1
|
Smith JP, Paxton R, Medrano S, Sheffield NC, Sequeira-Lopez MLS, Ariel Gomez R. Inhibition of Renin Expression Is Regulated by an Epigenetic Switch From an Active to a Poised State. Hypertension 2024; 81:1869-1882. [PMID: 38989586 PMCID: PMC11337216 DOI: 10.1161/hypertensionaha.124.22886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Renin-expressing cells are myoendocrine cells crucial for the maintenance of homeostasis. Renin is regulated by cAMP, p300 (histone acetyltransferase p300)/CBP (CREB-binding protein), and Brd4 (bromodomain-containing protein 4) proteins and associated pathways. However, the specific regulatory changes that occur following inhibition of these pathways are not clear. METHODS We treated As4.1 cells (tumoral cells derived from mouse juxtaglomerular cells that constitutively express renin) with 3 inhibitors that target different factors required for renin transcription: H-89-dihydrochloride, PKA (protein kinase A) inhibitor; JQ1, Brd4 bromodomain inhibitor; and A-485, p300/CBP inhibitor. We performed assay for transposase-accessible chromatin with sequencing (ATAC-seq), single-cell RNA sequencing, cleavage under targets and tagmentation (CUT&Tag), and chromatin immunoprecipitation sequencing for H3K27ac (acetylation of lysine 27 of the histone H3 protein) and p300 binding on biological replicates of treated and control As4.1 cells. RESULTS In response to each inhibitor, Ren1 expression was significantly reduced and reversible upon washout. Chromatin accessibility at the Ren1 locus did not markedly change but was globally reduced at distal elements. Inhibition of PKA led to significant reductions in H3K27ac and p300 binding specifically within the Ren1 super-enhancer region. Further, we identified enriched TF (transcription factor) motifs shared across each inhibitory treatment. Finally, we identified a set of 9 genes with putative roles across each of the 3 renin regulatory pathways and observed that each displayed differentially accessible chromatin, gene expression, H3K27ac, and p300 binding at their respective loci. CONCLUSIONS Inhibition of renin expression in cells that constitutively synthesize and release renin is regulated by an epigenetic switch from an active to poised state associated with decreased cell-cell communication and an epithelial-mesenchymal transition. This work highlights and helps define the factors necessary for renin cells to alternate between myoendocrine and contractile phenotypes.
Collapse
Affiliation(s)
- Jason P. Smith
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia
| | - Robert Paxton
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia
| | - Nathan C. Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | | | - R. Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
2
|
Zarrella MN, Wynne K, Smith P, Duraiyarasan S, Elbey MA. When Revascularization May Be Appropriate in Atherosclerotic Renal Artery Stenosis. Cureus 2024; 16:e64854. [PMID: 39156425 PMCID: PMC11330315 DOI: 10.7759/cureus.64854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Renal artery stenosis (RAS) is a condition that involves the narrowing of one or both renal arteries, most commonly caused by either atherosclerosis or fibroplasia. RAS can present in a multitude of clinical manifestations involving hypertension (HTN), heart failure, and renal failure. Current recommendations for treating patients with RAS involve strict medical therapy often without invasive therapies. However, in more complicated patients with RAS, recent clinical studies and guidelines have offered varying recommendations, which has presented challenges in managing these cases. This review aims to summarize current evidence to best evaluate which patients with RAS may benefit from renal artery revascularization as opposed to medical therapy alone.
