1
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
2
|
Banerjee C, Tripathy D, Kumar D, Chakraborty J. Monoamine oxidase and neurodegeneration: Mechanisms, inhibitors and natural compounds for therapeutic intervention. Neurochem Int 2024; 179:105831. [PMID: 39128624 DOI: 10.1016/j.neuint.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Mammalian flavoenzyme Monoamine oxidase (MAO) resides on the outer mitochondrial membrane (OMM) and it is involved in the metabolism of different monoamine neurotransmitters in brain. During MAO mediated oxidative deamination of relevant substrates, H2O2 is released as a catalytic by-product, thus serving as a major source of reactive oxygen species (ROS). Under normal conditions, MAO mediated ROS is reported to propel the functioning of mitochondrial electron transport chain and phasic dopamine release. However, due to its localization onto mitochondria, sudden elevation in its enzymatic activity could directly impact the form and function of the organelle. For instance, in the case of Parkinson's disease (PD) patients who are on l-dopa therapy, the enzyme could be a concurrent source of extensive ROS production in the presence of uncontrolled substrate (dopamine) availability, thus further impacting the health of surviving neurons. It is worth mentioning that the expression of the enzyme in different brain compartments increases with age. Moreover, the involvement of MAO in the progression of neurological disorders such as PD, Alzheimer's disease and depression has been extensively studied in recent times. Although the usage of available synthetic MAO inhibitors has been instrumental in managing these conditions, the associated complications have raised significant concerns lately. Natural products have served as a major source of lead molecules in modern-day drug discovery; however, there is still no FDA-approved MAO inhibitor which is derived from natural sources. In this review, we have provided a comprehensive overview of MAO and how the enzyme system is involved in the pathogenesis of different age-associated neuropathologic conditions. We further discussed the applications and drawbacks of the long-term usage of presently available synthetic MAO inhibitors. Additionally, we have highlighted the prospect and worth of natural product derived molecules in addressing MAO associated complications.
Collapse
Affiliation(s)
- Chayan Banerjee
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasmita Tripathy
- Department of Zoology, Netaji Nagar College for Women, Kolkata, 700092, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India.
| | - Joy Chakraborty
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India.
| |
Collapse
|
3
|
Wang Y, Wang Z. Effects and Safety of Monoamine Oxidase-B Inhibitors for Early Parkinson's Disease: A Network Meta-Analysis. Eur Neurol 2024; 87:273-290. [PMID: 39278214 DOI: 10.1159/000541315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION The objective of this study was to evaluate the effects and safety of monoamine oxidase-B inhibitors (MAO-B inhibitors) for early Parkinson's disease (PD). METHODS All studies that assessed the efficacy of MAO-B inhibitors in patients with early PD were searched. Publications were screened, and data were extracted according to predefined criteria. Rev Man 5.4 and Stata 14.0 software were used for statistical analysis. Outcomes assessed included change of Unified Parkinson's Disease Rating Scale (UPDRS) total score, UPDRS part II score, UPDRS part III score, and the incidence of adverse events. RESULTS Thirty trials were identified and included in this meta-analysis. Compared with placebo, rasagiline, selegiline, safinamide, and zonisamide were significantly more effective, with a standardized mean difference (SMD) of -0.41 (95% confidence interval (CI) = -0.64 to -0.18), SMD = -0.38 (95% CI = -0.51 to -0.24), SMD = -0.37 (95% CI = -0.54 to -0.21), and SMD = -0.31 (95% CI = -0.57 to -0.05) on the UPDRS III score change, respectively. The surface under the cumulative ranking results showed that rasagiline ranked first in improving UPDRS II and UPDRS III, respectively. For safety outcomes, safinamide combination with dopaminergic treatment had lower risk of incurring any adverse events (risk ratio = 0.1, 95% CI = 0.01-0.2), and no statistical difference in incidence of adverse events was observed among other MAO-B inhibitor regimes and placebo. CONCLUSION Rasagiline, selegiline, safinamide, and zonisamide were effective compared to placebo in the treatment of early PD, but rasagiline was the most effective drug. As for safety, safinamide combination with dopaminergic treatment had lower risk of incurring any adverse events.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
