1
|
Yang J, Xu W, Chen D, Liu Y, Hu X. Evidence from Mendelian randomization analysis combined with meta-analysis for the causal validation of the relationship between 91 inflammatory factors and lumbar disc herniation. Medicine (Baltimore) 2024; 103:e40323. [PMID: 39809179 PMCID: PMC11596353 DOI: 10.1097/md.0000000000040323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/11/2024] [Indexed: 01/16/2025] Open
Abstract
Lumbar disc herniation (LDH) is a common spinal disease. In recent years, an increasing number of observational studies have reported the impact of inflammatory factors on LDH. By conducting Mendelian randomization (MR) analysis on 91 inflammatory factors, it is possible to reveal their causal relationship with LDH, providing new insights for prevention and treatment strategies. In this study, a two-sample MR analysis was performed, using 91 inflammatory factors as exposure data, and LDH data from 2 different sources as outcome data. Subsequently, the most significant results from the inverse-variance weighted analysis were subjected to meta-analysis, with multiple corrections applied to the thresholds to ensure result accuracy. Finally, reverse causality MR analysis was conducted to validate the causal relationship between the identified positive inflammatory factors and LDH. Ninety-one cytokines were analyzed in relation to LDH using MR with data from the Finngen and UK Biobank databases. The inverse-variance weighted results from both analyses were then meta-analyzed, and multiple corrections were applied to the significance threshold of the meta-analysis results. Ultimately, only 1 cytokine, tumor necrosis factor-beta levels (genome-wide association study ID: GCST90274840), showed a significant association after the combined MR analysis and multiple corrections, with an odds ratio of 1.073 (95% confidence interval: 1.034-1.113, P = .0154). Furthermore, this positive cytokine did not display any reverse causality with LDH from either data source. Tumor necrosis factor-beta levels are a risk factor for LDH, potentially increasing the risk of developing the condition and exacerbating its symptoms.
Collapse
Affiliation(s)
- Jingze Yang
- Department of Orthopaedics, First People’s Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wanxian Xu
- Department of Orthopaedics, First People’s Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Daolei Chen
- Department of Orthopaedics, First People’s Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yichen Liu
- Kunming Medical University, Kunming, Yunnan, China
| | - Xingbo Hu
- Department of Orthopaedics, First People’s Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Pearce K, Less S, Liebenberg AW, Benjeddou M. Intervertebral disc degenerative disease in South Africa: a case-control analysis of selected gene variants. Mol Biol Rep 2024; 51:992. [PMID: 39287911 PMCID: PMC11408536 DOI: 10.1007/s11033-024-09930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Intervertebral disc (IVD) degenerative disease is a multifactorial disease for which genetics plays an integral role. Several genes, and their variants, associated with the development and progression of IVD degenerative disease have been identified. While several studies have investigated these genes in Asian and European populations, no available evidence exists for the South African population. Therefore, this study aimed to investigate these parameters. METHODS AND RESULTS Biological samples were collected in the form of buccal swabs from patients and DNA was extracted using a standard salt-lysis protocol. DNA purity and quantity was assessed by spectrophotometry, and subsequent genotyping was performed using the MassARRAY®System IPLEX extension reaction. For associations between variants and the presence of IVD degenerative disease, odds ratios (OR), confidence intervals (CI), chi-squared analysis and logistic regression was calculated. Age and sex were adjusted for, and Bonferroni's correction was applied. This study found statistically significant associations for five of the evaluated single nucleotide polymorphisms (SNPs) with IVD degenerative disease, whereby IL-1α rs1304037 and rs1800587, ADAMTs-5 rs162509, and MMP-3 rs632478 demonstrated increased odds of a positive diagnosis for IVD degenerative disease, while decreased odds of IVD degenerative disease were seen for GDF-5 rs143383. CONCLUSION To the best of our knowledge, this study represents the first of its kind to investigate the association of gene variants associated with IVD degenerative disease within the South African population. This study has shown that 5 of these gene variants were significantly associated with the presence of IVD degenerative disease, reflecting their integral roles in development and possible progression of the disease.
