1
|
Fan L, Li Q, Shi Y, Li X, Liu Y, Chen J, Sun Y, Chen A, Yang Y, Zhang X, Wang J, Wu L. Involvement of sphingosine-1-phosphate receptor 1 in pain insensitivity in a BTBR mouse model of autism spectrum disorder. BMC Med 2024; 22:504. [PMID: 39497100 PMCID: PMC11533282 DOI: 10.1186/s12916-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Abnormal sensory perception, particularly pain insensitivity (PAI), is a typical symptom of autism spectrum disorder (ASD). Despite the role of myelin metabolism in the regulation of pain perception, the mechanisms underlying ASD-related PAI remain unclear. METHODS The pain-associated gene sphingosine-1-phosphate receptor 1 (S1PR1) was identified in ASD samples through bioinformatics analysis. Its expression in the dorsal root ganglion (DRG) tissues of BTBR ASD model mice was validated using RNA-seq, western blot, RT-qPCR, and immunofluorescence. Pain thresholds were assessed using the von Frey and Hargreaves tests. Patch-clamp techniques measured KCNQ/M channel activity and neuronal action potentials. The expression of S1PR1, KCNQ/M, mitogen-activated protein kinase (MAPK), and cyclic AMP/protein kinase A (cAMP/PKA) signaling proteins was analyzed before and after inhibiting the S1P-S1PR1-KCNQ/M pathway via western blot and RT-qPCR. RESULTS Through integrated transcriptomic analysis of ASD samples, we identified the upregulated gene S1PR1, which is associated with sphingolipid metabolism and linked to pain perception, and confirmed its role in the BTBR mouse model of ASD. This mechanism involves the regulation of KCNQ/M channels in DRG neurons. The enhanced activity of KCNQ/M channels and the decreased action potentials in small and medium DRG neurons were correlated with PAI in a BTBR mouse model of ASD. Inhibition of the S1P/S1PR1 pathway rescued baseline insensitivity to pain by suppressing KCNQ/M channels in DRG neurons, mediated through the MAPK and cAMP/PKA pathways. Investigating the modulation and underlying mechanisms of the non-opioid pathway involving S1PR1 will provide new insights into clinical targeted interventions for PAI in ASD. CONCLUSIONS S1PR1 may contribute to PAI in the PNS in ASD. The mechanism involves KCNQ/M channels and the MAPK and cAMP/PKA signaling pathways. Targeting S1PR1 in the PNS could offer novel therapeutic strategies for the intervention of pain dysesthesias in individuals with ASD.
Collapse
Affiliation(s)
- Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Qi Li
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaxin Shi
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xiang Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jiaqi Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yaqi Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Anjie Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yuan Yang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xirui Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
- Department of Developmental Behavioral Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150023, China.
| |
Collapse
|
2
|
Slykerman R, Davies N, Fuad M, Dekker J. Milk Fat Globule Membranes for Mental Health across the Human Lifespan. Foods 2024; 13:1631. [PMID: 38890860 PMCID: PMC11171857 DOI: 10.3390/foods13111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The milk fat globule membrane (MFGM) contains bioactive proteins, carbohydrates, and lipids. Polar lipids found in the MFGM play a critical role in maintaining cell membrane integrity and neuronal signalling capacity, thereby supporting brain health. This review summarises the literature on the MFGM and its phospholipid constituents for improvement of mental health across three key stages of the human lifespan, i.e., infancy, adulthood, and older age. MFGM supplementation may improve mental health by reducing neuroinflammation and supporting neurotransmitter synthesis through the gut-brain axis. Fortification of infant formula with MFGMs is designed to mimic the composition of breastmilk and optimise early gut and central nervous system development. Early behavioural and emotional development sets the stage for future mental health. In adults, promising results suggest that MFGMs can reduce the negative consequences of situational stress. Preclinical models of age-related cognitive decline suggest a role for the MFGM in supporting brain health in older age and reducing depressive symptoms. While there is preclinical and clinical evidence to support the use of MFGM supplementation for improved mental health, human studies with mental health as the primary target outcome are sparce. Further high-quality clinical trials examining the potential of the MFGM for psychological health improvement are important.