Collapse
Affiliation(s)
| | - Kolu Wynne
- Internal Medicine, St Mary's Hospital, Waterbury, USA
| | - Phelese Smith
- Internal Medicine, St Mary's Hospital, Waterbury, USA
| | | | | |
Collapse
|
3
|
Lobo J, Canete-Portillo S, Pena MDCR, McKenney JK, Aron M, Massicano F, Wilk BM, Gajapathy M, Brown DM, Baydar DE, Matoso A, Rioux-Leclerq N, Pan CC, Tretiakova MS, Trpkov K, Williamson SR, Rais-Bahrami S, Mackinnon AC, Harada S, Worthey EA, Magi-Galluzzi C. Molecular Characterization of Juxtaglomerular Cell Tumors: Evidence of Alterations in MAPK-RAS Pathway. Mod Pathol 2024; 37:100492. [PMID: 38614322 DOI: 10.1016/j.modpat.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Juxtaglomerular cell tumor (JGCT) is a rare neoplasm, part of the family of mesenchymal tumors of the kidney. Although the pathophysiological and clinical correlates of JGCT are well known, as these tumors are an important cause of early-onset arterial hypertension refractory to medical treatment, their molecular background is unknown, with only few small studies investigating their karyotype. Herein we describe a multi-institutional cohort of JGCTs diagnosed by experienced genitourinary pathologists, evaluating clinical presentation and outcome, morphologic diversity, and, importantly, the molecular features. Ten JGCTs were collected from 9 institutions, studied by immunohistochemistry, and submitted to whole exome sequencing. Our findings highlight the morphologic heterogeneity of JGCT, which can mimic several kidney tumor entities. Three cases showed concerning histologic features, but the patient course was unremarkable, which suggests that morphologic evaluation alone cannot reliably predict the clinical behavior. Gain-of-function variants in RAS GTPases were detected in JGCTs, with no evidence of additional recurrent genomic alterations. In conclusion, we present the largest series of JGCT characterized by whole exome sequencing, highlighting the putative role of the MAPK-RAS pathway.
Collapse
Affiliation(s)
- João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto; Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) and RISE@CI-IPOP (Health Research Network), Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, Porto, Portugal
| | - Sofia Canete-Portillo
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama
| | | | - Jesse K McKenney
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Manju Aron
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Felipe Massicano
- Department of Genetics, Center for Computational Genomics and Data Science, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama
| | - Brandon M Wilk
- Department of Genetics, Center for Computational Genomics and Data Science, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama
| | - Manavalan Gajapathy
- Department of Genetics, Center for Computational Genomics and Data Science, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama
| | - Donna M Brown
- Department of Genetics, Center for Computational Genomics and Data Science, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama
| | - Dilek E Baydar
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Andres Matoso
- Departments of Pathology, Urology, Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Chin-Chen Pan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Maria S Tretiakova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Sean R Williamson
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Soroush Rais-Bahrami
- Department of Urology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama; Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama
| | - Alexander C Mackinnon
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama
| | - Shuko Harada
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama
| | - Elizabeth A Worthey
- Department of Genetics, Center for Computational Genomics and Data Science, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama
| | - Cristina Magi-Galluzzi
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Albama.
| |
Collapse
|
4
|
Udzik J, Pacholewicz J, Biskupski A, Walerowicz P, Januszkiewicz K, Kwiatkowska E. Alterations to Kidney Physiology during Cardiopulmonary Bypass-A Narrative Review of the Literature and Practical Remarks. J Clin Med 2023; 12:6894. [PMID: 37959359 PMCID: PMC10647422 DOI: 10.3390/jcm12216894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION According to different authors, cardiac surgery-associated acute kidney injury (CSA-AKI) incidence can be as high as 20-50%. This complication increases postoperative morbidity and mortality and impairs long-term kidney function in some patients. This review aims to summarize current knowledge regarding alterations to renal physiology during cardiopulmonary bypass (CPB) and to discuss possible nephroprotective strategies for cardiac surgeries. Relevant sections: Systemic and renal circulation, Vasoactive drugs, Fluid balance and Osmotic regulation and Inflammatory response. CONCLUSIONS Considering the available scientific evidence, it is concluded that adequate kidney perfusion and fluid balance are the most critical factors determining postoperative kidney function. By adequate perfusion, one should understand perfusion with proper oxygen delivery and sufficient perfusion pressure. Maintaining the fluid balance is imperative for a normal kidney filtration process, which is essential for preserving the intra- and postoperative kidney function. FUTURE DIRECTIONS The review of the available literature regarding kidney function during cardiac surgery revealed a need for a more holistic approach to this subject.
