1
|
Yahya DN, Guad RM, Wu YS, Gan SH, Gopinath SCB, Zakariah HA, Rashid RA, Sim MS. SLC1A2 Gene Polymorphism Influences Methamphetamine-Induced Psychosis. J Pers Med 2023; 13:jpm13020270. [PMID: 36836504 PMCID: PMC9964684 DOI: 10.3390/jpm13020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
SLC1A2 is a gene encoded for the excitatory amino acid transporter 2 which is responsible for glutamate reuptake from the synaptic cleft in the central nervous system. Recent studies have suggested that polymorphisms on glutamate transporters can affect drug dependence, leading to the development of neurological diseases and psychiatric disorders. Our study investigated the association of rs4755404 single nucleotide polymorphism (SNP) of the SLC1A2 gene with methamphetamine (METH) dependence and METH-induced psychosis and mania in a Malaysian population. The rs4755404 gene polymorphism was genotyped in METH-dependent male subjects (n = 285) and male control subjects (n = 251). The subjects consisted of the four ethnic groups in Malaysia (Malay, Chinese, Kadazan-Dusun, and Bajau). Interestingly, there was a significant association between rs4755404 polymorphism and METH-induced psychosis in the pooled METH-dependent subjects in terms of genotype frequency (p = 0.041). However, there was no significant association between rs4755404 polymorphism and METH dependence. Also, the rs455404 polymorphism was not significantly associated with METH-induced mania for both genotype frequencies and allele frequencies in the METH-dependent subjects, regardless of stratification into the different ethnicities. Our study suggests that the SLC1A2 rs4755404 gene polymorphism confers some susceptibility to METH-induced psychosis, especially for those who carry the GG homozygous genotype.
Collapse
Affiliation(s)
- Dayang Nooreffazleen Yahya
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (R.M.G.); (M.S.S.)
| | - Yuan-Seng Wu
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau 02600, Malaysia
| | - Hasif Adli Zakariah
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Rusdi Abdul Rashid
- Department of Psychological Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (R.M.G.); (M.S.S.)
| |
Collapse
|
2
|
Roy PK, Rajesh Y, Mandal M. Therapeutic targeting of membrane-associated proteins in central nervous system tumors. Exp Cell Res 2021; 406:112760. [PMID: 34339674 DOI: 10.1016/j.yexcr.2021.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The activity of the most complex system, the central nervous system (CNS) is profoundly regulated by a huge number of membrane-associated proteins (MAP). A minor change stimulates immense chemical changes and the elicited response is organized by MAP, which acts as a receptor of that chemical or channel enabling the flow of ions. Slight changes in the activity or expression of these MAPs lead to severe consequences such as cognitive disorders, memory loss, or cancer. CNS tumors are heterogeneous in nature and hard-to-treat due to random mutations in MAPs; like as overexpression of EGFRvIII/TGFβR/VEGFR, change in adhesion molecules α5β3 integrin/SEMA3A, imbalance in ion channel proteins, etc. Extensive research is under process for developing new therapeutic approaches using these proteins such as targeted cytotoxic radiotherapy, drug-delivery, and prodrug activation, blocking of receptors like GluA1, developing viral vector against cell surface receptor. The combinatorial approach of these strategies along with the conventional one might be more potential. Henceforth, our review focuses on in-depth analysis regarding MAPs aiming for a better understanding for developing an efficient therapeutic approach for targeting CNS tumors.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
3
|
Blacker CJ, Millischer V, Webb LM, Ho AM, Schalling M, Frye MA, Veldic M. EAAT2 as a Research Target in Bipolar Disorder and Unipolar Depression: A Systematic Review. MOLECULAR NEUROPSYCHIATRY 2020; 5:44-59. [PMID: 32399469 PMCID: PMC7206595 DOI: 10.1159/000501885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
Glutamate is implicated in the neuropathology of both major depressive disorder and bipolar disorder. Excitatory amino acid transporter 2 (EAAT2) is the major glutamate transporter in the mammalian brain, removing glutamate from the synaptic cleft and transporting it into glia for recycling. It is thereby the principal regulator of extracellular glutamate levels and prevents neuronal excitotoxicity. EAAT2 is a promising target for elucidating the mechanisms by which the glutamate-glutamine cycle interacts with neuronal systems in mood disorders. Forty EAAT2 studies (published January 1992-January 2018) were identified via a systematic literature search. The studies demonstrated that chronic stress/steroids were most commonly associated with decreased EAAT2. In rodents, EAAT2 inhibition worsened depressive behaviors. Human EAAT2 expression usually decreased in depression, with some regional brain differences. Fewer data have been collected regarding the roles and regulation of EAAT2 in bipolar disorder. Future directions for research include correlating EAAT2 and glutamate levels in vivo, elucidating genetic variability and epigenetic regulation, clarifying intracellular protein and pharmacologic interactions, and examining EAAT2 in different bipolar mood states. As part of a macromolecular complex within glia, EAAT2 may contribute significantly to intracellular signaling, energy regulation, and cellular homeostasis. An enhanced understanding of this system is needed.