Collapse
Affiliation(s)
- Rebecca Slykerman
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Naomi Davies
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Maher Fuad
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| | - James Dekker
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| |
Collapse
|
3
|
Vacy K, Thomson S, Moore A, Eisner A, Tanner S, Pham C, Saffery R, Mansell T, Burgner D, Collier F, Vuillermin P, O'Hely M, Boon WC, Meikle P, Burugupalli S, Ponsonby AL. Cord blood lipid correlation network profiles are associated with subsequent attention-deficit/hyperactivity disorder and autism spectrum disorder symptoms at 2 years: a prospective birth cohort study. EBioMedicine 2024; 100:104949. [PMID: 38199043 PMCID: PMC10825361 DOI: 10.1016/j.ebiom.2023.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are neurodevelopmental conditions with early life origins. Alterations in blood lipids have been linked to ADHD and ASD; however, prospective early life data are limited. This study examined (i) associations between the cord blood lipidome and ADHD/ASD symptoms at 2 years of age, (ii) associations between prenatal and perinatal predictors of ADHD/ASD symptoms and cord blood lipidome, and (iii) mediation by the cord blood lipidome. METHODS From the Barwon Infant Study cohort (1074 mother-child pairs, 52.3% male children), child circulating lipid levels at birth were analysed using ultra-high-performance liquid chromatography-tandem mass spectrometry. These were clustered into lipid network modules via Weighted Gene Correlation Network Analysis. Associations between lipid modules and ADHD/ASD symptoms at 2 years, assessed with the Child Behavior Checklist, were explored via linear regression analyses. Mediation analysis identified indirect effects of prenatal and perinatal risk factors on ADHD/ASD symptoms through lipid modules. FINDINGS The acylcarnitine lipid module is associated with both ADHD and ASD symptoms at 2 years of age. Risk factors of these outcomes such as low income, Apgar score, and maternal inflammation were partly mediated by higher birth acylcarnitine levels. Other cord blood lipid profiles were also associated with ADHD and ASD symptoms. INTERPRETATION This study highlights that elevated cord blood birth acylcarnitine levels, either directly or as a possible marker of disrupted cell energy metabolism, are on the causal pathway of prenatal and perinatal risk factors for ADHD and ASD symptoms in early life. FUNDING The foundational work and infrastructure for the BIS was sponsored by the Murdoch Children's Research Institute, Deakin University, and Barwon Health. Subsequent funding was secured from the Minderoo Foundation, the European Union's Horizon 2020 research and innovation programme (ENDpoiNTs: No 825759), National Health and Medical Research Council of Australia (NHMRC) and Agency for Science, Technology and Research Singapore [APP1149047], The William and Vera Ellen Houston Memorial Trust Fund (via HOMER Hack), The Shepherd Foundation, The Jack Brockhoff Foundation, the Scobie & Claire McKinnon Trust, the Shane O'Brien Memorial Asthma Foundation, the Our Women Our Children's Fund Raising Committee Barwon Health, the Rotary Club of Geelong, the Ilhan Food Allergy Foundation, Geelong Medical and Hospital Benefits Association, Vanguard Investments Australia Ltd, the Percy Baxter Charitable Trust, and Perpetual Trustees.