4
|
Dhyani P, Goyal C, Dhull SB, Chauhan AK, Singh Saharan B, Harshita, Duhan JS, Goksen G. Psychobiotics for Mitigation of Neuro-Degenerative Diseases: Recent Advancements. Mol Nutr Food Res 2024; 68:e2300461. [PMID: 37715243 DOI: 10.1002/mnfr.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Indexed: 09/17/2023]
Abstract
Ageing is inevitable and poses a universal challenge for all living organisms, including humans. The human body experiences rapid cell division and metabolism until approximately 25 years of age, after which the accumulation of metabolic by-products and cellular damage leads to age-related diseases. Neurodegenerative diseases are of concern due to their irreversible nature, lack of effective treatment, and impact on society and the economy. Researchers are interested in finding drugs that can effectively alleviate ageing and age-related diseases without side-effects. Psychobiotics are a novel class of probiotic organisms and prebiotic interventions that confer mental health benefits to the host when taken appropriately. Psychobiotic strains affect functions related to the central nervous system (CNS) and behaviors mediated by the Gut-Brain-Axis (GBA) through various pathways. There is an increasing interest in researchers of these microbial-based psychopharmaceuticals. Psychobiotics have been reported to reduce neuronal ageing, inflammation, oxidative stress, and cortisol levels; increase synaptic plasticity and levels of neurotransmitters and antioxidants. The present review focuses on the manifestation of elderly neurodegenerative and mental disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and depression, and the current status of their potential alleviation through psychobiotic interventions, highlighting their possible mechanisms of action.
Collapse
Affiliation(s)
- Priya Dhyani
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, BHU, Varansi, 121005, India
| | - Chhaya Goyal
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, BHU, Varansi, 121005, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, 125055, India
| | - Anil Kumar Chauhan
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, BHU, Varansi, 121005, India
| | - Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125 004, India
| | - Harshita
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus, Organized Industrial Zone, Tarsus University, Mersin, 33100, Türkiye
| |
Collapse
|
5
|
Baweja GS, Gupta S, Kumar B, Patel P, Asati V. Recent updates on structural insights of MAO-B inhibitors: a review on target-based approach. Mol Divers 2024; 28:1823-1845. [PMID: 36977955 PMCID: PMC10047469 DOI: 10.1007/s11030-023-10634-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by slow movement, tremors, and stiffness caused due to loss of dopaminergic neurons caused in the brain's substantia nigra. The concentration of dopamine is decreased in the brain. Parkinson's disease may be happened because of various genetic and environmental factors. Parkinson's disease is related to the irregular expression of the monoamine oxidase (MAO) enzyme, precisely type B, which causes the oxidative deamination of biogenic amines such as dopamine. MAO-B inhibitors, available currently in the market, carry various adverse effects such as dizziness, nausea, vomiting, lightheadedness, fainting, etc. So, there is an urgent need to develop new MAO-B inhibitors with minimum side effects. In this review, we have included recently studied compounds (2018 onwards). Agrawal et al. reported MAO-B inhibitors with IC50 0.0051 µM and showed good binding affinity. Enriquez et al. reported a compound with IC50 144 nM and bind with some critical amino acid residue Tyr60, Ile198, and Ile199. This article also describes the structure-activity relationship of the compounds and clinical trial studies of related derivatives. These compounds may be used as lead compounds to develop potent compounds as MAO-B inhibitors.
Collapse
Affiliation(s)
- Gurkaran Singh Baweja
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
6
|
Al-Saad OM, Gabr M, Darwish SS, Rullo M, Pisani L, Miniero DV, Liuzzi GM, Kany AM, Hirsch AKH, Abadi AH, Engel M, Catto M, Abdel-Halim M. Novel 6-hydroxybenzothiazol-2-carboxamides as potent and selective monoamine oxidase B inhibitors endowed with neuroprotective activity. Eur J Med Chem 2024; 269:116266. [PMID: 38490063 DOI: 10.1016/j.ejmech.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.