Collapse
Affiliation(s)
- Caren J. Blacker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden
- Neurogenetics Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lauren M. Webb
- Mayo Medical School, Mayo Clinic, Rochester, Minnesota, USA
| | - Ada M.C. Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Martin Schalling
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden
- Neurogenetics Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019; 161:107559. [PMID: 30851309 PMCID: PMC6731169 DOI: 10.1016/j.neuropharm.2019.03.002] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
5
|
Alam MA, Datta PK. Epigenetic Regulation of Excitatory Amino Acid Transporter 2 in Neurological Disorders. Front Pharmacol 2019; 10:1510. [PMID: 31920679 PMCID: PMC6927272 DOI: 10.3389/fphar.2019.01510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
Excitatory amino acid transporter 2 (EAAT2) is the predominant astrocyte glutamate transporter involved in the reuptake of the majority of the synaptic glutamate in the mammalian central nervous system (CNS). Gene expression can be altered without changing DNA sequences through epigenetic mechanisms. Mechanisms of epigenetic regulation, include DNA methylation, post-translational modifications of histones, chromatin remodeling, and small non-coding RNAs. This review is focused on neurological disorders, such as glioblastoma multiforme (GBM), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), bipolar disorder (BD), and neuroHIV where there is evidence that epigenetics plays a role in the reduction of EAAT2 expression. The emerging field of pharmaco-epigenetics provides a novel avenue for epigenetics-based drug therapy. This review highlights findings on the role of epigenetics in the regulation of EAAT2 in different neurological disorders and discusses the current pharmacological approaches used and the potential use of novel therapeutic approaches to induce EAAT2 expression in neurological disorders using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Afaque Alam
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Prasun K Datta
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Thaweethee B, Suttajit S, Thanoi S, Dalton CF, Reynolds GP, Nudmamud-Thanoi S. Association of SLC1A2 and SLC17A7 polymorphisms with major depressive disorder in a Thai population. ASIAN BIOMED 2019. [DOI: 10.1515/abm-2019-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Major depressive disorder (MDD) is a common psychiatric disorder with high prevalence and high risk of suicide. Genetic variation of glutamate transporters may associate with MDD and suicide attempt.
Objectives
To evaluate polymorphisms of excitatory amino acid transporter 2 gene (SLC1A2; rs752949, rs1885343, rs4755404, and rs4354668) and vesicular glutamate transporter 1 gene (SLC17A7; rs1043558, rs2946848, and rs11669017) in patients with MDD with and without suicide attempt, and determine the association of these polymorphisms with age of onset and severity of MDD.
Methods
DNA was extracted from blood taken from patients with MDD (n = 100; including nonsuicidal [n = 50] and suicidal [n = 50] subgroups) and controls (n = 100). Genotyping was conducted using TaqMan single-nucleotide polymorphism (SNP) genotyping.
Results
We found a significant difference in SLC17A7 rs2946848 genotype distribution between patients in the MDD and control groups (P = 0.016). Moreover, significant differences in SLC1A2 rs752949 (P = 0.022) and SLC17A7 rs2946848 (P = 0.026) genotype distributions were observed between patients in the nonsuicidal MDD and suicidal MDD groups. SLC1A2 rs1885343 A allele carriers showed significantly lower age of onset than GG genotype (P = 0.049). Furthermore, the severity of MDD indicated by the Hamilton Depression Rating Scale (HDRS) score of G allele carriers of SLC1A2 rs4755404 was significantly greater than the CC genotype (P = 0.013).
Conclusions
Polymorphisms of SLC1A2 and SLC17A7 may contribute to the risk of MDD and/or suicide attempt. An association of an SLC1A2 polymorphism with the severity of MDD was apparent.
Collapse
Affiliation(s)
- Benjamard Thaweethee
- Department of Anatomy, Faculty of Medical Science, Naresuan University , Phitsanulok 65000 , Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University , Phitsanulok 65000 , Thailand
| | - Sirijit Suttajit
- Department of Psychiatry, Faculty of Medicine, Chiang Mai University , Chiang Mai 50200 , Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University , Phitsanulok 65000 , Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University , Phitsanulok 65000 , Thailand
| | - Caroline F. Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University , Sheffield S1 1WB , UK
| | - Gavin P. Reynolds
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University , Phitsanulok 65000 , Thailand
- Biomolecular Sciences Research Centre, Sheffield Hallam University , Sheffield S1 1WB , UK
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University , Phitsanulok 65000 , Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University , Phitsanulok 65000 , Thailand
| |
Collapse
|
7
|
Merk W, Kucia K, Mędrala T, Kowalczyk M, Owczarek A, Kowalski J. Association study of the excitatory amino acid transporter 2 (EAAT2) and glycine transporter 1 (GlyT1) gene polymorphism with schizophrenia in a Polish population. Neuropsychiatr Dis Treat 2019; 15:989-1000. [PMID: 31118638 PMCID: PMC6499478 DOI: 10.2147/ndt.s194924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/14/2019] [Indexed: 01/28/2023] Open
Abstract
Background: Excitatory amino acid transporter 2 encoded by SLC1A2 is responsible for approximately 90% of glutamate uptake. Glycine transporter 1, encoded by SLC6A9, is responsible for maintaining a low concentration of the N-methyl-D-aspartate receptor (NMDAR) co-agonist - glycine in the synaptic cleft, suggesting its participation in the development of the NMDARs hypofunction described in schizophrenia. Aim: The aim of this study was to evaluate whether the functional polymorphism-181 A/C (rs4354668) of the SLC1A2 and the rs2486001 (IVS3+411 G/A) in the SLC6A9 are involved in schizophrenia development and its clinical picture in the Polish population. Methods: The study group consisted of 393 unrelated Caucasian patients (157 [39.9%] females and 236 [60.1%] males; mean age 41±12) diagnosed with schizophrenia according to the DSM-5, and 462 healthy controls. The results of the Positive and Negative Syndrome Scale (PANSS) were presented in the five-dimensional model. Polymorphisms of SLC1A2 and SLC6A9 were genotyped with the use of PCR-RFLP assay. Results: There were no statistically significant differences in the frequency of genotypes and alleles between the patients and controls for SLC1A2 and SLC6A9 polymorphisms in either the entire sample or after stratification according to gender. In the haplotype analysis, men with CA haplotype had more than 1.5 higher risk to develop schizophrenia than women (OR=1.63 [95% CI=1.17-2.27, p<0.05]). The influence of gender, genotypes of both analyzed polymorphisms and gender x genotype interactions on individual dimensions of the PANSS scale has not been observed. Also, there was no association of either polymorphism with suicide attempts. Conclusion: The results of the present study did not indicate an association of polymorphism-181 A/C (rs4354668) in SLC1A2 and rs2486001 in SLC6A9 with onset of schizophrenia and its psychopathology in a Polish population.