Collapse
Affiliation(s)
- Jakub Udzik
- Department of Cardiac Surgery, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (A.B.); (P.W.)
| | - Jerzy Pacholewicz
- Department of Cardiac Surgery, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (A.B.); (P.W.)
| | - Andrzej Biskupski
- Department of Cardiac Surgery, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (A.B.); (P.W.)
| | - Paweł Walerowicz
- Department of Cardiac Surgery, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (A.B.); (P.W.)
| | - Kornelia Januszkiewicz
- Department of Anesthesiology, Intensive Care and Acute Intoxications, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Ewa Kwiatkowska
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland;
| |
Collapse
|
5
|
Bonnitcha P, Rigdwell M, Ward P, Chesher D. Standard -20 °C freezer storage protocols may cause substantial plasma renin cryoactivation. Clin Chem Lab Med 2023; 61:1428-1435. [PMID: 36800985 DOI: 10.1515/cclm-2022-1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES To assess the appropriate preanalytical process for storage of plasma for renin concentration analysis. This study was initiated due to the wide variation in preanalytical handling of samples observed within our network, particularly with respect to freezing for longer term storage. METHODS Pooled plasma from patient samples was analysed immediately post separation for renin concentration (n=30, concentration 4.0-204 mIU/L). Aliquots from these samples were frozen in a -20 °C freezer and then analysed, with the renin concentration compared to the respective baseline concentration. Comparisons were also made to: aliquots snap frozen using a dry ice/acetone bath, aliquots stored at room temperature, and aliquots stored at 4 °C. Subsequent experiments investigated the potential sources of cryoactivation observed in these initial studies. RESULTS Substantial and highly variable cryoactivation was observed in samples frozen using a -20 °C freezer, with renin concentration increasing over 300% from baseline in some samples (median 21.3%). This cryoactivation could be prevented by snap freezing samples. Subsequent experiments determined that long term storage in a -20 °C freezer could prevent cryoactivation provided samples were initially frozen rapidly in a -70 °C freezer. Rapid defrosting of samples was not required to prevent cryoactivation. CONCLUSIONS Standard -20 °C freezers may not be appropriate for freezing samples for renin analysis. Laboratories should consider snap freezing their samples using a -70 °C freezer or similar to avoid cryoactivation of renin.
Collapse
Affiliation(s)
- Paul Bonnitcha
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mark Rigdwell
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Peter Ward
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Douglas Chesher
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Márquez M, Muñoz M, Córdova A, Puebla M, Figueroa XF. Connexin 40-Mediated Regulation of Systemic Circulation and Arterial Blood Pressure. J Vasc Res 2023; 60:87-100. [PMID: 37331352 DOI: 10.1159/000531035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Vascular system is a complex network in which different cell types and vascular segments must work in concert to regulate blood flow distribution and arterial blood pressure. Although paracrine/autocrine signaling is involved in the regulation of vasomotor tone, direct intercellular communication via gap junctions plays a central role in the control and coordination of vascular function in the microvascular network. Gap junctions are made up by connexin (Cx) proteins, and among the four Cxs expressed in the cardiovascular system (Cx37, Cx40, Cx43, and Cx45), Cx40 has emerged as a critical signaling pathway in the vessel wall. This Cx is predominantly found in the endothelium, but it is involved in the development of the cardiovascular system and in the coordination of endothelial and smooth muscle cell function along the length of the vessels. In addition, Cx40 participates in the control of vasomotor tone through the transmission of electrical signals from the endothelium to the underlying smooth muscle and in the regulation of arterial blood pressure by renin-angiotensin system in afferent arterioles. In this review, we discuss the participation of Cx40-formed channels in the development of cardiovascular system, control and coordination of vascular function, and regulation of arterial blood pressure.