Collapse
Affiliation(s)
- Kristina Vacy
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville 3010, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Archer Moore
- Melbourne School of Mathematics and Statistics, University of Melbourne, Parkville 3010, Australia
| | - Alex Eisner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Sam Tanner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Cindy Pham
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia; Department of Paediatrics, Monash University, Clayton 3168, Australia
| | - Fiona Collier
- Child Health Research Unit, Barwon Health, Geelong 3220, Australia; School of Medicine, Deakin University, Geelong 3220, Australia
| | - Peter Vuillermin
- Child Health Research Unit, Barwon Health, Geelong 3220, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; School of Medicine, Deakin University, Geelong 3220, Australia
| | - Wah Chin Boon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Peter Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Satvika Burugupalli
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
4
|
Samoilova IG, Matveeva MV, Galyukova DE. [Biochemical markers of autism]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:55-59. [PMID: 38261284 DOI: 10.17116/jnevro202412401155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Autism spectrum disorder (ASD) is becoming an increasingly common disorder of the development of the nervous system in the modern world. The diagnosis is made based on observation of the patient's behavior, which significantly complicates the diagnosis and treatment of the disorder. The subjectivity of behavioral diagnostics dictates the need for the study of biomarkers of ASD. Over the past two decades, researchers have focused on identifying specific biological abnormalities in ASD that will help in the diagnosis of the disease. This review discusses the state of research on various biomarkers currently being developed for ASD.
Collapse
Affiliation(s)
| | - M V Matveeva
- Siberian State Medical University, Tomsk, Russia
| | | |
Collapse
|
5
|
Kaupper CS, Blaauwendraad SM, Cecil CAM, Mulder RH, Gaillard R, Goncalves R, Borggraefe I, Koletzko B, Jaddoe VWV. Cord Blood Metabolite Profiles and Their Association with Autistic Traits in Childhood. Metabolites 2023; 13:1140. [PMID: 37999236 PMCID: PMC10672851 DOI: 10.3390/metabo13111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a diverse neurodevelopmental condition. Gene-environmental interactions in early stages of life might alter metabolic pathways, possibly contributing to ASD pathophysiology. Metabolomics may serve as a tool to identify underlying metabolic mechanisms contributing to ASD phenotype and could help to unravel its complex etiology. In a population-based, prospective cohort study among 783 mother-child pairs, cord blood serum concentrations of amino acids, non-esterified fatty acids, phospholipids, and carnitines were obtained using liquid chromatography coupled with tandem mass spectrometry. Autistic traits were measured at the children's ages of 6 (n = 716) and 13 (n = 648) years using the parent-reported Social Responsiveness Scale. Lower cord blood concentrations of SM.C.39.2 and NEFA16:1/16:0 were associated with higher autistic traits among 6-year-old children, adjusted for sex and age at outcome. After more stringent adjustment for confounders, no significant associations of cord blood metabolites and autistic traits at ages 6 and 13 were detected. Differences in lipid metabolism (SM and NEFA) might be involved in ASD-related pathways and are worth further investigation.
Collapse
Affiliation(s)
- Christin S. Kaupper
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Sophia M. Blaauwendraad
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Rosa H. Mulder
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Romy Goncalves
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Comprehensive Epilepsy Center for Children and Adolescents, Dr. von Hauner Children’s Hospital, LMU University Hospitals, LMU—Ludwig-Maximilians Universität, 80337 Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU University Hospitals, LMU—Ludwig-Maximilians Universität, 80337 Munich, Germany
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands (R.G.)
- Department of Pediatrics, Sophia’s Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
6
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Li Q, Shi Y, Li X, Yang Y, Zhang X, Xu L, Ma Z, Wang J, Fan L, Wu L. Proteomic-Based Approach Reveals the Involvement of Apolipoprotein A-I in Related Phenotypes of Autism Spectrum Disorder in the BTBR Mouse Model. Int J Mol Sci 2022; 23:ijms232315290. [PMID: 36499620 PMCID: PMC9737945 DOI: 10.3390/ijms232315290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Abnormal lipid metabolism has been suggested to contribute to its pathogenesis. Further exploration of its underlying biochemical mechanisms is needed. In a search for reliable biomarkers for the pathophysiology of ASD, hippocampal tissues from the ASD model BTBR T+ Itpr3tf/J (BTBR) mice and C57BL/6J mice were analyzed, using four-dimensional (4D) label-free proteomic analysis and bioinformatics analysis. Differentially expressed proteins were significantly enriched in lipid metabolic pathways. Among them, apolipoprotein A-I (ApoA-I) is a hub protein and its expression was significantly higher in the BTBR mice. The investigation of protein levels (using Western blotting) also confirmed this observation. Furthermore, expressions of SphK2 and S1P in the ApoA-I pathway both increased. Using the SphK inhibitor (SKI-II), ASD core phenotype and phenotype-related protein levels of P-CREB, P-CaMKII, and GAD1 were improved, as shown via behavioral and molecular biology experiments. Moreover, by using SKI-II, we found proteins related to the development and function of neuron synapses, including ERK, caspase-3, Bax, Bcl-2, CDK5 and KCNQ2 in BTBR mice, whose levels were restored to protein levels comparable to those in the controls. Elucidating the possible mechanism of ApoA-I in ASD-associated phenotypes will provide new ideas for studies on the etiology of ASD.