Collapse
Affiliation(s)
- Wojciech Merk
- Department of Psychiatry and Psychotherapy, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Krzysztof Kucia
- Department of Psychiatry and Psychotherapy, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Mędrala
- Department of Psychiatry and Psychotherapy, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Kowalczyk
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Aleksander Owczarek
- Division of Statistics, Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.,Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Jan Kowalski
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
8
|
Hayashi MK. Structure-Function Relationship of Transporters in the Glutamate-Glutamine Cycle of the Central Nervous System. Int J Mol Sci 2018; 19:ijms19041177. [PMID: 29649168 PMCID: PMC5979278 DOI: 10.3390/ijms19041177] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Many kinds of transporters contribute to glutamatergic excitatory synaptic transmission. Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters to be released from presynaptic terminals. After synaptic vesicle release, glutamate is taken up by neurons or astrocytes to terminate the signal and to prepare for the next signal. Glutamate transporters on the plasma membrane are responsible for transporting glutamate from extracellular fluid to cytoplasm. Glutamate taken up by astrocyte is converted to glutamine by glutamine synthetase and transported back to neurons through glutamine transporters on the plasma membranes of the astrocytes and then on neurons. Glutamine is converted back to glutamate by glutaminase in the neuronal cytoplasm and then loaded into synaptic vesicles again. Here, the structures of glutamate transporters and glutamine transporters, their conformational changes, and how they use electrochemical gradients of various ions for substrate transport are summarized. Pharmacological regulations of these transporters are also discussed.
Collapse
Affiliation(s)
- Mariko Kato Hayashi
- School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan.
| |
Collapse
|
9
|
Harit T, Malek F. Elaboration of new thin solid membrane bearing a tetrapyrazolic macrocycle for the selective transport of lithium cation. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Jia YF, Choi Y, Ayers-Ringler JR, Biernacka JM, Geske JR, Lindberg DR, McElroy SL, Frye MA, Choi DS, Veldic M. Differential SLC1A2 Promoter Methylation in Bipolar Disorder With or Without Addiction. Front Cell Neurosci 2017; 11:217. [PMID: 28785205 PMCID: PMC5520464 DOI: 10.3389/fncel.2017.00217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 12/15/2022] Open
Abstract
While downregulation of excitatory amino acid transporter 2 (EAAT2), the main transporter removing glutamate from the synapse, has been recognized in bipolar disorder (BD), the underlying mechanisms of downregulation have not been elucidated. BD is influenced by environmental factors, which may, via epigenetic modulation of gene expression, differentially affect illness presentation. This study thus focused on epigenetic DNA methylation regulation of SLC1A2, encoding for EAAT2, in BD with variable environmental influences of addiction. High resolution melting PCR (HRM-PCR) and thymine–adenine (TA) cloning with sequence analysis were conducted to examine methylation of the promoter region of the SLC1A2. DNA was isolated from blood samples drawn from BD patients (N = 150) with or without addiction to alcohol, nicotine, or food, defined as binge eating, and matched controls (N = 32). In comparison to controls, the SLC1A2 promoter region was hypermethylated in BD without addiction but was hypomethylated in BD with addiction. After adjusting for age and sex, the association of methylation levels with nicotine addiction (p = 0.0009) and binge eating (p = 0.0002) remained significant. Consistent with HRM-PCR, direct sequencing revealed increased methylation in CpG site 6 in BD, but decreased methylation in three CpG sites (6, 48, 156) in BD with alcohol and nicotine addictions. These results suggest that individual point methylation within the SLC1A2 promoter region may be modified by exogenous addiction and may have a potential for developing clinically valuable epigenetic biomarkers for BD diagnosis and monitoring.