Collapse
Affiliation(s)
- Keenau Pearce
- Precision Medicine Unit, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa.
| | - Stephanie Less
- Precision Medicine Unit, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | | | - Mongi Benjeddou
- Precision Medicine Unit, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
3
|
Song X, Xia B, Gao X, Liu X, Lv H, Wang S, Xiao Q, Luo H. Related cellular signaling and consequent pathophysiological outcomes of ubiquitin specific protease 24. Life Sci 2024; 342:122512. [PMID: 38395384 DOI: 10.1016/j.lfs.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Ubiquitin-specific protease 24 (USP24) is an essential member of the deubiquitinating protease family found in eukaryotes. It engages in interactions with multiple proteins, including p53, MCL-1, E2F4, and FTH1, among others. Through these interactions, USP24 plays a critical role in regulating vital cellular processes such as cell cycle control, DNA damage response, cellular iron autophagy, and apoptosis. Increased levels of USP24 have been observed in various cancer types, including bladder cancer, lung cancer, myeloma, hepatocellular carcinoma, and gastric cancer. However, in certain tumors like kidney cancer, USP24 is significantly downregulated, and the specific mechanism behind this remains unclear. Currently, there are no officially approved USP24 inhibitors available for clinical use. Some existing inhibitors targeting USP24 have shown promising effects in treating malignancies; however, their precise mode of action and information regarding binding sites are not well understood. Moreover, further optimization is required to enhance the selectivity and efficacy of these inhibitors. This review aims to provide a comprehensive overview of recent advancements in understanding the cellular functions of USP24, its association with various diseases, and the development of small-molecule inhibitors that target this protein. In conclusion, USP24 represents a promising therapeutic target for various diseases, and ongoing research will contribute to validating its role and facilitating the development of effective treatments.
Collapse
Affiliation(s)
- Xiaoyang Song
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Boyu Xia
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinrong Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinying Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hongyuan Lv
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Shiwei Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Qinpei Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hao Luo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
4
|
Goel S, Deshpande S, Dhaniwala N, Singh R, Suneja A, Jadawala VH. A Comprehensive Review of Genetic Variations in Collagen-Encoding Genes and Their Implications in Intervertebral Disc Degeneration. Cureus 2024; 16:e52708. [PMID: 38384607 PMCID: PMC10880043 DOI: 10.7759/cureus.52708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
This comprehensive review examines the intricate relationship between genetic variations in collagen-encoding genes and their implications in intervertebral disc degeneration (IVDD). Intervertebral disc degeneration is a prevalent spinal condition characterized by structural and functional changes in intervertebral discs (IVDs), and understanding its genetic underpinnings is crucial for advancing diagnostic and therapeutic strategies. The review begins by exploring the background and importance of collagen in IVDs, emphasizing its role in providing structural integrity. It then delves into the significance of genetic variations within collagen-encoding genes, categorizing and discussing their potential impact on disc health. The methods employed in studying these variations, such as genome-wide association studies (GWASs) and next-generation sequencing (NGS), are also reviewed. The subsequent sections analyze existing literature to establish associations between genetic variations and IVDD, unraveling molecular mechanisms linking genetic factors to disc degeneration. The review concludes with a summary of key findings, implications for future research and clinical practice, and a reflection on the importance of understanding genetic variations in collagen-encoding genes to diagnose and treat IVDD. The insights gleaned from this review contribute to our understanding of IVDD and hold promise for the development of personalized interventions based on individual genetic profiles.
Collapse
Affiliation(s)
- Sachin Goel
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sanjay Deshpande
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nareshkumar Dhaniwala
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rahul Singh
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anmol Suneja
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vivek H Jadawala
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Li W, Li X, Gao Y, Xiong C, Tang Z. Emerging roles of RNA binding proteins in intervertebral disc degeneration and osteoarthritis. Orthop Surg 2023; 15:3015-3025. [PMID: 37803912 PMCID: PMC10694020 DOI: 10.1111/os.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023] Open
Abstract
The etiology of intervertebral disc degeneration (IDD) and osteoarthritis (OA) is complex and multifactorial. Both predisposing genes and environmental factors are involved in the pathogenesis of IDD and OA. Moreover, epigenetic modifications affect the development of IDD and OA. Dysregulated phenotypes of nucleus pulposus (NP) cells and OA chondrocytes, including apoptosis, extracellular matrix disruption, inflammation, and angiogenesis, are involved at all developmental stages of IDD and OA. RNA binding proteins (RBPs) have recently been recognized as essential post-transcriptional regulators of gene expression. RBPs are implicated in many cellular processes, such as proliferation, differentiation, and apoptosis. Recently, several RBPs have been reported to be associated with the pathogenesis of IDD and OA. This review briefly summarizes the current knowledge on the RNA-regulatory networks controlled by RBPs and their potential roles in the pathogenesis of IDD and OA. These initial findings support the idea that specific modulation of RBPs represents a promising approach for managing IDD and OA.