Collapse
|
8
|
Chen H, Peng L, Zhao C, Cai Z, Zhou X. Protective Mechanism of Polygonum perfoliatum L. Extract on Chronic Alcoholic Liver Injury Based on UHPLC-QExactive Plus Mass Spectrometry Lipidomics and MALDI-TOF/TOF Mass Spectrometry Imaging. Foods 2022; 11:foods11111583. [PMID: 35681333 PMCID: PMC9179971 DOI: 10.3390/foods11111583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Polygonum perfoliatum L. has a long history of medicinal and edible applications. Studies have shown that it can significantly protect liver injury, but the mechanism is unclear. The purpose of this study was to explore the protective mechanism of P. perfoliatum on chronic alcoholic liver injury from the perspective of lipid metabolism. After 8 weeks of alcohol exposure in male Wister mice, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in serum were significantly increased, and the activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in liver were significantly decreased. Meanwhile, pathological changes of liver tissue in mice were observed by histopathology. Then, Ultra-High Performance Liquid Chromatography (UHPLC) QExactive Plus Mass Spectrometer lipidomics and matrix-assisted laser desorption/ionization time-of-flight/time -of-flight (MALDI-TOF/TOF) mass spectrometry imaging methods were established to analyze lipid metabolism in mice. Ten different lipids were identified by statistical analysis, including Fatty Acyls, Glycerophospholipids, Prenol lipids and Sphingomyelins. After intervention with P. perfoliatum extracts at different doses (25 to 100 mg/kg), levels of AST, ALT, ALP in serum, and activities of ADH and ALDH in liver were significantly corrected. The hepatic cord structure was clear, and the liver cells were closely arranged without other obvious abnormalities. Non-target lipidomics analysis showed that P. perfoliatum extract could regulate the metabolic disorders of the 10 different lipids caused by continuous alcohol exposure. Pathway analysis suggested that the mechanism of P. perfoliatum extract on chronic alcoholic liver injury may be related to the regulation of linoleic acid and α-linolenic acid.
Collapse
Affiliation(s)
- Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; (H.C.); (L.P.); (C.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Lei Peng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; (H.C.); (L.P.); (C.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Chao Zhao
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; (H.C.); (L.P.); (C.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Correspondence: (Z.C.); (X.Z.); Tel./Fax: +86-851-8669-0018 (X.Z.)
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; (H.C.); (L.P.); (C.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (Z.C.); (X.Z.); Tel./Fax: +86-851-8669-0018 (X.Z.)