Collapse
Affiliation(s)
- Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, RochesterMN, United States
| | - YuBin Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, RochesterMN, United States
| | | | - Joanna M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, RochesterMN, United States.,Division of Biomedical Statistics and Informatics, Mayo Clinic, RochesterMN, United States
| | - Jennifer R Geske
- Division of Biomedical Statistics and Informatics, Mayo Clinic, RochesterMN, United States
| | - Daniel R Lindberg
- Neurobiology of Disease Program, Mayo Graduate School, Mayo Clinic, RochesterMN, United States
| | - Susan L McElroy
- Lindner Center of HOPE, MasonOH, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, CincinnatiOH, United States
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, RochesterMN, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, RochesterMN, United States.,Neurobiology of Disease Program, Mayo Graduate School, Mayo Clinic, RochesterMN, United States.,Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, RochesterMN, United States
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, RochesterMN, United States
| |
Collapse
|
11
|
Higgins GA, Allyn-Feuer A, Georgoff P, Nikolian V, Alam HB, Athey BD. Mining the topography and dynamics of the 4D Nucleome to identify novel CNS drug pathways. Methods 2017; 123:102-118. [PMID: 28385536 DOI: 10.1016/j.ymeth.2017.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
The pharmacoepigenome can be defined as the active, noncoding province of the genome including canonical spatial and temporal regulatory mechanisms of gene regulation that respond to xenobiotic stimuli. Many psychotropic drugs that have been in clinical use for decades have ill-defined mechanisms of action that are beginning to be resolved as we understand the transcriptional hierarchy and dynamics of the nucleus. In this review, we describe spatial, temporal and biomechanical mechanisms mediated by psychotropic medications. Focus is placed on a bioinformatics pipeline that can be used both for detection of pharmacoepigenomic variants that discretize drug response and adverse events to improve pharmacogenomic testing, and for the discovery of novel CNS therapeutics. This approach integrates the functional topology and dynamics of the transcriptional hierarchy of the pharmacoepigenome, gene variant-driven identification of pharmacogenomic regulatory domains, and mesoscale mapping for the discovery of novel CNS pharmacodynamic pathways in human brain. Examples of the application of this pipeline are provided, including the discovery of valproic acid (VPA) mediated transcriptional reprogramming of neuronal cell fate following injury, and mapping of a CNS pathway glutamatergic pathway for the mood stabilizer lithium. These examples in regulatory pharmacoepigenomics illustrate how ongoing research using the 4D nucleome provides a foundation to further insight into previously unrecognized psychotropic drug pharmacodynamic pathways in the human CNS.
Collapse
Affiliation(s)
- Gerald A Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | - Patrick Georgoff
- Department of Surgery, University of Michigan Medical School, USA
| | - Vahagn Nikolian
- Department of Surgery, University of Michigan Medical School, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan Medical School, USA
| | - Brian D Athey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA; Michigan Institute for Data Science (MIDAS), USA.
| |
Collapse
|
12
|
Genetic Studies on the Tripartite Glutamate Synapse in the Pathophysiology and Therapeutics of Mood Disorders. Neuropsychopharmacology 2017; 42:787-800. [PMID: 27510426 PMCID: PMC5312057 DOI: 10.1038/npp.2016.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023]
Abstract
Both bipolar disorder (BD) and major depressive disorder (MDD) have high morbidity and share a genetic background. Treatment options for these mood disorders are currently suboptimal for many patients; however, specific genetic variables may be involved in both pathophysiology and response to treatment. Agents such as the glutamatergic modulator ketamine are effective in treatment-resistant mood disorders, underscoring the potential importance of the glutamatergic system as a target for improved therapeutics. Here we review genetic studies linking the glutamatergic system to the pathophysiology and therapeutics of mood disorders. We screened 763 original genetic studies of BD or MDD that investigated genes encoding targets of the pathway/mediators related to the so-called tripartite glutamate synapse, including pre- and post-synaptic neurons and glial cells; 60 papers were included in this review. The findings suggest the involvement of glutamate-related genes in risk for mood disorders, treatment response, and phenotypic characteristics, although there was no consistent evidence for a specific gene. Target genes of high interest included GRIA3 and GRIK2 (which likely play a role in emergent suicidal ideation after antidepressant treatment), GRIK4 (which may influence treatment response), and GRM7 (which potentially affects risk for mood disorders). There was stronger evidence that glutamate-related genes influence risk for BD compared with MDD. Taken together, the studies show a preliminary relationship between glutamate-related genes and risk for mood disorders, suicide, and treatment response, particularly with regard to targets on metabotropic and ionotropic receptors.