Collapse
Affiliation(s)
- Wen Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Xing‐Hua Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Yang Gao
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Cheng‐Jie Xiong
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Zhong‐Zhi Tang
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| |
Collapse
|
6
|
Ohnishi T, Homan K, Fukushima A, Ukeba D, Iwasaki N, Sudo H. A Review: Methodologies to Promote the Differentiation of Mesenchymal Stem Cells for the Regeneration of Intervertebral Disc Cells Following Intervertebral Disc Degeneration. Cells 2023; 12:2161. [PMID: 37681893 PMCID: PMC10486900 DOI: 10.3390/cells12172161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD), a highly prevalent pathological condition worldwide, is widely associated with back pain. Treatments available compensate for the impaired function of the degenerated IVD but typically have incomplete resolutions because of their adverse complications. Therefore, fundamental regenerative treatments need exploration. Mesenchymal stem cell (MSC) therapy has been recognized as a mainstream research objective by the World Health Organization and was consequently studied by various research groups. Implanted MSCs exert anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects and promote extracellular component production, as well as differentiation into IVD cells themselves. Hence, the ultimate goal of MSC therapy is to recover IVD cells and consequently regenerate the extracellular matrix of degenerated IVDs. Notably, in addition to MSC implantation, healthy nucleus pulposus (NP) cells (NPCs) have been implanted to regenerate NP, which is currently undergoing clinical trials. NPC-derived exosomes have been investigated for their ability to differentiate MSCs from NPC-like phenotypes. A stable and economical source of IVD cells may include allogeneic MSCs from the cell bank for differentiation into IVD cells. Therefore, multiple alternative therapeutic options should be considered if a refined protocol for the differentiation of MSCs into IVD cells is established. In this study, we comprehensively reviewed the molecules, scaffolds, and environmental factors that facilitate the differentiation of MSCs into IVD cells for regenerative therapies for IDD.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Kentaro Homan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Akira Fukushima
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Daisuke Ukeba
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
7
|
Shlykov MA, Giles EM, Kelly MP, Lin SJ, Pham VT, Saccone NL, Yanik EL. Evaluation of Genetic and Nongenetic Risk Factors for Degenerative Cervical Myelopathy. Spine (Phila Pa 1976) 2023; 48:1117-1126. [PMID: 37249397 PMCID: PMC10524420 DOI: 10.1097/brs.0000000000004735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
STUDY DESIGN Cohort study. OBJECTIVE We aimed to evaluate the associations of genetic and nongenetic factors with degenerative cervical myelopathy (DCM). SUMMARY OF BACKGROUND DATA There is mounting evidence for an inherited predisposition for DCM, but uncertainty remains regarding specific genetic markers involved. Similarly, nongenetic factors are thought to play a role. MATERIALS AND METHODS Using diagnosis codes from hospital records linked to the UK Biobank cohort, patients with cervical spondylosis were identified followed by the identification of a subset with DCM. Nongenetic variables evaluated included age, sex, race, Townsend deprivation index, body mass index, occupational demands, osteoporosis, and smoking. Genome-wide association analyses were conducted using logistic regression adjusted for age, sex, population principal components, and follow-up. RESULTS A total of 851 DCM cases out of 2787 cervical spondylosis patients were identified. Several nongenetic factors were independently associated with DCM including age [odds ratio (OR)=1.11, 95% CI=1.01-1.21, P =0.024], male sex (OR=1.63, 95% CI=1.37-1.93, P <0.001), and relative socioeconomic deprivation (OR=1.03, 95% CI=1.00-1.06, P =0.030). Asian race was associated with lower DCM risk (OR=0.44, 95% CI=0.22-0.85, P =0.014). We did not identify genome-wide significant (≤5×10 -8 ) single-nucleotide polymorphisms (SNPs) associated with DCM. The strongest genome-wide signals were at SNP rs67256809 in the intergenic region of the genes LINC02582 and FBXO15 on chromosome 18 ( P =1.12×10 -7 ) and rs577081672 in the GTPBP1 gene on chromosome 22 ( P =2.9×10 -7 ). No SNPs reported in prior DCM studies were significant after adjusting for replication attempts. CONCLUSIONS Increasing age, male sex, and relative socioeconomic deprivation were identified as independent risk factors for DCM, whereas Asian race was inversely associated. SNPs of potential interest were identified in GTPBP1 and an intergenic region on chromosome 18, but these associations did not reach genome-wide significance. Identification of genetic and nongenetic DCM susceptibility markers may guide understanding of DCM disease processes, inform risk, guide prevention and potentially inform surgical outcomes. LEVEL OF EVIDENCE Prognostic level III.