| |
Collapse
|
9
|
Wang D, Mai Q, Yang X, Chi X, Li R, Jiang J, Luo L, Fang X, Yun P, Liang L, Yang G, Song K, Fang L, Chen Y, Zhang Y, He Y, Li N, Pan Y. Microduplication of 16p11.2 locus Potentiates Hypertrophic Obesity in Association with Imbalanced Triglyceride Metabolism in White Adipose Tissue. Mol Nutr Food Res 2022; 66:e2100241. [PMID: 35072981 PMCID: PMC9286681 DOI: 10.1002/mnfr.202100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/29/2021] [Indexed: 11/10/2022]
Abstract
SCOPE Copy number variation (CNV) of 16p11.2 is a common genetic factor contributing to the etiology of abnormal weight status, while the underlying mechanism is not fully elucidated yet. METHODS AND RESULTS The 16p11.2 CNV mouse model with microduplication of the 7Slx1b-Sept1 region (dp/+) is evaluated under normal chow conditions. Compared to the wild type littermates (WT), the dp/+ mice exhibit obvious obese phenotype characterized by significant increase in body mass index, fat pad mass, and fat ratio, with visceral-dominant fat deposits at 12-week age. White adipose tissue (WAT), liver tissue, and plasma are sampled to assess the comorbid metabolic syndrome. In dp/+ mice, histopathologic analyses reveal hypertrophic adipocytes and hepatic steatosis; serological examinations show hyperlipemia and hyperinsulinemia. Further, by comparing lipidomic and transcriptomic profiling of epididymal WAT between dp/+ and WT mice, the study finds the triglyceride (TG) accumulation in dp/+ mice in association with the dysfunction of lipid droplets. Validation of TG-metabolism-associated genes in WAT and in primary cultured adipocytes show enhanced TG synthesis and declined TG hydrolysis in the dp/+ model. CONCLUSION This study elucidates that the imbalanced TG synthesis/hydrolysis in adipocytic lipid droplets may contribute to the hypertrophic obesity and metabolic disorders in mice with 16p11.2 microduplication.
Collapse
Affiliation(s)
- Dilong Wang
- Tomas Lindahl Nobel Laureate LaboratoryPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Qiuyan Mai
- Tomas Lindahl Nobel Laureate LaboratoryPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate LaboratoryPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Xinjin Chi
- Department of AnesthesiologyThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Ruohan Li
- Tomas Lindahl Nobel Laureate LaboratoryPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate LaboratoryPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Liang Luo
- Department of EmergencyThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Xiaoyi Fang
- Department of PediatricThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Peng Yun
- Department of EndocrinologyThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Liyang Liang
- The Second Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510120China
| | - Guang Yang
- Department of Burn and Plastic SurgeryDepartment of Wound RepairShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen518116China
| | - Kun Song
- Southern University of Science and TechnologyShenzhen518055China
| | - Liang Fang
- Southern University of Science and TechnologyShenzhen518055China
| | - Yun Chen
- Tomas Lindahl Nobel Laureate LaboratoryPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Ying Zhang
- Tomas Lindahl Nobel Laureate LaboratoryPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Yulong He
- Center for Digestive DiseaseThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate LaboratoryPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Yihang Pan
- Tomas Lindahl Nobel Laureate LaboratoryPrecision Medicine CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| |
Collapse
|
10
|
Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res 2022; 63:100164. [PMID: 34953866 PMCID: PMC8953652 DOI: 10.1016/j.jlr.2021.100164] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, the importance of lipid metabolism in biology was recognized but difficult to mechanistically understand due to the lack of sensitive and robust technologies for identification and quantification of lipid molecular species. The enabling technological breakthroughs emerged in the 1980s with the development of soft ionization methods (Electrospray Ionization and Matrix Assisted Laser Desorption/Ionization) that could identify and quantify intact individual lipid molecular species. These soft ionization technologies laid the foundations for what was to be later named the field of lipidomics. Further innovative advances in multistage fragmentation, dramatic improvements in resolution and mass accuracy, and multiplexed sample analysis fueled the early growth of lipidomics through the early 1990s. The field exponentially grew through the use of a variety of strategic approaches, which included direct infusion, chromatographic separation, and charge-switch derivatization, which facilitated access to the low abundance species of the lipidome. In this Thematic Review, we provide a broad perspective of the foundations, enabling advances, and predicted future directions of growth of the lipidomics field.