Collapse
|
13
|
Murphy-Royal C, Dupuis J, Groc L, Oliet SHR. Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission. J Neurosci Res 2017; 95:2140-2151. [PMID: 28150867 DOI: 10.1002/jnr.24029] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/20/2016] [Accepted: 01/02/2017] [Indexed: 12/29/2022]
Abstract
Astrocytes, the major glial cell type in the central nervous system (CNS), are critical for brain function and have been implicated in various disorders of the central nervous system. These cells are involved in a wide range of cerebral processes including brain metabolism, control of central blood flow, ionic homeostasis, fine-tuning synaptic transmission, and neurotransmitter clearance. Such varied roles can be efficiently carried out due to the intimate interactions astrocytes maintain with neurons, the vasculature, as well as with other glial cells. Arguably, one of the most important functions of astrocytes in the brain is their control of neurotransmitter clearance. This is particularly true for glutamate whose timecourse in the synaptic cleft needs to be controlled tightly under physiological conditions to maintain point-to-point excitatory transmission, thereby limiting spillover and activation of more receptors. Most importantly, accumulation of glutamate in the extracellular space can trigger excessive activation of glutamatergic receptors and lead to excitotoxicity, a trademark of many neurodegenerative diseases. It is thus of utmost importance for both physiological and pathophysiological reasons to understand the processes that control glutamate time course within the synaptic cleft and regulate its concentrations in the extracellular space. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ciaran Murphy-Royal
- Neurocentre Magendie, Inserm U1215, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Julien Dupuis
- Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Laurent Groc
- Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Stéphane H R Oliet
- Neurocentre Magendie, Inserm U1215, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Taylor DL, Tiwari AK, Lieberman JA, Potkin SG, Meltzer HY, Knight J, Remington G, Müller DJ, Kennedy JL. Pharmacogenetic Analysis of Functional Glutamate System Gene Variants and Clinical Response to Clozapine. MOLECULAR NEUROPSYCHIATRY 2016; 2:185-197. [PMID: 28277565 DOI: 10.1159/000449224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 08/17/2016] [Indexed: 01/16/2023]
Abstract
Altered glutamate neurotransmission is implicated in the etiology of schizophrenia (SCZ) and the pharmacogenetics of response to clozapine (CLZ), which is the drug of choice for treatment-resistant SCZ. Response to antipsychotic therapy is highly variable, although twin studies suggest a genetic component. We investigated the association of 10 glutamate system gene variants with CLZ response using standard genotyping procedures. GRM2 (rs4067 and rs2518461), SLC1A2 (rs4354668, rs4534557, and rs2901534), SLC6A9 (rs12037805, rs1978195, and rs16831558), GRIA1 (rs2195450), and GAD1 (rs3749034) were typed in 163 European SCZ/schizoaffective disorder patients deemed resistant or intolerant to previous pharmacotherapy. Response was assessed following 6 months of CLZ monotherapy using change in Brief Psychiatric Rating Scale (BPRS) scores. Categorical and continuous response variables were analyzed using χ2 tests and analysis of covariance, respectively. We report no significant associations following correction for multiple testing. Prior to correction, nominally significant associations were observed for SLC6A9, SLC1A2, GRM2, and GRIA1. Most notably, CC homozygotes of rs16831558 located in the glycine transporter 1 gene (SLC6A9) exhibited an allele dose-dependent improvement in positive symptoms compared to T allele carriers (puncorrected = 0.008, pcorrected = 0.08). To clarify the role of SLC6A9 in clinical response to antipsychotic medication, and CLZ in particular, this finding warrants further investigation in larger well-characterized samples.
Collapse
Affiliation(s)
- Danielle L Taylor
- Neuroscience Research Department, Campbell Family Research Institute, Toronto, Ont., Canada; Institute of Medical Science, Toronto, Ont., Canada
| | - Arun K Tiwari
- Neuroscience Research Department, Campbell Family Research Institute, Toronto, Ont., Canada
| | - Jeffrey A Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University and the New York State Psychiatric Institute, New York, N.Y, USA
| | - Steven G Potkin
- Department of Psychiatry, University of California, Irvine, Calif, USA
| | - Herbert Y Meltzer
- Northwestern University Feinberg School of Medicine, Chicago, Ill., USA
| | - Joanne Knight
- Neuroscience Research Department, Campbell Family Research Institute, Toronto, Ont., Canada; Institute of Medical Science, Toronto, Ont., Canada; Department of Psychiatry, University of Toronto, Toronto, Ont., Canada; Lancaster Medical School and Data Science Institute, Lancaster University, Lancaster, UK
| | - Gary Remington
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ont., Canada; Department of Psychiatry, University of Toronto, Toronto, Ont., Canada
| | - Daniel J Müller
- Neuroscience Research Department, Campbell Family Research Institute, Toronto, Ont., Canada; Institute of Medical Science, Toronto, Ont., Canada; Department of Psychiatry, University of Toronto, Toronto, Ont., Canada
| | - James L Kennedy
- Neuroscience Research Department, Campbell Family Research Institute, Toronto, Ont., Canada; Institute of Medical Science, Toronto, Ont., Canada; Department of Psychiatry, University of Toronto, Toronto, Ont., Canada
| |
Collapse
|
15
|
Zhang B, Guan F, Chen G, Lin H, Zhang T, Feng J, Li L, Fu D. Common variants in SLC1A2 and schizophrenia: Association and cognitive function in patients with schizophrenia and healthy individuals. Schizophr Res 2015; 169:128-134. [PMID: 26459047 DOI: 10.1016/j.schres.2015.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 11/24/2022]
Abstract
SLC1A2 is reported to be responsible for the majority of glutamate uptake, which has a crucial role in neural development and synaptic plasticity, and a disturbance in glutamatergic transmission has been suggested to be involved in the pathophysiology of schizophrenia (SCZ) and cognition. To evaluate the relationship of common variants within SLC1A2 with SCZ and cognition in Han Chinese, 28 tag SNPs were genotyped in the discovery stage, which included 1117 cases and 2289 controls; significantly associated markers were genotyped in the replication stage with 2128 cases and 3865 controls. The rs4354668 SNP was identified to be significantly associated with SCZ in both datasets, and a similar pattern was also observed in the two-stage study on conducting imputation and haplotype association analyses. In addition, significant associations between the rs4354668 SNP and cognition were observed when processing the perseverative error of the Wisconsin Card Sorting Test in patients and controls. Our results provide supportive evidence for an effect of SLC1A2 on the etiology of SCZ, suggesting that genetic variation (rs4354668 and its haplotypes) in SLC1A2 may be involved in impaired executive function, which adds to the current body of knowledge regarding the risk of SCZ and the impairment of cognitive performance.