Collapse
Affiliation(s)
- Mónica Márquez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Muñoz
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexandra Córdova
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Maggiore JC, LeGraw R, Przepiorski A, Velazquez J, Chaney C, Streeter E, Silva-Barbosa A, Franks J, Hislop J, Hill A, Wu H, Pfister K, Howden SE, Watkins SC, Little M, Humphreys BD, Watson A, Stolz DB, Kiani S, Davidson AJ, Carroll TJ, Cleaver O, Sims-Lucas S, Ebrahimkhani MR, Hukriede NA. Genetically engineering endothelial niche in human kidney organoids enables multilineage maturation, vascularization and de novo cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542848. [PMID: 37333155 PMCID: PMC10274893 DOI: 10.1101/2023.05.30.542848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Vascularization plays a critical role in organ maturation and cell type development. Drug discovery, organ mimicry, and ultimately transplantation in a clinical setting thereby hinges on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcome this hurdle by combining an inducible ETS translocation variant 2 (ETV2) human induced pluripotent stem cell (iPSC) line, which directs endothelial fate, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive vascularization by endothelial cells with an identity most closely related to endogenous kidney endothelia. Vascularized organoids also show increased maturation of nephron structures including more mature podocytes with improved marker expression, foot process interdigitation, an associated fenestrated endothelium, and the presence of renin+ cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Furthermore, this approach is orthogonal to native tissue differentiation paths, hence readily adaptable to other organoid systems and thus has the potential for a broad impact on basic and translational organoid studies.
Collapse
Affiliation(s)
- Joseph C Maggiore
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Aneta Przepiorski
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Jeremy Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Christopher Chaney
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan Streeter
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Anne Silva-Barbosa
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Hislop
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alex Hill
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
| | - Katherine Pfister
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Melissa Little
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
| | - Alan Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1010, New Zealand
| | - Thomas J Carroll
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Sunder Sims-Lucas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Neil A Hukriede
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| |
Collapse
|
8
|
Martini AG, Smith JP, Medrano S, Sheffield NC, Sequeira-Lopez MLS, Gomez RA. Determinants of renin cell differentiation: a single cell epi-transcriptomics approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524595. [PMID: 36711565 PMCID: PMC9882312 DOI: 10.1101/2023.01.18.524595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rationale Renin cells are essential for survival. They control the morphogenesis of the kidney arterioles, and the composition and volume of our extracellular fluid, arterial blood pressure, tissue perfusion, and oxygen delivery. It is known that renin cells and associated arteriolar cells descend from FoxD1 + progenitor cells, yet renin cells remain challenging to study due in no small part to their rarity within the kidney. As such, the molecular mechanisms underlying the differentiation and maintenance of these cells remain insufficiently understood. Objective We sought to comprehensively evaluate the chromatin states and transcription factors (TFs) that drive the differentiation of FoxD1 + progenitor cells into those that compose the kidney vasculature with a focus on renin cells. Methods and Results We isolated single nuclei of FoxD1 + progenitor cells and their descendants from FoxD1 cre/+ ; R26R-mTmG mice at embryonic day 12 (E12) (n cells =1234), embryonic day 18 (E18) (n cells =3696), postnatal day 5 (P5) (n cells =1986), and postnatal day 30 (P30) (n cells =1196). Using integrated scRNA-seq and scATAC-seq we established the developmental trajectory that leads to the mosaic of cells that compose the kidney arterioles, and specifically identified the factors that determine the elusive, myo-endocrine adult renin-secreting juxtaglomerular (JG) cell. We confirm the role of Nfix in JG cell development and renin expression, and identified the myocyte enhancer factor-2 (MEF2) family of TFs as putative drivers of JG cell differentiation. Conclusions We provide the first developmental trajectory of renin cell differentiation as they become JG cells in a single-cell atlas of kidney vascular open chromatin and highlighted novel factors important for their stage-specific differentiation. This improved understanding of the regulatory landscape of renin expressing JG cells is necessary to better learn the control and function of this rare cell population as overactivation or aberrant activity of the RAS is a key factor in cardiovascular and kidney pathologies.