Collapse
Affiliation(s)
- Omar M Al-Saad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah S Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
7
|
Hoffman GR, Olson MG, Schoffstall AM, Estévez RF, Van den Eynde V, Gillman PK, Stabio ME. Classics in Chemical Neuroscience: Selegiline, Isocarboxazid, Phenelzine, and Tranylcypromine. ACS Chem Neurosci 2023; 14:4064-4075. [PMID: 37966854 DOI: 10.1021/acschemneuro.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
The discovery of monoamine oxidase inhibitors (MAOIs) in the 1950s marked a significant breakthrough in medicine, creating a powerful new category of drug: the antidepressant. In the years and decades that followed, MAOIs have been used in the treatment of several pathologies including Parkinson's disease, Alzheimer's disease, and various cancers and as anti-inflammatory agents. Despite once enjoying widespread use, MAOIs have dwindled in popularity due to side effects, food-drug interactions, and the introduction of other antidepressant drug classes such as tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs). The recently published prescriber's guide for the use of MAOIs in treating depression has kindled a resurgence of their use in the clinical space. It is therefore timely to review key aspects of the four "classic" MAOIs: high-dose selegiline, isocarboxazid, phenelzine, and tranylcypromine. This review discusses their chemical synthesis, metabolism, pharmacology, adverse effects, and the history and importance of these drugs within the broader field of chemical neuroscience.
Collapse
Affiliation(s)
- Gavin R Hoffman
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Madeline G Olson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
| | - Allen M Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Ryan F Estévez
- Department of Psychiatry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
- Tampa Bay Neurobehavior Institute, 6311 Sheldon Road, Tampa Bay, Florida 33615, United States
| | - Vincent Van den Eynde
- PsychoTropical Research, Bucasia, Queensland 4740, Australia
- Department of Psychiatry, RadboudUMC, 6500 Nijmegen, The Netherlands
| | - Peter K Gillman
- PsychoTropical Research, Bucasia, Queensland 4740, Australia
| | - Maureen E Stabio
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
| |
Collapse
|
8
|
Asano H, Tian YS, Hatabu A, Takagi T, Ueda M, Ikeda K. Safety comparisons among monoamine oxidase inhibitors against Parkinson's disease using FDA adverse event reporting system. Sci Rep 2023; 13:19272. [PMID: 37935702 PMCID: PMC10630381 DOI: 10.1038/s41598-023-44142-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
Monoamine oxidase B (MAO-B) inhibitors are used to control Parkinson's disease (PD). Selegiline, rasagiline, and safinamide are widely used as MAO-B inhibitors worldwide. Although these drugs inhibit MAO-B, there are pharmacological and chemical differences, such as the inhibitory activity, the non-dopaminergic properties in safinamide, and the amphetamine-like structure in selegiline. MAO-B inhibitors may differ in adverse events (AEs). However, differences in actual practical clinics are not fully investigated. A retrospective study was conducted using FAERS, the largest database of spontaneous adverse events. AE signals for MAO-B inhibitors, including selegiline, rasagiline, and safinamide, were detected using the reporting odds ratio method and compared. Hypocomplementemia, hepatic cyst, hepatic function abnormal, liver disorder and cholangitis were detected for selegiline as drug-specific signals. The amphetamine effect was not confirmed for any of the three MAO-B inhibitors. The tyramine reaction was detected as an AE signal only for rasagiline. Moreover, the REM sleep behavior disorder was not detected as an AE signal for safinamide, suggesting that non-dopaminergic effects might be beneficial. Considering the differences in AEs for MAO-B inhibitors will assist with the appropriate PD medication.