Collapse
Affiliation(s)
- Bao Zhang
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China; Institute of Human Genomics & Forensic Sciences, Xi'an, China.
| | - Gang Chen
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huali Lin
- Xi'an Mental Health Center, Xi'an, Shannxi, China
| | - Tianxiao Zhang
- Department of Biology & Biomedical Sciences, Washington University in Saint Louis, MO, USA
| | - Jiali Feng
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lu Li
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dongke Fu
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Institute of Human Genomics & Forensic Sciences, Xi'an, China
| |
Collapse
|
16
|
Higgins GA, Allyn-Feuer A, Barbour E, Athey BD. A glutamatergic network mediates lithium response in bipolar disorder as defined by epigenome pathway analysis. Pharmacogenomics 2015; 16:1547-63. [PMID: 26343379 DOI: 10.2217/pgs.15.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM A regulatory network in the human brain mediating lithium response in bipolar patients was revealed by analysis of functional SNPs from genome-wide association studies (GWAS) and published gene association studies, followed by epigenome mapping. METHODS An initial set of 23,312 SNPs in linkage disequilibrium with lead SNPs, and sub-threshold GWAS SNPs rescued by pathway analysis, were studied in the same populations. These were assessed using our workflow and annotation by the epigenome roadmap consortium. RESULTS Twenty-seven percent of 802 SNPs that were associated with lithium response (13 published studies gene association studies and two GWAS) were shared in common with 1281 SNPs from 18 GWAS examining psychiatric disorders and adverse events associated with lithium treatment. Nineteen SNPs were annotated as active regulatory elements such as enhancers and promoters in a tissue-specific manner. They were located within noncoding regions of ten genes: ANK3, ARNTL, CACNA1C, CACNG2, CDKN1A, CREB1, GRIA2, GSK3B, NR1D1 and SLC1A2. Following gene set enrichment and pathway analysis, these genes were found to be significantly associated (p = 10(-27); Fisher exact test) with an AMPA2 glutamate receptor network in human brain. Our workflow results showed concordance with annotation of regulatory elements from the epigenome roadmap. Analysis of cognate mRNA and enhancer RNA exhibited patterns consistent with an integrated pathway in human brain. CONCLUSION This pharmacoepigenomic regulatory pathway is located in the same brain regions that exhibit tissue volume loss in bipolar disorder. Although in silico analysis requires biological validation, the approach provides value for identification of candidate variants that may be used in pharmacogenomic testing to identify bipolar patients likely to respond to lithium.
Collapse
Affiliation(s)
- Gerald A Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Pharmacogenomic Science, Assurex Health, Inc., Mason, OH 45040, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Edward Barbour
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian D Athey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Higgins GA, Allyn-Feuer A, Athey BD. Epigenomic mapping and effect sizes of noncoding variants associated with psychotropic drug response. Pharmacogenomics 2015; 16:1565-83. [PMID: 26340055 DOI: 10.2217/pgs.15.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM To provide insight into potential regulatory mechanisms of gene expression underlying addiction, analgesia, psychotropic drug response and adverse drug events, genome-wide association studies searching for variants associated with these phenotypes has been undertaken with limited success. We undertook analysis of these results with the aim of applying epigenetic knowledge to aid variant discovery and interpretation. METHODS We applied conditional imputation to results from 26 genome-wide association studies and three candidate gene-association studies. The analysis workflow included data from chromatin conformation capture, chromatin state annotation, DNase I hypersensitivity, hypomethylation, anatomical localization and biochronicity. We also made use of chromatin state data from the epigenome roadmap, transcription factor-binding data, spatial maps from published Hi-C datasets and 'guilt by association' methods. RESULTS We identified 31 pharmacoepigenomic SNPs from a total of 2024 variants in linkage disequilibrium with lead SNPs, of which only 6% were coding variants. Interrogation of chromatin state using our workflow and the epigenome roadmap showed agreement on 34 of 35 tissue assignments to regulatory elements including enhancers and promoters. Loop boundary domains were inferred by association with CTCF (CCCTC-binding factor) and cohesin, suggesting proximity to topologically associating domain boundaries and enhancer clusters. Spatial interactions between enhancer-promoter pairs detected both known and previously unknown mechanisms. Addiction and analgesia SNPs were common in relevant populations and exhibited large effect sizes, whereas a SNP located in the promoter of the SLC1A2 gene exhibited a moderate effect size for lithium response in bipolar disorder in patients of European ancestry. SNPs associated with drug-induced organ injury were rare but exhibited the largest effect sizes, consistent with the published literature. CONCLUSION This work demonstrates that an in silico bioinformatics-based approach using integrative analysis of a diversity of molecular and morphological data types can discover pharmacoepigenomic variants that are suitable candidates for further validation in cell lines, animal models and human clinical trials.