Collapse
|
9
|
Broeker KAE, Schrankl J, Fuchs MAA, Kurtz A. Flexible and multifaceted: the plasticity of renin-expressing cells. Pflugers Arch 2022; 474:799-812. [PMID: 35511367 PMCID: PMC9338909 DOI: 10.1007/s00424-022-02694-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
The protease renin, the key enzyme of the renin–angiotensin–aldosterone system, is mainly produced and secreted by juxtaglomerular cells in the kidney, which are located in the walls of the afferent arterioles at their entrance into the glomeruli. When the body’s demand for renin rises, the renin production capacity of the kidneys commonly increases by induction of renin expression in vascular smooth muscle cells and in extraglomerular mesangial cells. These cells undergo a reversible metaplastic cellular transformation in order to produce renin. Juxtaglomerular cells of the renin lineage have also been described to migrate into the glomerulus and differentiate into podocytes, epithelial cells or mesangial cells to restore damaged cells in states of glomerular disease. More recently, it could be shown that renin cells can also undergo an endocrine and metaplastic switch to erythropoietin-producing cells. This review aims to describe the high degree of plasticity of renin-producing cells of the kidneys and to analyze the underlying mechanisms.
Collapse
Affiliation(s)
- Katharina A E Broeker
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany.
| | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| | - Michaela A A Fuchs
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| |
Collapse
|
10
|
Marshall JL, Noel T, Wang QS, Chen H, Murray E, Subramanian A, Vernon KA, Bazua-Valenti S, Liguori K, Keller K, Stickels RR, McBean B, Heneghan RM, Weins A, Macosko EZ, Chen F, Greka A. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 2022; 25:104097. [PMID: 35372810 PMCID: PMC8971939 DOI: 10.1016/j.isci.2022.104097] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022] Open
Abstract
High-resolution spatial transcriptomics enables mapping of RNA expression directly from intact tissue sections; however, its utility for the elucidation of disease processes and therapeutically actionable pathways remains unexplored. We applied Slide-seqV2 to mouse and human kidneys, in healthy and distinct disease paradigms. First, we established the feasibility of Slide-seqV2 in tissue from nine distinct human kidneys, which revealed a cell neighborhood centered around a population of LYVE1+ macrophages. Second, in a mouse model of diabetic kidney disease, we detected changes in the cellular organization of the spatially restricted kidney filter and blood-flow-regulating apparatus. Third, in a mouse model of a toxic proteinopathy, we identified previously unknown, disease-specific cell neighborhoods centered around macrophages. In a spatially restricted subpopulation of epithelial cells, we discovered perturbations in 77 genes associated with the unfolded protein response. Our studies illustrate and experimentally validate the utility of Slide-seqV2 for the discovery of disease-specific cell neighborhoods.
Collapse
Affiliation(s)
- Jamie L. Marshall
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Teia Noel
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qingbo S. Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA 02115, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Haiqi Chen
- Program in Cell Circuits and Epigenetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan Murray
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Katherine A. Vernon
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Silvana Bazua-Valenti
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katie Liguori
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keith Keller
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Robert R. Stickels
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02115, USA
- Division of Medical Science, Harvard University, Boston, MA 02115, USA
| | - Breanna McBean
- Broad Summer Research Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rowan M. Heneghan
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Astrid Weins
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Evan Z. Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fei Chen
- Program in Cell Circuits and Epigenetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anna Greka
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
The Renal Extracellular Matrix as a Supportive Scaffold for Kidney Tissue Engineering: Progress and Future Considerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:103-118. [PMID: 34582017 DOI: 10.1007/978-3-030-82735-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During the past decades, diverse methods have been used toward renal tissue engineering in order to replace renal function. The goals of all these techniques included the recapitulation of renal filtration, re-absorptive, and secretary functions, and replacement of endocrine/metabolic activities. It is also imperative to develop a reliable, up scalable, and timely manufacturing process. Decellularization of the kidney with intact ECM is crucial for in-vivo compatibility and targeted clinical application. Contemporarily there is an increasing interest and research in the field of regenerative medicine including stem cell therapy and tissue bioengineering in search for new and reproducible sources of kidneys. In this chapter, we sought to determine the most effective method of renal decellularization and recellularization with emphasis on biologic composition and support of stem cell growth. Current barriers and limitations of bioengineered strategies will be also discussed, and strategies to overcome these are suggested.
