported that increased LRRK2 kinase activity and treatment with LRRK2 kinase inhibitors decreased and increased ciliogenesis, respectively, in mouse embryonic fibroblasts (MEFs) and retinal pigment epithelium (RPE) cells. In contrast, treatment of SH-SY5Y dopaminergic neuronal cells with PD-causing chemicals increased ciliogenesis. Because these reports were somewhat contradictory, we tested the effect of LRRK2 kinase activity on ciliogenesis in neurons. In SH-SY5Y cells, LRRK2 inhibitor treatment slightly increased ciliogenesis, but serum starvation showed no increase. In rat primary neurons, LRRK2 inhibitor treatment repeatedly showed no significant change. Little difference was observed between primary cortical neurons prepared from wild-type (WT) and G2019S+/- mice. However, a significant increase in ciliogenesis was observed in G2019S+/- compared to WT human fibroblasts, and this pattern was maintained in neural stem cells (NSCs) differentiated from the induced pluripotent stem cells (iPSCs) prepared from the same WT/G2019S fibroblast pair. NSCs differentiated from G2019S and its gene-corrected WT counterpart iPSCs were also used to test ciliogenesis in an isogenic background. The results showed no significant difference between WT and G2019S regardless of kinase inhibitor treatment and B27-deprivation-mimicking serum starvation. These results suggest that LRRK2 kinase activity may be not a direct regulator of ciliogenesis and ciliogenesis varies depending upon the cell type or genetic background.
Collapse
Affiliation(s)
- Hyejung Kim
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| | - Hyuna Sim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Korea
| | - Joo-Eun Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea
| | - Juhee Lim
- College of Pharmacy, CHA University, Seongnam 13496, Korea
| | - Yeojin Bang
- College of Pharmacy, CHA University, Seongnam 13496, Korea
| | - Daleum Nam
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| | - Seo-Young Lee
- Division of Clinical Medicine, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Sun-Ku Chung
- Division of Herbal Medicine Research, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Hyun Jin Choi
- College of Pharmacy, CHA University, Seongnam 13496, Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan 47392, Korea.,Department of Convergence Biomedical Science, Inje University College of Medicine, Busan 47392, Korea
| | - Ilhong Son
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea.,Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| | - Janghwan Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| |
Collapse
|
25
|
Williamson DS, Smith GP, Mikkelsen GK, Jensen T, Acheson-Dossang P, Badolo L, Bedford ST, Chell V, Chen IJ, Dokurno P, Hentzer M, Newland S, Ray SC, Shaw T, Surgenor AE, Terry L, Wang Y, Christensen KV. Design and Synthesis of Pyrrolo[2,3- d]pyrimidine-Derived Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitors Using a Checkpoint Kinase 1 (CHK1)-Derived Crystallographic Surrogate. J Med Chem 2021; 64:10312-10332. [PMID: 34184879 DOI: 10.1021/acs.jmedchem.1c00720] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibitors of leucine-rich repeat kinase 2 (LRRK2) and mutants, such as G2019S, have potential utility in Parkinson's disease treatment. Fragment hit-derived pyrrolo[2,3-d]pyrimidines underwent optimization using X-ray structures of LRRK2 kinase domain surrogates, based on checkpoint kinase 1 (CHK1) and a CHK1 10-point mutant. (2R)-2-Methylpyrrolidin-1-yl derivative 18 (LRRK2 G2019S cKi 0.7 nM, LE 0.66) was identified, with increased potency consistent with an X-ray structure of 18/CHK1 10-pt. mutant showing the 2-methyl substituent proximal to Ala147 (Ala2016 in LRRK2). Further structure-guided elaboration of 18 gave the 2-[(1,3-dimethyl-1H-pyrazol-4-yl)amino] derivative 32. Optimization of 32 afforded diastereomeric oxolan-3-yl derivatives 44 and 45, which demonstrated a favorable in vitro PK profile, although they displayed species disconnects in the in vivo PK profile, and a propensity for P-gp- and/or BCRP-mediated efflux in a mouse model. Compounds 44 and 45 demonstrated high potency and exquisite selectivity for LRRK2 and utility as chemical probes for the study of LRRK2 inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simon T Bedford
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Victoria Chell
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - I-Jen Chen
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Pawel Dokurno
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | | | - Samantha Newland
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Stuart C Ray
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Terry Shaw
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Allan E Surgenor
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Lindsey Terry
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Yikang Wang
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | | |
Collapse
|
26
|
Fanning S, Selkoe D, Dettmer U. Vesicle trafficking and lipid metabolism in synucleinopathy. Acta Neuropathol 2021; 141:491-510. [PMID: 32607605 DOI: 10.1007/s00401-020-02177-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