Collapse
Affiliation(s)
- Gerald A Higgins
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, MI 48109, USA
- Pharmacogenomic Science, Assurex Health, Inc., Mason, OH, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, MI 48109, USA
| | - Brian D Athey
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, MI 48109, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Reynolds GP, McGowan OO, Dalton CF. Pharmacogenomics in psychiatry: the relevance of receptor and transporter polymorphisms. Br J Clin Pharmacol 2014; 77:654-72. [PMID: 24354796 DOI: 10.1111/bcp.12312] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/18/2013] [Indexed: 12/15/2022] Open
Abstract
The treatment of severe mental illness, and of psychiatric disorders in general, is limited in its efficacy and tolerability. There appear to be substantial interindividual differences in response to psychiatric drug treatments that are generally far greater than the differences between individual drugs; likewise, the occurrence of adverse effects also varies profoundly between individuals. These differences are thought to reflect, at least in part, genetic variability. The action of psychiatric drugs primarily involves effects on synaptic neurotransmission; the genes for neurotransmitter receptors and transporters have provided strong candidates in pharmacogenetic research in psychiatry. This paper reviews some aspects of the pharmacogenetics of neurotransmitter receptors and transporters in the treatment of psychiatric disorders. A focus on serotonin, catecholamines and amino acid transmitter systems reflects the direction of research efforts, while relevant results from some genome-wide association studies are also presented. There are many inconsistencies, particularly between candidate gene and genome-wide association studies. However, some consistency is seen in candidate gene studies supporting established pharmacological mechanisms of antipsychotic and antidepressant response with associations of functional genetic polymorphisms in, respectively, the dopamine D2 receptor and serotonin transporter and receptors. More recently identified effects of genes related to amino acid neurotransmission on the outcome of treatment of schizophrenia, bipolar illness or depression reflect the growing understanding of the roles of glutamate and γ-aminobutyric acid dysfunction in severe mental illness. A complete understanding of psychiatric pharmacogenomics will also need to take into account epigenetic factors, such as DNA methylation, that influence individual responses to drugs.
Collapse
Affiliation(s)
- Gavin P Reynolds
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | |
Collapse
|
19
|
Association of rare variation in the glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder and schizophrenia. Eur J Hum Genet 2014; 23:1200-6. [PMID: 25406999 PMCID: PMC4351899 DOI: 10.1038/ejhg.2014.261] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 01/23/2023] Open
Abstract
The SLC1A2 gene encodes the excitatory amino acid transporter 2 (EAAT2). Glutamate is the major mediator of excitatory neurotransmission and EAAT2 is responsible for clearing the neurotransmitter from the synaptic cleft. Genetic variation in SLC1A2 has been implicated in a range of neurological and neuropsychiatric conditions including schizophrenia (SZ), autism and in core phenotypes of bipolar disorder (BD). The coding and putative regulatory regions of SLC1A2 gene were screened for variants using high resolution melting or sequenced in 1099 or in 32 BD subjects. Thirty-two variants were detected in the SLC1A2 gene. Fifteen potentially etiological variants were selected for genotyping in 1099 BD and 1095 control samples. Five amino acid changing variants were also genotyped in 630 participants suffering from SZ. None of the variants were found to be associated with BD or SZ or with the two diseases combined. However, two recurrent missense variants (rs145827578:G>A, p.(G6S); rs199599866:G>A, p.(R31Q)) and one recurrent 5′-untranslated region (UTR) variant (ss825678885:G>T) were detected in cases only. Combined analysis of the recurrent-case-only missense variants and of the case-only missense and 5′-UTR variants showed nominal evidence for association with the combined diseases (Fisher's P=0.019 and 0.0076). These findings are exploratory in nature and await replication in larger cohorts, however, they provide intriguing evidence that potentially functional rare variants in the SLC1A2 gene may confer susceptibility to psychotic disorders.
Collapse
|
20
|
Genetic dys-regulation of astrocytic glutamate transporter EAAT2 and its implications in neurological disorders and manganese toxicity. Neurochem Res 2014; 40:380-8. [PMID: 25064045 DOI: 10.1007/s11064-014-1391-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Astrocytic glutamate transporters, the excitatory amino acid transporter (EAAT) 2 and EAAT1 (glutamate transporter 1 and glutamate aspartate transporter in rodents, respectively), are the main transporters for maintaining optimal glutamate levels in the synaptic clefts by taking up more than 90% of glutamate from extracellular space thus preventing excitotoxic neuronal death. Reduced expression and function of these transporters, especially EAAT2, has been reported in numerous neurological disorders, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, schizophrenia and epilepsy. The mechanism of down-regulation of EAAT2 in these diseases has yet to be fully established. Genetic as well as transcriptional dys-regulation of these transporters by various modes, such as single nucleotide polymorphisms and epigenetics, resulting in impairment of their functions, might play an important role in the etiology of neurological diseases. Consequently, there has been an extensive effort to identify molecular targets for enhancement of EAAT2 expression as a potential therapeutic approach. Several pharmacological agents increase expression of EAAT2 via nuclear factor κB and cAMP response element binding protein at the transcriptional level. However, the negative regulatory mechanisms of EAAT2 have yet to be identified. Recent studies, including those from our laboratory, suggest that the transcriptional factor yin yang 1 plays a critical role in the repressive effects of various neurotoxins, such as manganese (Mn), on EAAT2 expression. In this review, we will focus on transcriptional epigenetics and translational regulation of EAAT2.