Collapse
|
12
|
Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids 2020; 163:108701. [PMID: 32717198 DOI: 10.1016/j.steroids.2020.108701] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a specific hormonal cascade implicated in the blood pressure control and sodium balance regulation. Several components of this pathway have been identified including renin, angiotensinogen, angiotensin-converting enzyme, angiotensins with a wide range of distinct subtypes and receptors, and aldosterone. The RAAS is not only confined to the systemic circulation but also exists locally in specific tissues such as the heart, brain, and blood vessels with a particular paracrine action. Alteration of RAAS function can contribute to the development of hypertension and the emergence of its associated end-organ damage. Genotypic variations of the different genes of RAAS cascade have been linked to the susceptibility to essential hypertension. Accordingly, to understand the pathogenesis of essential hypertension and its related complications, deep insight into the physiological and genetic aspects of RAAS with its different components and pathways is necessary. In this review, we aimed to illustrate the physiological and genetic aspects of RAAS and the underlying mechanisms which link this system to the predisposition to essential hypertension.
Collapse
|
13
|
Steglich A, Hickmann L, Linkermann A, Bornstein S, Hugo C, Todorov VT. Beyond the Paradigm: Novel Functions of Renin-Producing Cells. Rev Physiol Biochem Pharmacol 2020; 177:53-81. [PMID: 32691160 DOI: 10.1007/112_2020_27] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The juxtaglomerular renin-producing cells (RPC) of the kidney are referred to as the major source of circulating renin. Renin is the limiting factor in renin-angiotensin system (RAS), which represents a proteolytic cascade in blood plasma that plays a central role in the regulation of blood pressure. Further cells disseminated in the entire organism express renin at a low level as part of tissue RASs, which are thought to locally modulate the effects of systemic RAS. In recent years, it became increasingly clear that the renal RPC are involved in developmental, physiological, and pathophysiological processes outside RAS. Based on recent experimental evidence, a novel concept emerges postulating that next to their traditional role, the RPC have non-canonical RAS-independent progenitor and renoprotective functions. Moreover, the RPC are part of a widespread renin lineage population, which may act as a global stem cell pool coordinating homeostatic, stress, and regenerative responses throughout the organism. This review focuses on the RAS-unrelated functions of RPC - a dynamic research area that increasingly attracts attention.