Collapse
Affiliation(s)
- Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Departments of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Chemistry, Washington University, St. Louis, MO, USA
| |
Collapse
|
11
|
Comparative Study on the Exacerbating Effects of Casein-Rich vs. Gluten-Rich Diets on Biochemical-Induced Features in Rodent Model of Autism. J Mol Neurosci 2022; 72:359-371. [PMID: 35028884 DOI: 10.1007/s12031-021-01950-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023]
Abstract
In relation to dietary intervention in individuals with autism spectrum disorder (ASD), certain food constituents especially gluten and casein are recognized to be challenging and should be restricted. In this study, levels of glutathione S-transferase, glutathione, lipid peroxides, serotonin (5-HT), interleukin-6 (IL-6), glutamate, and gamma aminobutyric acid (GABA) were measured in the brain homogenates of ASD rodent model. Rats were treated either with single dose clindamycin (30 mg/kg) or with propionic acid (PPA) (250 mg/kg) for 3 days and then fed a standard diet, casein-rich diet (CRD), or gluten-rich diet (GRD). The obtained data demonstrates that clindamycin and PPA induced oxidative stress, which was slightly affected by CRD. A marked increase in the proinflammatory cytokine (IL-6) concentration found in clindamycin- and PPA-treated groups was lower in CRD fed rats. Both CRDs and GRDs produced similar trends in glutamate levels. 5-HT levels were higher in the clindamycin- and PPA-treated groups and increased with a GRD but were less affected by a CRD. CRD could be less deleterious compared to GRD. Although the underlying cause of gastrointestinal symptoms in patients with ASD is not exactly known, the most widely accepted one is the opioid theory which is related to GRD and CRD.
Collapse
|
12
|
Tang H, Peng T, Yang X, Liu L, Xu Y, Zhao Y, Huang S, Fu C, Huang Y, Zhou H, Li J, He L, Wang W, Niu H, Xu K. Plasma Metabolomic Changes in Children with Cerebral Palsy Exposed to Botulinum Neurotoxin. J Proteome Res 2022; 21:671-682. [PMID: 35018779 DOI: 10.1021/acs.jproteome.1c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The long-term effect of botulinum neurotoxin A (BoNT-A) on children with cerebral palsy (CP) is unclear, and how the dynamic changes of metabolites impact the duration of effect remains unknown. To tackle this, we collected 120 plasma samples from 91 children with spastic CP for analysis, with 30 samples in each time point: prior to injection and 1, 3, and 6 months after injection. A total of 354 metabolites were identified across all the time points, 39 of which exhibited significant changes (with tentative IDs) (p values <0.05, VIP > 1). Principal component analysis and partial least-squares discriminant analysis disclosed a clear separation between different groups (p values <0.05). Network analysis revealed the coordinated changes of functional metabolites. Pathway analysis highlighted the metabolic pathways associated with energy consumption and glycine, serine, and threonine metabolism and cysteine and methionine metabolism. Collectively, our results identified the significant dynamic changes of plasma metabolite after BoNT-A injections on children with CP. Metabolic pathways associated with energy expenditure might provide a new perspective for the effect of BoNT-A in children with CP. Glycine, serine, and threonine metabolism and cysteine and methionine metabolism might be related to the duration of effect of BoNT-A.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yunxian Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yiting Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Shiya Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Chaoqiong Fu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yuan Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China.,Department of Rehabilitation, School of Medicine, South China University of Technology, Guangzhou 510655, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Jinling Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Wenda Wang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Huiran Niu
- Genechem Biotechnology Co., Ltd. Shanghai 200120, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| |
Collapse
|
13
|
Delanghe JR, Speeckaert MM, Verbeke F, De Buyzere ML. C-Reactive Protein in Neonates and Risk for Autism Spectrum Disorder. Biol Psychiatry 2021; 90:e63. [PMID: 34246463 DOI: 10.1016/j.biopsych.2021.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium
| | - Frederick Verbeke
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Marc L De Buyzere
- Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
14
|
Smith BJ, Silva-Costa LC, Martins-de-Souza D. Human disease biomarker panels through systems biology. Biophys Rev 2021; 13:1179-1190. [PMID: 35059036 PMCID: PMC8724340 DOI: 10.1007/s12551-021-00849-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
As more uses for biomarkers are sought after for an increasing number of disease targets, single-target biomarkers are slowly giving way for biomarker panels. These panels incorporate various sources of biomolecular and clinical data to guarantee a higher robustness and power of separation for a clinical test. Multifactorial diseases such as psychiatric disorders show great potential for clinical use, assisting medical professionals during the analysis of risk and predisposition, disease diagnosis and prognosis, and treatment applicability and efficacy. More specific tests are also being developed to assist in ruling out, distinguishing between, and confirming suspicions of multifactorial diseases, as well as to predict which therapy option may be the best option for a given patient's biochemical profile. As more complex datasets are entering the field, involving multi-omic approaches, systems biology has stepped in to facilitate the discovery and validation steps during biomarker panel generation. Filtering biomolecules and clinical data, pre-validating and cross-validating potential biomarkers, generating final biomarker panels, and testing the robustness and applicability of those panels are all beginning to rely on machine learning and systems biology and research in this area will only benefit from advances in these approaches.