The neuronal protein α-synuclein (αS) is central to the pathogenesis of Parkinson's disease and other progressive brain diseases such as Lewy body dementia and multiple system atrophy. These diseases, collectively referred to as 'synucleinopathies', have long been considered purely proteinopathies: diseases characterized by the misfolding of a protein into small and large aggregates mainly consisting of that protein (in this case: α-synuclein). However, recent morphological insights into Lewy bodies, the hallmark neuropathology of human synucleinopathies, suggests these lesions are also rich in vesicles and other membranous organelles. Moreover, αS physiology and pathology are both strongly associated with various aspects of intracellular vesicle trafficking and lipid biology. αS physiologically binds to synaptic and other small vesicles, and several functions of αS in regulating vesicle biology have been proposed. Familial PD-linked αS excess and missense mutations have been shown to impair vesicle trafficking and alter lipid homeostasis. On the other hand, vesicle trafficking and lipid-related genes have emerged as Parkinson's risk factors, suggesting a bidirectional relationship. The answer to the question "Does abnormal αS accumulation cause impaired vesicle trafficking and lipid dyshomeostasis or is αS aggregation the consequence of such impairments?" may be "Both". Here, we review current knowledge of the αS-lipid and αS-vesicle trafficking interplay, with a special focus on Parkinson's disease and Lewy body dementia.
Collapse
|
27
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
28
|
Liu Z, Cheung HH. Stem Cell-Based Therapies for Parkinson Disease. Int J Mol Sci 2020; 21:ijms21218060. [PMID: 33137927 PMCID: PMC7663462 DOI: 10.3390/ijms21218060] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson disease (PD) is a neurological movement disorder resulting primarily from damage to and degeneration of the nigrostriatal dopaminergic pathway. The pathway consists of neural populations in the substantia nigra that project to the striatum of the brain where they release dopamine. Diagnosis of PD is based on the presence of impaired motor features such as asymmetric or unilateral resting tremor, bradykinesia, and rigidity. Nonmotor features including cognitive impairment, sleep disorders, and autonomic dysfunction are also present. No cure for PD has been discovered, and treatment strategies focus on symptomatic management through restoration of dopaminergic activity. However, proposed cell replacement therapies are promising because midbrain dopaminergic neurons have been shown to restore dopaminergic neurotransmission and functionally rescue the dopamine-depleted striatum. In this review, we summarize our current understanding of the molecular pathogenesis of neurodegeneration in PD and discuss the development of new therapeutic strategies that have led to the initiation of exploratory clinical trials. We focus on the applications of stem cells for the treatment of PD and discuss how stem cell research has contributed to an understanding of PD, predicted the efficacy of novel neuroprotective therapeutics, and highlighted what we believe to be the critical areas for future research.
Collapse
Affiliation(s)
- Zhaohui Liu
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Hoi-Hung Cheung
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
- Correspondence:
| |
Collapse
|
29
|
Gonzalez-Hunt CP, Thacker EA, Toste CM, Boularand S, Deprets S, Dubois L, Sanders LH. Mitochondrial DNA damage as a potential biomarker of LRRK2 kinase activity in LRRK2 Parkinson's disease. Sci Rep 2020; 10:17293. [PMID: 33057100 PMCID: PMC7557909 DOI: 10.1038/s41598-020-74195-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for the treatment of Parkinson's disease (PD) and LRRK2 kinase inhibitors are currently being tested in early phase clinical trials. In order to ensure the highest chance of success, a biomarker-guided entry into clinical trials is key. LRRK2 phosphorylation, and phosphorylation of the LRRK2 substrate Rab10, have been proposed as target engagement biomarkers for LRRK2 kinase inhibition. However, a pharmacodynamic biomarker to demonstrate that a biological response has occurred is lacking. We previously discovered that the LRRK2 G2019S mutation causes mitochondrial DNA (mtDNA) damage and is LRRK2 kinase activity-dependent. Here, we have explored the possibility that measurement of mtDNA damage is a "surrogate" for LRRK2 kinase activity and consequently of kinase inhibitor activity. Mitochondrial DNA damage was robustly increased in PD patient-derived immune cells with LRRK2 G2019S mutations as compared with controls. Following treatment with multiple classes of LRRK2 kinase inhibitors, a full reversal of mtDNA damage to healthy control levels was observed and correlated with measures of LRRK2 dephosphorylation. Taken together, assessment of mtDNA damage levels may be a sensitive measure of altered kinase activity and provide an extended profile of LRRK2 kinase modulation in clinical studies.