Collapse
Affiliation(s)
- Hiroto Asano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yu-Shi Tian
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Asuka Hatabu
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikiko Ueda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Ikeda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Wang K, Liu ZH, Li XY, Li YF, Li JR, Hui JJ, Li JX, Zhou JW, Yi ZM. Efficacy and safety of selegiline for the treatment of Parkinson's disease: A systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1134472. [PMID: 37113570 PMCID: PMC10126343 DOI: 10.3389/fnagi.2023.1134472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Background Drug efficacy generally varies with different durations. There is no systematic review analyzing the effect of selegiline for Parkinson's disease (PD) on different treatment duration. This study aims to analyze how the efficacy and safety of selegiline changes for PD over time. Methods PubMed, the Cochrane Library, Embase, China National Knowledge Infrastructure and Wanfang Database were systematically retrieved for randomized controlled trials (RCTs) and observational studies of selegiline for PD. The search period was from inception to January 18th, 2022. The efficacy outcomes were measured by the mean change from baseline in the total and sub Unified Parkinson's Disease Rating Scale (UPDRS), Hamilton Depression Rating Scale (HAMD) and Webster Rating Scale (WRS) scores. The safety outcomes were measured by the proportion of participants having any adverse events overall and that in different system organ classes. Results Among the 3,786 studies obtained, 27 RCTs and 11 observational studies met the inclusion criteria. Twenty-three studies reported an outcome which was also reported in at least one other study, and were included in meta-analyses. Compared with placebo, selegiline was found with a stronger reduction of total UPDRS score with increasing treatment duration [mean difference and 95% CIs in 1 month: -3.56 (-6.67, -0.45); 3 months: -3.32 (-3.75, -2.89); 6 months: -7.46 (-12.60, -2.32); 12 months: -5.07 (-6.74, -3.41); 48 months: -8.78 (-13.75, -3.80); 60 months: -11.06 (-16.19, -5.94)]. A similar trend was also found from the point estimates in UPDRS I, II, III, HAMD and WRS score. The results of observational studies on efficacy were not entirely consistent. As for safety, compared with placebo, selegiline had higher risk of incurring any adverse events [rate: 54.7% vs. 62.1%; odd ratio and 95% CIs: 1.58 (1.02, 2.44)], with the excess adverse events mainly manifested as neuropsychiatric disorders [26.7% vs. 31.6%; 1.36 (1.06, 1.75)] and no significant change over time. The statistically difference in overall adverse event between selegiline and active controls was not found. Conclusion Selegiline was effective in improving total UPDRS score with increasing treatment duration, and had a higher risk of incurring adverse events, especially the adverse events in the neuropsychiatric system. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: PROSPERO CRD42021233145.
Collapse
Affiliation(s)
- Ke Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ze-Hui Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy, Aerospace Central Hospital, Beijing, China
| | - Xin-Ya Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Yan-Fei Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Jia-Rui Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Jiao-Jiao Hui
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy, The First People's Hospital of Xianyang, Shaanxi, China
| | - Jing-Xuan Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jun-Wen Zhou
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Jun-Wen Zhou
| | - Zhan-Miao Yi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- *Correspondence: Zhan-Miao Yi
| |
Collapse
|
10
|
Do N, Mitchell S, Sturgill L, Khemani P, Sin MK. Speech and Swallowing Problems in Parkinson’s Disease. J Nurse Pract 2022. [DOI: 10.1016/j.nurpra.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Liu XQ, Wang XY, Shen HM, Pang WY, Zhong MK, Ma CL. Real-World Prescription Patterns For Patients With Young-Onset Parkinson’s Disease in China: A Trend Analysis From 2014 to 2019. Front Pharmacol 2022; 13:858139. [PMID: 35645835 PMCID: PMC9133339 DOI: 10.3389/fphar.2022.858139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Pharmacotherapy is one of the main treatments for patients with young-onset Parkinson’s disease (YOPD). Although numerous studies on the treatment of YOPD have been published, the real-world prescription patterns of these populations remain unclear in China.Methods A national comprehensive evaluation was performed to reveal the pharmacological treatment patterns in Chinese patients with Parkinson’s disease from 1 January 2014 to 31 December 2019, with patients aged 21–50 years classified as having YOPD for the subgroup analysis. Information on patients and drugs was extracted to analyse the demographic characteristics, prescription patterns, and levodopa equivalent daily dose (LED) during disease progression.Results A total of 1,134 patients with YOPD were included, and the majority were aged 41–50 years. Prescription of L-DOPA/benserazide and pramipexole accounted for more than 30 and 20%, respectively, in each year from 2014 to 2019. There was no difference in prescription patterns in terms of age, sex and geographical areas. Half of the patients with YOPD were on monotherapy, but the proportion decreased from 2016. Correspondingly, the proportion of patients receiving polytherapy increased, especially those who were prescribed more than two anti-Parkinson’s disease drugs. During the disease course, LED showed high variability, which increased over time.Conclusion L-DOPA/benserazide and pramipexole were the most frequently prescribed anti-PD drugs for patients with YOPD in China. There was a slight trend in the transition from monotherapy to polytherapy. LED increased with disease duration. Thus, we provided an overview of the prescription patterns for patients with YOPD in China.