Collapse
Affiliation(s)
- Bradley J. Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Licia C. Silva-Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico E Tecnológico, Sao Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
15
|
Likhitweerawong N, Thonusin C, Boonchooduang N, Louthrenoo O, Nookaew I, Chattipakorn N, Chattipakorn SC. Profiles of urine and blood metabolomics in autism spectrum disorders. Metab Brain Dis 2021; 36:1641-1671. [PMID: 34338974 PMCID: PMC8502415 DOI: 10.1007/s11011-021-00788-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/01/2021] [Indexed: 01/06/2023]
Abstract
Early diagnosis and treatment for autism spectrum disorder (ASD) pose challenges. The current diagnostic approach for ASD is mainly clinical assessment of patient behaviors. Biomarkers-based identification of ASD would be useful for pediatricians. Currently, there is no specific treatment for ASD, and evidence for the efficacy of alternative treatments remains inconclusive. The prevalence of ASD is increasing, and it is becoming more urgent to find the pathogenesis of such disorder. Metabolomic studies have been used to deeply investigate the alteration of metabolic pathways, including those associated with ASD. Metabolomics is a promising tool for identifying potential biomarkers and possible pathogenesis of ASD. This review comprehensively summarizes and discusses the abnormal metabolic pathways in ASD children, as indicated by evidence from metabolomic studies in urine and blood. In addition, the targeted interventions that could correct the metabolomic profiles relating to the improvement of autistic behaviors in affected animals and humans have been included. The results revealed that the possible underlying pathophysiology of ASD were alterations of amino acids, reactive oxidative stress, neurotransmitters, and microbiota-gut-brain axis. The potential common pathways shared by animal and human studies related to the improvement of ASD symptoms after pharmacological interventions were mammalian-microbial co-metabolite, purine metabolism, and fatty acid oxidation. The content of this review may contribute to novel biomarkers for the early diagnosis of ASD and possible therapeutic paradigms.
Collapse
Affiliation(s)
- Narueporn Likhitweerawong
- Division of Growth and Development, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sriphum, Muang, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nonglak Boonchooduang
- Division of Growth and Development, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Orawan Louthrenoo
- Division of Growth and Development, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Arkanasa, USA
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sriphum, Muang, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sriphum, Muang, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Ju J, Yang X, Jiang J, Wang D, Zhang Y, Zhao X, Fang X, Liao H, Zheng L, Li S, Hou ST, Liang L, Pan Y, Li H, Li N. Structural and Lipidomic Alterations of Striatal Myelin in 16p11.2 Deletion Mouse Model of Autism Spectrum Disorder. Front Cell Neurosci 2021; 15:718720. [PMID: 34483844 PMCID: PMC8416256 DOI: 10.3389/fncel.2021.718720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Myelin abnormalities have been observed in autism spectrum disorder (ASD). In this study, we seek to discover myelin-related changes in the striatum, a key brain region responsible for core ASD features, using the 16p11.2 deletion (16p11.2±) mouse model of ASD. We found downregulated expression of multiple myelin genes and decreased myelin thickness in the striatum of 16p11.2± mice versus wild type controls. Moreover, given that myelin is the main reservoir of brain lipids and that increasing evidence has linked dysregulation of lipid metabolism to ASD, we performed lipidomic analysis and discovered decreased levels of certain species of sphingomyelin, hexosyl ceramide and their common precursor, ceramide, in 16p11.2± striatum, all of which are major myelin components. We further identified lack of ceramide synthase 2 as the possible reason behind the decrease in these lipid species. Taken together, our data suggest a role for myelin and myelin lipids in ASD development.