Collapse
Affiliation(s)
| | | | | | - Shiow J Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | | | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
8
|
Li X, Zhang J, Wang B, Chen C, Zhang E, Lv Z, He Q, Hu Y, Wang X, Zhang F. USP24-dependent stabilization of Runx2 recruits a p300/NCOA3 complex to transactivate ADAMTS genes and promote degeneration of intervertebral disc in chronic inflammation mice. Biol Direct 2023; 18:37. [PMID: 37415159 PMCID: PMC10324278 DOI: 10.1186/s13062-023-00395-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) naturally occurs during the aging process. Its occurrence is closely related to chronic inflammation; however, the causal relationship between them is controversial. This study aimed to investigate if inflammation would promote IDD incidence and explore the underlying mechanism. METHODS A chronic inflammation mouse model was established by intraperitoneal injection of lipopolysaccharide (LPS). Enzyme-linked immunosorbent assay was performed to determine proinflammatory cytokines in serum. Histological staining was used to evaluate the degeneration of IVDs. Immunoblots and RT-qPCR analyses were performed to measure protein and mRNA expression levels. Immunoprecipitation, mass spectrometry, and co-immunoprecipitation assays were used to determine the assembly of protein complex. RESULTS We found that an inflammatory microenvironment activated p38 kinase, which phosphorylated the Runx2 transcription factor at the Ser28 site. The phosphorylated Runx2 (pRunx2) then recruited a deubiquitinase, ubiquitin-specific peptidase 24 (USP24), which stabilized pRunx2 and protected it from ubiquitin-dependent proteasomal degradation. The stabilized pRunx2 recruited histone acetyltransferase p300 and nuclear receptor coactivator 3 (NCOA3) to assemble a complex. This NCOA3-p300-pRunx2 complex then transactivated the expression of 13 ADAMTS (a disintegrin and metalloproteinase with thrombospondin motif) genes, thereby promoting the degradation of extracellular matrix (ECM) in intervertebral discs (IVDs) and causing IDD. Administration of either a p38 inhibitor (doramapimod), a NCOA3 inhibitor (bufalin), or a p300 inhibitor (EML425) significantly decreased the expression of the 13 ADAMTS genes and slowed the degeneration of IVDs. CONCLUSION In summary, our results demonstrate that USP24 protects pRunx2 from proteasomal degradation under chronic inflammation conditions, enabling pRunx2 to transactivate ADAMTS genes and degrade ECM. Our findings provide direct evidence that chronic inflammation triggers IDD and offer a therapeutic strategy for retarding IDD in patients with chronic inflammation.
Collapse
Affiliation(s)
- Xingguo Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Chao Chen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Enyu Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhengpin Lv
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Qicong He
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yaoquan Hu
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Xuenan Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Fan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.
| |
Collapse
|
9
|
Kärkkäinen S, Bergström J, Ropponen A, Wang M, Narusyte J, Svedberg P. Sickness absence transitions among Swedish twins with back, neck or shoulder pain and common mental disorders applying a multi-state approach. Sci Rep 2023; 13:10520. [PMID: 37386053 PMCID: PMC10310811 DOI: 10.1038/s41598-023-37572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023] Open
Abstract
We aimed to investigate transitions to and from sickness absence, or disability pension among individuals with back, neck, or shoulder pain and/or with common mental disorders (CMDs), and the role of familial (genetics and shared environment) influences on the transitions. Swedish twins born 1935-1985 who responded to pain and CMDs survey items (N = 41,516) were followed on average 8.7 years for sickness absence states in national registers. Multi-state Cox regression models were applied for three exposure groups: pain, CMDs, and presence of both, compared to unexposed. Exposure discordant twin pairs, stratified by zygosity, were analysed to assess the role of familial factors. Hazard Ratios (HR) with 95% confidence intervals and transition intensities were calculated. HRs were similar for transitions between states among those with pain or CMDs. The highest HRs were for transitions from entry to sickness absence and sickness absence to disability pension among those with both pain and CMDs (HRs: 1.61 and 1.43, respectively). Higher HRs for dizygotic compared to monozygotic twins for the first transition to sickness absence and for altering back to not being sickness absent indicate familial confounding. Back, neck, or shoulder pain and/or CMDs indicate a higher risk to become sickness absent and for repeated sickness absence episodes over time compared to unaffected.