Collapse
|
21
|
Rajatileka S, Luyt K, Williams M, Harding D, Odd D, Molnár E, Váradi A. Detection of three closely located single nucleotide polymorphisms in the EAAT2 promoter: comparison of single-strand conformational polymorphism (SSCP), pyrosequencing and Sanger sequencing. BMC Genet 2014; 15:80. [PMID: 24996834 PMCID: PMC4112986 DOI: 10.1186/1471-2156-15-80] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/02/2014] [Indexed: 11/15/2022] Open
Abstract
Background Single-strand conformational polymorphism (SSCP) is still a frequently used genotyping method across different fields for the detection of single nucleotide polymorphisms (SNPs) due to its simplicity, requirement for basic equipment accessible in most laboratories and low cost. This technique was previously used to detect rs4354668:A > C (g.-181A > C) SNP in the promoter of astroglial glutamate transporter (EAAT2) and the same approach was initially used here to investigate this promoter region in a cohort of newborns. Results Unexpectedly, four distinct DNA migration patterns were identified by SSCP. Sanger sequencing revealed two additional SNPs: g.-200C > A and g.-168C > T giving a rise to a total of ten EAAT2 promoter variants. SSCP failed to distinguish these variants reliably and thus pyrosequencing assays were developed. g.-168C > T was found in heterozygous form in one infant only with minor allele frequency (MAF) of 0.0023. In contrast, g.-200C > A and -181A > C were more common (with MAF of 0.46 and 0.49, respectively) and showed string evidence of linkage disequilibrium (LD). In a systematic comparison, 16% of samples were miss-classified by SSCP with 25-31% errors in the identification of the wild-type and homozygote mutant genotypes compared to pyrosequencing or Sanger sequencing. In contrast, SSCP and pyrosequencing of an unrelated single SNP (rs1835740:C > T), showed 94% concordance. Conclusion Our data suggest that SSCP cannot always detect reliably several closely located SNPs. Furthermore, caution is needed in the interpretation of the association studies linking only one of the co-inherited SNPs in the EAAT2 promoter to human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anikó Váradi
- Centre for Research in Biosciences, Department of Biological, Biomedical and Analytical Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK.
| |
Collapse
|
22
|
Can A, Schulze TG, Gould TD. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 2014; 123:3-16. [PMID: 24534415 DOI: 10.1016/j.pbb.2014.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/21/2022]
Abstract
Mood disorders, including bipolar disorder and depression, are relatively common human diseases for which pharmacological treatment options are often not optimal. Among existing pharmacological agents and mood stabilizers used for the treatment of mood disorders, lithium has a unique clinical profile. Lithium has efficacy in the treatment of bipolar disorder generally, and in particular mania, while also being useful in the adjunct treatment of refractory depression. In addition to antimanic and adjunct antidepressant efficacy, lithium is also proven effective in the reduction of suicide and suicidal behaviors. However, only a subset of patients manifests beneficial responses to lithium therapy and the underlying genetic factors of response are not exactly known. Here we discuss preclinical research suggesting mechanisms likely to underlie lithium's therapeutic actions including direct targets inositol monophosphatase and glycogen synthase kinase-3 (GSK-3) among others, as well as indirect actions including modulation of neurotrophic and neurotransmitter systems and circadian function. We follow with a discussion of current knowledge related to the pharmacogenetic underpinnings of effective lithium therapy in patients within this context. Progress in elucidation of genetic factors that may be involved in human response to lithium pharmacology has been slow, and there is still limited conclusive evidence for the role of a particular genetic factor. However, the development of new approaches such as genome-wide association studies (GWAS), and increased use of genetic testing and improved identification of mood disorder patients sub-groups will lead to improved elucidation of relevant genetic factors in the future.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Thomas G Schulze
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
23
|
Abstract
The mammalian genome contains four genes encoding GABA transporters (GAT1, slc6a1; GAT2, slc6a13; GAT3, slc6a11; BGT1, slc6a12) and five glutamate transporter genes (EAAT1, slc1a3; EAAT2, slc1a2; EAAT3, slc1a1; EAAT4, slc1a6; EAAT5, slc1a7). These transporters keep the extracellular levels of GABA and excitatory amino acids low and provide amino acids for metabolic purposes. The various transporters have different properties both with respect to their transport functions and with respect to their ability to act as ion channels. Further, they are differentially regulated. To understand the physiological roles of the individual transporter subtypes, it is necessary to obtain information on their distributions and expression levels. Quantitative data are important as the functional capacity is limited by the number of transporter molecules. The most important and most abundant transporters for removal of transmitter glutamate in the brain are EAAT2 (GLT-1) and EAAT1 (GLAST), while GAT1 and GAT3 are the major GABA transporters in the brain. EAAT3 (EAAC1) does not appear to play a role in signal transduction, but plays other roles. Due to their high uncoupled anion conductance, EAAT4 and EAAT5 seem to be acting more like inhibitory glutamate receptors than as glutamate transporters. GAT2 and BGT1 are primarily expressed in the liver and kidney, but are also found in the leptomeninges, while the levels in brain tissue proper are too low to have any impact on GABA removal, at least in normal young adult mice. The present review will provide summary of what is currently known and will also discuss some methodological pitfalls.
Collapse
Affiliation(s)
- Yun Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Niels Christian Danbolt, The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, Oslo N-0317, Norway e-mail:
| |
Collapse
|