Collapse
Affiliation(s)
- Xiao-qin Liu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-yu Wang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing, China
| | - Hui-ming Shen
- Beijing Prescription Consulting Ltd., Beijing, China
| | - Wen-yuan Pang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Chun-lai Ma,
| |
Collapse
|
12
|
Tan YY, Jenner P, Chen SD. Monoamine Oxidase-B Inhibitors for the Treatment of Parkinson's Disease: Past, Present, and Future. JOURNAL OF PARKINSON'S DISEASE 2022; 12:477-493. [PMID: 34957948 PMCID: PMC8925102 DOI: 10.3233/jpd-212976] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
Monoamine oxidase-B (MAO-B) inhibitors are commonly used for the symptomatic treatment of Parkinson's disease (PD). MAO-B inhibitor monotherapy has been shown to be effective and safe for the treatment of early-stage PD, while MAO-B inhibitors as adjuvant drugs have been widely applied for the treatment of the advanced stages of the illness. MAO-B inhibitors can effectively improve patients' motor and non-motor symptoms, reduce "OFF" time, and may potentially prevent/delay disease progression. In this review, we discuss the effects of MAO-B inhibitors on motor and non-motor symptoms in PD patients, their mechanism of action, and the future development of MAO-B inhibitor therapy.
Collapse
Affiliation(s)
- Yu-Yan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Sciences, Faculty of Health Sciences and Medicine, King’s College, London, UK
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, Shanghai, China
| |
Collapse
|
13
|
Wang Y, Jiang DQ, Lu CS, Li MX, Jiang LL. Efficacy and safety of combination therapy with pramipexole and levodopa vs levodopa monotherapy in patients with Parkinson disease: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27511. [PMID: 34871213 PMCID: PMC8568447 DOI: 10.1097/md.0000000000027511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/24/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pramipexole (P) or levodopa (L) treatment has been suggested as a therapeutic method for Parkinson disease (PD) in many clinical studies. Nonetheless, the combined effects of 2 drugs for PD patients are not completely understood.The aim of this research was to evaluate the clinical efficacy and safety of P plus L (P+L) combination therapy in the treatment of PD compared to that of L monotherapy, in order to confer a reference for clinical practice. METHODS Randomized controlled trials (RCTs) of P+L for PD published up to April, 2020 were retrieved. Standardized mean difference (SMD), odds ratio (OR), and 95% confidence interval (CI) were calculated and heterogeneity was measured with the I2 test. Sensitivity analysis was also carried out. The outcomes of interest were as follows: the efficacy, unified Parkinson disease rating scale (UPDRS) scores, Hamilton depression rating scale score or adverse events. RESULTS Twenty-four RCTs with 2171 participants were included. Clinical efficacy of P+L combination therapy was significantly better than L monotherapy (9 trials; OR 4.29, 95% CI 2.78 to 6.64, P < .00001). Compared with L monotherapy, the pooled effects of P+L combination therapy on UPDRS score were (22 trials; SMD -1.31, 95% CI -1.57 to -1.04, P < .00001) for motor UPDRS score, (16 trials; SMD -1.26, 95% CI -1.49 to -1.03, P < .00001) for activities of daily living UPDRS score, (12 trials; SMD -1.02, 95% CI -1.27 to -0.77, P < .00001) for mental UPDRS score, (10 trials; SMD -1.54, 95% CI -1.93 to -1.15, P < .00001) for complication UPDRS score. The Hamilton depression rating scale score showed significant decrease in the P+L combination therapy compared to L monotherapy (12 trials; SMD -1.56, 95% CI -1.90 to -1.22, P < .00001). In contrast to L monotherapy, P+L combination therapy reduced the number of any adverse events obviously in PD patients (16 trials; OR 0.36, 95% CI 0.27 to 0.50, P < .00001). CONCLUSIONS P+L combination therapy is superior to L monotherapy for improvement of clinical symptoms in PD patients. Moreover, the safety profile of P+L combination therapy is better than that of L monotherapy. Further well-designed, multicenter RCTs needed to identify these findings.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, China