Collapse
Affiliation(s)
- Jun Ju
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yumeng Zhang
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Xiaofeng Zhao
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyi Fang
- Department of Neonatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huanquan Liao
- The Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lei Zheng
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Liyang Liang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
| |
Collapse
|
17
|
Esposito CM, Buoli M, Ciappolino V, Agostoni C, Brambilla P. The Role of Cholesterol and Fatty Acids in the Etiology and Diagnosis of Autism Spectrum Disorders. Int J Mol Sci 2021; 22:ijms22073550. [PMID: 33805572 PMCID: PMC8036564 DOI: 10.3390/ijms22073550] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders whose pathogenesis seems to be related to an imbalance of excitatory and inhibitory synapses, which leads to disrupted connectivity during brain development. Among the various biomarkers that have been evaluated in the last years, metabolic factors represent a bridge between genetic vulnerability and environmental aspects. In particular, cholesterol homeostasis and circulating fatty acids seem to be involved in the pathogenesis of ASDs, both through the contribute in the stabilization of cell membranes and the modulation of inflammatory factors. The purpose of the present review is to summarize the available data about the role of cholesterol and fatty acids, mainly long-chain ones, in the onset of ASDs. A bibliographic research on the main databases was performed and 36 studies were included in our review. Most of the studies document a correlation between ASDs and hypocholesterolemia, while the results concerning circulating fatty acids are less univocal. Even though further studies are necessary to confirm the available data, the metabolic biomarkers open to new treatment options such as the modulation of the lipid pattern through the diet.
Collapse
Affiliation(s)
- Cecilia Maria Esposito
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; (C.M.E.); (M.B.); (V.C.); (P.B.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; (C.M.E.); (M.B.); (V.C.); (P.B.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; (C.M.E.); (M.B.); (V.C.); (P.B.)
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence:
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; (C.M.E.); (M.B.); (V.C.); (P.B.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
18
|
Ventura G, Calvano CD, Porcelli V, Palmieri L, De Giacomo A, Xu Y, Goodacre R, Palmisano F, Cataldi TRI. Phospholipidomics of peripheral blood mononuclear cells (PBMCs): the tricky case of children with autism spectrum disorder (ASD) and their healthy siblings. Anal Bioanal Chem 2020; 412:6859-6874. [DOI: 10.1007/s00216-020-02817-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
|
19
|
Benítez-Burraco A. Genes Positively Selected in Domesticated Mammals Are Significantly Dysregulated in the Blood of Individuals with Autism Spectrum Disorders. Mol Syndromol 2020; 10:306-312. [PMID: 32021604 PMCID: PMC6995977 DOI: 10.1159/000505116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
Human self-domestication (i.e., the presence of traits in our species that are commonly found in domesticated animals) has been hypothesized to have contributed to the emergence of many human-specific features, including aspects of our cognition and behavior. Signs of self-domestication have been claimed to be attenuated in individuals with autism spectrum disorders (ASD), this conceivably accounting for facets of their distinctive cognitive and behavioral profile, although this possibility needs to be properly tested. In this study, we have found that candidate genes for mammal domestication, but not for neural crest development and function, are significantly dysregulated in the blood of subjects with ASD. The set of differentially expressed genes (DEGs) is enriched in biological and molecular processes, as well as in pathological phenotypes, of relevance for the etiology of ASD, like lipid metabolism, cell apoptosis, the activity of the insulin-like growth factor, gene expression regulation, skin/hair anomalies, musculoskeletal abnormalities, and hearing impairment. Moreover, among the DEGs, there are known candidates for ASD and/or genes involved in biological processes known to be affected in ASD. Our findings give support to the view that one important aspect of the etiopathogenesis of ASD is the abnormal manifestation of features of human self-domestication.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|