Collapse
Affiliation(s)
- Sanna Kärkkäinen
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jakob Bergström
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Annina Ropponen
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Mo Wang
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jurgita Narusyte
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pia Svedberg
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Bovonratwet P, Kulm S, Kolin DA, Song J, Morse KW, Cunningham ME, Albert TJ, Sandhu HS, Kim HJ, Iyer S, Elemento O, Qureshi SA. Identification of Novel Genetic Markers for the Risk of Spinal Pathologies: A Genome-Wide Association Study of 2 Biobanks. J Bone Joint Surg Am 2023:00004623-990000000-00758. [PMID: 36927824 DOI: 10.2106/jbjs.22.00872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Identifying genetic risk factors for spinal disorders may lead to knowledge regarding underlying molecular mechanisms and the development of new treatments. METHODS Cases of lumbar spondylolisthesis, spinal stenosis, degenerative disc disease, and pseudarthrosis after spinal fusion were identified from the UK Biobank. Controls were patients without the diagnosis. Whole-genome regressions were used to test for genetic variants potentially implicated in the occurrence of each phenotype. External validation was performed in FinnGen. RESULTS A total of 389,413 participants were identified from the UK Biobank. A locus on chromosome 2 spanning GFPT1, NFU1, AAK1, and LOC124906020 was implicated in lumbar spondylolisthesis. Two loci on chromosomes 2 and 12 spanning genes GFPT1, NFU1, and PDE3A were implicated in spinal stenosis. Three loci on chromosomes 6, 10, and 15 spanning genes CHST3, LOC102723493, and SMAD3 were implicated in degenerative disc disease. Finally, 2 novel loci on chromosomes 5 and 9, with the latter corresponding to the LOC105376270 gene, were implicated in pseudarthrosis. Some of these variants associated with spinal stenosis and degenerative disc disease were also replicated in FinnGen. CONCLUSIONS This study revealed nucleotide variations in select genetic loci that were potentially implicated in 4 different spinal pathologies, providing potential insights into the pathological mechanisms. LEVEL OF EVIDENCE Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
| | - Scott Kulm
- Caryl and Israel Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - David A Kolin
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
| | - Junho Song
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
| | - Kyle W Morse
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
| | | | - Todd J Albert
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
| | | | - Han Jo Kim
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
| | - Sravisht Iyer
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
| | - Olivier Elemento
- Caryl and Israel Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Sheeraz A Qureshi
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration is a contributor to chronic back pain. While a part of the natural aging process, early or rapid intervertebral disc degeneration is highly heritable. In this review, we summarize recent progress towards unraveling the genetics associated with this degenerative process. RECENT FINDINGS Use of large cohorts of patient data to conduct genome-wide association studies (GWAS) for intervertebral disc disease, and to lesser extent for aspects of this process, such as disc height, has resulted in a large increase in our understanding of the genetic etiology. Genetic correlation suggests that intervertebral disc disease is pleiotropic with risk factors for other diseases such as osteoporosis. The use of Mendelian Randomization is slowly establishing what are the causal relationships between intervertebral disc disease and factors previously correlated with this disease. The results from these human genetic studies highlight the complex nature of this disease and have the potential to lead to improved clinical management of intervertebral disc disease. Much additional work should now be focused on characterizing the causative relationship various co-morbid conditions have with intervertebral disc degeneration and on finding interventions to slow or halt this disease.