Collapse
Affiliation(s)
- C P Gonzalez-Hunt
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - E A Thacker
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - C M Toste
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - S Boularand
- Rare & Neurologic Diseases Research, Sanofi, Chilly Mazarin, France
| | - S Deprets
- Rare & Neurologic Diseases Research, Sanofi, Chilly Mazarin, France
| | - L Dubois
- Rare & Neurologic Diseases Research, Sanofi, Chilly Mazarin, France
| | - L H Sanders
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
30
|
Dawson VL, Dawson TM. Promising disease-modifying therapies for Parkinson's disease. Sci Transl Med 2020; 11:11/520/eaba1659. [PMID: 31776289 DOI: 10.1126/scitranslmed.aba1659] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
To date, there is no disease-modifying therapy for Parkinson's disease; however, promising new agents have advanced into clinical trials.
Collapse
Affiliation(s)
- Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Kuhlmann N, Milnerwood AJ. A Critical LRRK at the Synapse? The Neurobiological Function and Pathophysiological Dysfunction of LRRK2. Front Mol Neurosci 2020; 13:153. [PMID: 32973447 PMCID: PMC7482583 DOI: 10.3389/fnmol.2020.00153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Since the discovery of LRRK2 mutations causal to Parkinson's disease (PD) in the early 2000s, the LRRK2 protein has been implicated in a plethora of cellular processes in which pathogenesis could occur, yet its physiological function remains elusive. The development of genetic models of LRRK2 PD has helped identify the etiological and pathophysiological underpinnings of the disease, and may identify early points of intervention. An important role for LRRK2 in synaptic function has emerged in recent years, which links LRRK2 to other genetic forms of PD, most notably those caused by mutations in the synaptic protein α-synuclein. This point of convergence may provide useful clues as to what drives dysfunction in the basal ganglia circuitry and eventual death of substantia nigra (SN) neurons. Here, we discuss the evolution and current state of the literature placing LRRK2 at the synapse, through the lens of knock-out, overexpression, and knock-in animal models. We hope that a deeper understanding of LRRK2 neurobiology, at the synapse and beyond, will aid the eventual development of neuroprotective interventions for PD, and the advancement of useful treatments in the interim.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Austen J Milnerwood
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Zhao Y, Keshiya S, Perera G, Schramko L, Halliday GM, Dzamko N. LRRK2 kinase inhibitors reduce alpha-synuclein in human neuronal cell lines with the G2019S mutation. Neurobiol Dis 2020; 144:105049. [PMID: 32800998 DOI: 10.1016/j.nbd.2020.105049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 11/28/2022] Open
Abstract
Kinase activating missense mutations in leucine-rich repeat kinase 2 (LRRK2) predispose to Parkinson's disease. Consequently, there is much interest in delineating LRRK2 biology, both in terms of gaining further insight into disease causes, and also determining whether or not LRRK2 is a potential Parkinson's disease therapeutic target. Indeed, many potent and selective small molecule inhibitors of LRRK2 have been developed and are currently being used for pre-clinical testing in cell and animal models. In the current study, we have obtained fibroblasts from four subjects with the common LRRK2 mutation, G2019S. Fibroblasts were reprogrammed to induced pluripotent stem cells and then to neural stem cells and ultimately neurons. Two clones for each of the human neural cell lines were then chronically treated with and without either of two distinct inhibitors of LRRK2 and effects on toxicity and Parkinson's disease related phenotypes were assessed. Cells with the G2019S mutation had a propensity to accumulate the pathological Parkinson's disease protein α-synuclein. Moreover, α-synuclein accumulation in the G2019S cells was significantly reduced with both LRRK2 inhibitors in seven of the eight cell lines studied. LRRK2 inhibitors also improved the nuclear morphology of G2019S cells and impacted on measures of autophagy and endoplasmic reticulum stress. Lastly, we did not find evidence of inhibitor toxicity under the chronic treatment conditions. These results add to evidence that LRRK2 inhibitors may have utility in the treatment of Parkinson's disease via reducing α-synuclein.