Collapse
Affiliation(s)
- Anne Steglich
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Linda Hickmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Andreas Linkermann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bornstein
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Vladimir T Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
14
|
Effects of Dapagliflozin on Volume Status When Added to Renin-Angiotensin System Inhibitors. J Clin Med 2019; 8:jcm8060779. [PMID: 31159350 PMCID: PMC6616433 DOI: 10.3390/jcm8060779] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 12/29/2022] Open
Abstract
Sodium glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of heart and kidney failure in patients with type 2 diabetes, possibly due to diuretic effects. Previous non-placebo-controlled studies with SGLT2 inhibitors observed changes in volume markers in healthy individuals and in patients with type 2 diabetes with preserved kidney function. It is unclear whether patients with type 2 diabetes and signs of kidney damage show similar changes. Therefore, a post hoc analysis was performed on two randomized controlled trials (n = 69), assessing effects of dapagliflozin 10 mg/day when added to renin–angiotensin system inhibition in patients with type 2 diabetes and urinary albumin-to-creatinine ratio ≥30 mg/g. Blood and 24-h urine was collected at the start and the end of treatment periods lasting six and 12 weeks. Effects of dapagliflozin compared to placebo on various markers of volume status were determined. Fractional lithium excretion, a marker of proximal tubular sodium reabsorption, was assessed in 33 patients. Dapagliflozin increased urinary glucose excretion by 217.2 mmol/24 h (95% confidence interval (CI): from 155.7 to 278.7, p < 0.01) and urinary osmolality by 60.4 mOsmol/kg (from 30.0 to 90.9, p < 0.01), compared to placebo. Fractional lithium excretion increased by 19.6% (from 6.7 to 34.2; p < 0.01), suggesting inhibition of sodium reabsorption in the proximal tubule. Renin and copeptin increased by 46.9% (from 21.6 to 77.4, p < 0.01) and 33.0% (from 23.9 to 42.7, p < 0.01), respectively. Free water clearance (FWC) decreased by −885.3 mL/24 h (from −1156.2 to −614.3, p < 0.01). These changes in markers of volume status suggest that dapagliflozin exerts both osmotic and natriuretic diuretic effects in patients with type 2 diabetes and kidney damage, as reflected by increased urinary osmolality and fractional lithium excretion. As a result, compensating mechanisms are activated to retain sodium and water.
Collapse
|
15
|
Novielli-Kuntz NM, Jelen M, Barr K, DeLalio LJ, Feng Q, Isakson BE, Gros R, Laird DW. Ablation of both Cx40 and Panx1 results in similar cardiovascular phenotypes exhibited in Cx40 knockout mice. Biosci Rep 2019; 39:BSR20182350. [PMID: 30745457 PMCID: PMC6393227 DOI: 10.1042/bsr20182350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 11/30/2022] Open
Abstract
Connexins (Cxs) and pannexins (Panxs) are highly regulated large-pore channel-forming proteins that participate in cellular communication via small molecular exchange with the extracellular microenvironment, or in the case of connexins, directly between cells. Given the putative functional overlap between single membrane-spanning connexin hemichannels and Panx channels, and cardiovascular system prevalence, we generated the first Cx40-/-Panx1-/- mouse with the anticipation that this genetic modification would lead to a severe cardiovascular phenotype. Mice null for both Cx40 and Panx1 produced litter sizes and adult growth progression similar to wild-type (WT), Cx40-/- and Panx1-/- mice. Akin to Cx40-/- mice, Cx40-/-Panx1-/- mice exhibited cardiac hypertrophy and elevated systolic, diastolic, and mean arterial blood pressure compared with WT and Panx1-/- mice; however assessment of left ventricular ejection fraction and fractional shortening revealed no evidence of cardiac dysfunction between groups. Furthermore, Cx40-/-, Panx1-/-, and Cx40-/-Panx1-/- mice demonstrated impaired endothelial-mediated vasodilation of aortic segments to increasing concentrations of methacholine (MCh) compared with WT, highlighting roles for both Cx40 and Panx1 in vascular endothelial cell (EC) function. Surprisingly, elevated kidney renin mRNA expression, plasma renin activity, and extraglomerular renin-producing cell populations found in Cx40-/- mice was further exaggerated in double knockout mice. Thus, while gestation and gross development were conserved in Cx40-/-Panx1-/- mice, they exhibit cardiac hypertrophy, hypertension, and impaired endothelial-mediated vasodilation that phenocopies Cx40-/- mice. Nevertheless, the augmented renin homeostasis observed in the double knockout mice suggests that both Cx40 and Panx1 may play an integrative role.
Collapse
Affiliation(s)
| | - Meghan Jelen
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | - Kevin Barr
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | - Leon J DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, U.S.A
| | - Qingping Feng
- Department of Physiology and Pharmacology London, ON, Canada
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, U.S.A
| | - Robert Gros
- Department of Physiology and Pharmacology London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
- Department of Physiology and Pharmacology London, ON, Canada
| |
Collapse
|