| | - De-Qi Jiang
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, China
| | - Cheng-Shu Lu
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, China
| | - Ming-Xing Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Lin Jiang
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, China
| |
Collapse
|
14
|
Chen LL, Zheng JH. Effects of atorvastatin on the insulin resistance in women of polycystic ovary syndrome: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26289. [PMID: 34128863 PMCID: PMC8213267 DOI: 10.1097/md.0000000000026289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/22/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Atorvastatin treatment has been suggested as a therapeutic method for women with polycystic ovary syndrome (PCOS) in many clinical studies. Nonetheless, the effects of atorvastatin on insulin resistance in PCOS patients still remain controversial. OBJECTIVE The aim of this report was to evaluate the effects of atorvastatin therapy on the insulin resistance in the treatment of PCOS compared to that of placebo, in order to confer a reference for clinical practice. METHODS Randomized controlled trials (RCTs) of atorvastatin for PCOS published up to August, 2020 were searched. Standardized mean difference (SMD) and 95% confidence interval (CI) were calculated, and heterogeneity was measured by the I2 test. Sensitivity analysis was also carried out. The outcomes of interest were as follows: fasting glucose concentration, fasting insulin level, homeostasis model assessment of insulin resistance (HOMA-IR) or body mass index (BMI) value. RESULTS Nine RCTs with 406 participants were included. The difference of fasting glucose concentration in PCOS patients between atorvastatin group and placebo group was not statistically significant (8 trials; SMD -0.06, 95% CI -0.31 to 0.20, P = .66). PCOS patients in atorvastatin group had lower fasting insulin level than those in placebo group (7 trials; SMD -1.84, 95% CI -3.06 to -0.62, P < .003). The homeostasis model assessment of insulin resistance (HOMA-IR) value showed significant decrease in the atorvastatin therapy compared to placebo (6 trials; SMD -4.12, 95% CI -6.00 to -2.23, P < .0001). In contrast to placebo, atorvastatin therapy did not decrease the BMI value significantly in PCOS patients (7 trials; SMD 0.12, 95% CI -0.07 to 0.31, P = .22). CONCLUSIONS Atorvastatin therapy can reduce insulin resistance in the treatment of patients with PCOS. In addition, further large-sample, multi-center RCTs are needed to identify these findings.
Collapse
|
15
|
Multitarget therapeutic approaches for Alzheimer's and Parkinson's diseases: an opportunity or an illusion? Future Med Chem 2021; 13:1301-1309. [PMID: 34137271 DOI: 10.4155/fmc-2021-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's and Parkinson's disease are the most prevalent neurodegenerative diseases and the leading causes of dementia worldwide. The etiology of these multifactorial pathologies is not completely known. The available therapeutic approaches can cause temporary relief of symptoms but cannot slow down their progression or cure them. Life-changing therapeutic solutions are urgently needed, as the number of people suffering from these pathologies has been increasing quickly over the last few decades. Several targets are being studied, and innovative approaches are being pursued to find new therapeutic options. This overview is focused on the most recent information regarding the paradigm of using multitarget compounds to treat both Alzheimer's and Parkinson's disease.