Collapse
Affiliation(s)
- Ye Zhao
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Shikara Keshiya
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Gayathri Perera
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Lauren Schramko
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Nicolas Dzamko
- Neuroscience Research Australia, Sydney NSW 2031 & School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW 2052, Australia; Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
33
|
Mancini A, Mazzocchetti P, Sciaccaluga M, Megaro A, Bellingacci L, Beccano-Kelly DA, Di Filippo M, Tozzi A, Calabresi P. From Synaptic Dysfunction to Neuroprotective Strategies in Genetic Parkinson's Disease: Lessons From LRRK2. Front Cell Neurosci 2020; 14:158. [PMID: 32848606 PMCID: PMC7399363 DOI: 10.3389/fncel.2020.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) is thought to rely on a complex interaction between the patient’s genetic background and a variety of largely unknown environmental factors. In this scenario, the investigation of the genetic bases underlying familial PD could unveil key molecular pathways to be targeted by new disease-modifying therapies, still currently unavailable. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are responsible for the majority of inherited familial PD cases and can also be found in sporadic PD, but the pathophysiological functions of LRRK2 have not yet been fully elucidated. Here, we will review the evidence obtained in transgenic LRRK2 experimental models, characterized by altered striatal synaptic transmission, mitochondrial dysfunction, and α-synuclein aggregation. Interestingly, the processes triggered by mutant LRRK2 might represent early pathological phenomena in the pathogenesis of PD, anticipating the typical neurodegenerative features characterizing the late phases of the disease. A comprehensive view of LRRK2 neuronal pathophysiology will support the possible clinical application of pharmacological compounds targeting this protein, with potential therapeutic implications for patients suffering from both familial and sporadic PD.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Petra Mazzocchetti
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alfredo Megaro
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Dayne A Beccano-Kelly
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Alessandro Tozzi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Neuroscience Department, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
34
|
Toffoli M, Vieira SRL, Schapira AHV. Genetic causes of PD: A pathway to disease modification. Neuropharmacology 2020; 170:108022. [PMID: 32119885 DOI: 10.1016/j.neuropharm.2020.108022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
The underline neuropathology of Parkinson disease is pleiomorphic and its genetic background diverse. Possibly because of this heterogeneity, no effective disease modifying therapy is available. In this paper we give an overview of the genetics of Parkinson disease and explain how this is relevant for the development of new therapies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- M Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - S R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - A H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
35
|
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech 2020; 13:13/4/dmm043448. [PMID: 32433026 PMCID: PMC7197876 DOI: 10.1242/dmm.043448] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders. Summary: This At a Glance article and poster summarise the major intracellular membrane trafficking pathways and associated molecular machineries, and describe how defects in these give rise to disease in humans.
Collapse
Affiliation(s)
- Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Philip G Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
36
|
Ahmadi Rastegar D, Dzamko N. Leucine Rich Repeat Kinase 2 and Innate Immunity. Front Neurosci 2020; 14:193. [PMID: 32210756 PMCID: PMC7077357 DOI: 10.3389/fnins.2020.00193] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
For more than a decade, researchers have sought to uncover the biological function of the enigmatic leucine rich repeat kinase 2 (LRRK2) enzyme, a large multi-domain protein with dual GTPase and kinase activities. Originally identified as a familial Parkinson's disease (PD) risk gene, variations in LRRK2 are also associated with risk of idiopathic PD, inflammatory bowel disease and susceptibility to bacterial infections. LRRK2 is highly expressed in peripheral immune cells and the potential of LRRK2 to regulate immune and inflammatory pathways has emerged as common link across LRRK2-implicated diseases. This review outlines the current genetic and biochemical evidence linking LRRK2 to the regulation of innate immune inflammatory pathways, including the toll-like receptor and inflammasome pathways. Evidence suggests a complex interplay between genetic risk and protective alleles acts to modulate immune outcomes in a manner dependent on the particular pathogen and cell type invaded.
Collapse
Affiliation(s)
| | - Nicolas Dzamko
- Brain and Mind Centre, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
37
|
Vermilyea SC, Babinski A, Tran N, To S, Guthrie S, Kluss JH, Schmidt JK, Wiepz GJ, Meyer MG, Murphy ME, Cookson MR, Emborg ME, Golos TG. In Vitro CRISPR/Cas9-Directed Gene Editing to Model LRRK2 G2019S Parkinson's Disease in Common Marmosets. Sci Rep 2020; 10:3447. [PMID: 32103062 PMCID: PMC7044232 DOI: 10.1038/s41598-020-60273-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) G2019S is a relatively common mutation, associated with 1-3% of Parkinson's disease (PD) cases worldwide. G2019S is hypothesized to increase LRRK2 kinase activity. Dopaminergic neurons derived from induced pluripotent stem cells of PD patients carrying LRRK2 G2019S are reported to have several phenotypes compared to wild type controls, including increased activated caspase-3 and reactive oxygen species (ROS), autophagy dysfunction, and simplification of neurites. The common marmoset is envisioned as a candidate nonhuman primate species for comprehensive modeling of genetic mutations. Here, we report our successful use of CRISPR/Cas9 with repair template-mediated homology directed repair to introduce the LRRK2 G2019S mutation, as well as a truncation of the LRRK2 kinase domain, into marmoset embryonic and induced pluripotent stem cells. We found that, similar to humans, marmoset LRRK2 G2019S resulted in elevated kinase activity. Phenotypic evaluation after dopaminergic differentiation demonstrated LRRK2 G2019S-mediated increased intracellular ROS, decreased neuronal viability, and reduced neurite complexity. Importantly, these phenotypes were not observed in clones with LRRK2 truncation. These results demonstrate the feasibility of inducing monogenic mutations in common marmosets and support the use of this species for generating a novel genetic-based model of PD that expresses physiological levels of LRRK2 G2019S.
Collapse
Affiliation(s)
- Scott C Vermilyea
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Alexander Babinski
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nina Tran
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha To
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott Guthrie
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jillian H Kluss
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Gregory J Wiepz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael G Meyer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Megan E Murphy
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Marina E Emborg
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Departments of Comparative Biosciences and Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
38
|
Abstract
Introduction: Disease-modifying treatment for Parkinson's disease (PD) to halt or revert the disease progression remains an unmet medical need. LRRK2 kinase activity is abnormally elevated in PD patients carrying LRRK2 mutations, with G2019S as the most frequent one. Small molecules to inhibit LRRK2 kinase activity might provide a potential disease-modifying strategy for PD.Areas covered: This review provides an update of small molecule LRRK2 inhibitors in patents published from January 2014 to October 2019. The molecules are classified by their structural scaffolds.Expert opinion: Despite the tremendous efforts to push small molecule LRRK2 inhibitors toward clinical trials, the overall progress is somewhat disappointing due to the challenges in compound optimization and the putative concern of target-related adverse effects. It is challenging to optimize multiple parameters including kinase selectivity, CNS penetration, and unbound fraction in brain simultaneously. In addition, the on-target effect of morphologic changes observed in lung/kidney in pre-clinical studies for several frontrunner ATP-competitive inhibitors prevented their further development. With this regard, non-ATP-competitive inhibitors may provide a different safety profile for development. DNL201 and DNL151 have entered early clinical trials to evaluate tolerability and target engagement biomarkers. This will pave the way for the development for future LRRK2 inhibitors.
Collapse
Affiliation(s)
- Xiao Ding
- Department of Chemistry and Biology, Shanghai Medicilon Inc., Shanghai, China
| | - Feng Ren
- Department of Chemistry and Biology, Shanghai Medicilon Inc., Shanghai, China
| |
Collapse
|
39
|
Cogo S, Manzoni C, Lewis PA, Greggio E. Leucine-rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease. J Neurochem 2020; 152:273-283. [PMID: 31693760 DOI: 10.1111/jnc.14908] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Abstract
Over the last two decades, a number of studies have underlined the importance of lysosomal-based degradative pathways in maintaining the homeostasis of post-mitotic cells, and revealed the remarkable contribution of a functional autophagic machinery in the promotion of longevity. In contrast, defects in the clearance of organelles and aberrant protein aggregates have been linked to accelerated neuronal loss and neurological dysfunction. Several neurodegenerative disorders, among which Alzheimer disease (AD), Frontotemporal dementia, and Amyotrophic Lateral Sclerosis to name a few, are associated with alterations of the autophagy and endo-lysosomal pathways. In Parkinson disease (PD), the most prevalent genetic determinant, Leucine-rich repeat kinase 2 (LRRK2), is believed to be involved in the regulation of intracellular vesicle traffic, autophagy and lysosomal function. Here, we review the current understanding of the mechanisms by which LRRK2 regulates lysosomal-based degradative pathways in neuronal and non-neuronal cells and discuss the impact of pathogenic PD mutations in contributing to lysosomal dyshomeostasis.