Collapse
|
16
|
Jiang DQ, Zang QM, Jiang LL, Wang Y, Li MX, Qiao JY. Comparison of pramipexole and levodopa/benserazide combination therapy versus levodopa/benserazide monotherapy in the treatment of Parkinson's disease: a systematic review and meta-analysis. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1893-1905. [PMID: 33959780 DOI: 10.1007/s00210-021-02089-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
The purpose of this research was to evaluate the clinical efficacy and safety of pramipexole plus levodopa/benserazide (P+LB) combination therapy in the treatment of Parkinson's disease (PD) compared to that of LB monotherapy, in order to confer a reference for clinical practice. Randomized controlled trials (RCTs) of P+LB for PD published up to April 2020 were retrieved. Heterogeneity and sensitivity analysis were executed. Twenty-nine RCTs with 3017 participants were included. Clinical efficacy of P+LB combination therapy was significantly better than LB monotherapy (RR 1.27, 95% CI 1.22 to 1.32, P<0.00001). Compared with LB monotherapy, the pooled effects of P+LB combination therapy on UPDRS score were (SMD -1.41, 95% CI -1.71 to -1.11, P<0.00001) for motor UPDRS score, (SMD -1.65, 95% CI -2.25 to -1.04, P<0.00001) for activities of daily living UPDRS score, (SMD -2.20, 95% CI -3.32 to -1.09, P=0.0001) for mental UPDRS score, and (SMD -1.60, 95% CI -2.06 to -1.15, P<0.00001) for complication UPDRS score. The HAMD score showed significant decrease in the P+LB combination therapy compared to LB monotherapy (SMD -1.32, 95% CI -1.80 to -0.84, P<0.00001). In contrast to LB monotherapy, P+LB combination therapy decreased the number of any adverse events obviously in PD patients (RR 0.53, 95% CI 0.45 to 0.63, P<0.00001). In conclusion, P+LB combination therapy is superior to LB monotherapy for improvement of clinical symptoms in PD patients. Moreover, the safety profile of P+LB combination therapy is better than that of LB monotherapy. Further well-designed, multi-center RCTs needed to identify these findings.
Collapse
Affiliation(s)
- De-Qi Jiang
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Qing-Min Zang
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Li-Lin Jiang
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Yan Wang
- Department of Pharmacy, Guangdong Province Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, 528200, China.
| | - Ming-Xing Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing-Yi Qiao
- Department of Biology and Pharmacy, Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| |
Collapse
|
17
|
Regulation of BDNF-TrkB Signaling and Potential Therapeutic Strategies for Parkinson's Disease. J Clin Med 2020; 9:jcm9010257. [PMID: 31963575 PMCID: PMC7019526 DOI: 10.3390/jcm9010257] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase receptor type B (TrkB) are widely distributed in multiple regions of the human brain. Specifically, BDNF/TrkB is highly expressed and activated in the dopaminergic neurons of the substantia nigra and plays a critical role in neurophysiological processes, including neuro-protection and maturation and maintenance of neurons. The activation as well as dysfunction of the BDNF-TrkB pathway are associated with neurodegenerative diseases. The expression of BDNF/TrkB in the substantia nigra is significantly reduced in Parkinson's Disease (PD) patients. This review summarizes recent progress in the understanding of the cellular and molecular roles of BNDF/TrkB signaling and its isoform, TrkB.T1, in Parkinson's disease. We have also discussed the effects of current therapies on BDNF/TrkB signaling in Parkinson's disease patients and the mechanisms underlying the mutation-mediated acquisition of resistance to therapies for Parkinson's disease.
Collapse
|