Collapse
Affiliation(s)
- Susanna Cogo
- Department of Biology, University of Padova, Padova, Italy
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Reading, UK
- Department of Neurodegenerative Diseases, University College London, London, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Reading, UK
- Department of Neurodegenerative Diseases, University College London, London, UK
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
40
|
Albanese F, Novello S, Morari M. Autophagy and LRRK2 in the Aging Brain. Front Neurosci 2019; 13:1352. [PMID: 31920513 PMCID: PMC6928047 DOI: 10.3389/fnins.2019.01352] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a highly conserved process by which long-lived macromolecules, protein aggregates and dysfunctional/damaged organelles are delivered to lysosomes for degradation. Autophagy plays a crucial role in regulating protein quality control and cell homeostasis in response to energetic needs and environmental challenges. Indeed, activation of autophagy increases the life-span of living organisms, and impairment of autophagy is associated with several human disorders, among which neurodegenerative disorders of aging, such as Parkinson’s disease. These disorders are characterized by the accumulation of aggregates of aberrant or misfolded proteins that are toxic for neurons. Since aging is associated with impaired autophagy, autophagy inducers have been viewed as a strategy to counteract the age-related physiological decline in brain functions and emergence of neurodegenerative disorders. Parkinson’s disease is a hypokinetic, multisystemic disorder characterized by age-related, progressive degeneration of central and peripheral neuronal populations, associated with intraneuronal accumulation of proteinaceous aggregates mainly composed by the presynaptic protein α-synuclein. α-synuclein is a substrate of macroautophagy and chaperone-mediated autophagy (two major forms of autophagy), thus impairment of its clearance might favor the process of α-synuclein seeding and spreading that trigger and sustain the progression of this disorder. Genetic factors causing Parkinson’s disease have been identified, among which mutations in the LRRK2 gene, which encodes for a multidomain protein encompassing central GTPase and kinase domains, surrounded by protein-protein interaction domains. Six LRRK2 mutations have been pathogenically linked to Parkinson’s disease, the most frequent being the G2019S in the kinase domain. LRRK2-associated Parkinson’s disease is clinically and neuropathologically similar to idiopathic Parkinson’s disease, also showing age-dependency and incomplete penetrance. Several mechanisms have been proposed through which LRRK2 mutations can lead to Parkinson’s disease. The present article will focus on the evidence that LRRK2 and its mutants are associated with autophagy dysregulation. Studies in cell lines and neurons in vitro and in LRRK2 knock-out, knock-in, kinase-dead and transgenic animals in vivo will be reviewed. The role of aging in LRRK2-induced synucleinopathy will be discussed. Possible mechanisms underlying the LRRK2-mediated control over autophagy will be analyzed, and the contribution of autophagy dysregulation to the neurotoxic actions of LRRK2 will be examined.
Collapse
Affiliation(s)
- Federica Albanese
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Morari
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
41
|
Djulbegovic MB, Uversky VN. Expanding the understanding of the heterogeneous nature of melanoma with bioinformatics and disorder-based proteomics. Int J Biol Macromol 2019; 150:1281-1293. [PMID: 31743721 DOI: 10.1016/j.ijbiomac.2019.10.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
The past few decades show that incidences of melanoma are on the rise. The risk associated with this disease is an interplay between genetic and host factors and sun exposure. While scientific progress in the treatment of melanoma is remarkable, additional research is needed to improve patient outcomes and to better understand the heterogenous nature of this disease. Fortunately, as the clinical community enters the era of "big data" and personalized medicine, the rise of bioinformatics that stems from recent advances in high throughout profiling of biological information offers potential for innovative treatment options. This study aims to provide an example of the usefulness of bioinformatics and disorder-based proteomics to identify the molecular pathway in melanoma, garner information on selected proteins from this pathway and uncover their intrinsically disordered proteins regions (IDPRs) and investigate functionality implicated in these IDPRs. The present study provides a new look at the melanoma heterogeneity and suggests that, in addition to the well-established genetic heterogeneity of melanoma, there is another level of heterogeneity that lies within the conformational ensembles that stem from intrinsic disorder in melanoma-related proteins. The hope is that these insights will inspire future drug discovery campaigns.
Collapse
Affiliation(s)
- Mak B Djulbegovic
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
42
|
Dysautonomia in the synucleinopathies: not just orthostatic hypotension. Clin Auton Res 2019; 29:547-548. [DOI: 10.1007/s10286-019-00645-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
|