Collapse
Affiliation(s)
- David C Ou-Yang
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 E 19th Ave, MS8343, Aurora, CO, 80045, USA
| | - Christopher J Kleck
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 E 19th Ave, MS8343, Aurora, CO, 80045, USA
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 E 19th Ave, MS8343, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Meszaros-Beller L, Hammer M, Riede JM, Pivonka P, Little JP, Schmitt S. Effects of geometric individualisation of a human spine model on load sharing: neuro-musculoskeletal simulation reveals significant differences in ligament and muscle contribution. Biomech Model Mechanobiol 2023; 22:669-694. [PMID: 36602716 PMCID: PMC10097810 DOI: 10.1007/s10237-022-01673-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
In spine research, two possibilities to generate models exist: generic (population-based) models representing the average human and subject-specific representations of individuals. Despite the increasing interest in subject specificity, individualisation of spine models remains challenging. Neuro-musculoskeletal (NMS) models enable the analysis and prediction of dynamic motions by incorporating active muscles attaching to bones that are connected using articulating joints under the assumption of rigid body dynamics. In this study, we used forward-dynamic simulations to compare a generic NMS multibody model of the thoracolumbar spine including fully articulated vertebrae, detailed musculature, passive ligaments and linear intervertebral disc (IVD) models with an individualised model to assess the contribution of individual biological structures. Individualisation was achieved by integrating skeletal geometry from computed tomography and custom-selected muscle and ligament paths. Both models underwent a gravitational settling process and a forward flexion-to-extension movement. The model-specific load distribution in an equilibrated upright position and local stiffness in the L4/5 functional spinal unit (FSU) is compared. Load sharing between occurring internal forces generated by individual biological structures and their contribution to the FSU stiffness was computed. The main finding of our simulations is an apparent shift in load sharing with individualisation from an equally distributed element contribution of IVD, ligaments and muscles in the generic spine model to a predominant muscle contribution in the individualised model depending on the analysed spine level.
Collapse
Affiliation(s)
- Laura Meszaros-Beller
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.,Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Maria Hammer
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Julia M Riede
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - J Paige Little
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Syn Schmitt
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia. .,Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany. .,Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
13
|
Soydan Z, Bayramoglu E, Sen C. Elucidation of effect of spinopelvic parameters in degenerative disc disease. Neurochirurgie 2023; 69:101388. [PMID: 36502876 DOI: 10.1016/j.neuchi.2022.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION This study aims to find out if there is any relationship between disc pathology and spinopelvic morphology, respectively. METHODS A total of 152 patients who complained about low back pain were assessed retrospectively. Patients were divided into three groups based on the presence of disc pathology: non-degenerative (ND) (n=34), degenerative disc disease (DDD) (n=80), and lumbar disc herniation (LDH) (n=38). Spinopelvic parameters were measured on the lateral standing radiographs using Surgimap® Software. The degree of degeneration of each disc was evaluated using T2-weighted images according to the Pfirmann classification. Correlation analyses were performed. RESULTS No significant difference was observed between the three groups in terms of sagittal spinal and pelvic parameters. Age and BMI were positively correlated with DDD and LDH. PI and proximal lombar lordosis (PLL) were the only effective variables in predicting DDD. PT and distal lumbar lordosis (DLL) were found to be effective variables in predicting LDH. PI and PT values in patients with L1, L2, and L3 DDD were statistically significantly higher than those without degeneration (P<0.05). Although there were no statistical differences between PI and PT values (P>0.05), DLL values in L4 and L5 DDD patients were significantly lower than those without degeneration (P=0.041; P=0.046; P<0.05). CONCLUSIONS The sagittal morphology of the spine directly influences the extent of lumbar disc degeneration. As the values of PI and PT increase, disc degeneration tends to occur at higher levels (L1-2-3). Disc degeneration at lower levels (L4-5) was associated with low DLL levels. LEVEL OF EVIDENCE Level III, retrospective study.
Collapse
Affiliation(s)
- Z Soydan
- Nisantasi University, Department of Orthopaedics and Traumatology, Bhtclinic İstanbul Tema Hastanesi, Orthopedics And Traumatology, Atakent Mh 4.Cadde No 36 PC 34307, Kucukcekmece/Istanbul, Turkey.
| | - E Bayramoglu
- Bursa City Hospital, Orthopedics and Traumatology, Bursa, Turkey.
| | - C Sen
- Istanbul University Istanbul Faculty of Medicine, Orthopedics and Traumatology, Bursa, Turkey.
| |
Collapse
|
14
|
Wang Z, Liu B, Ma X, Wang Y, Han W, Xiang L. lncRNA ZFAS1 promotes intervertebral disc degeneration by upregulating AAK1. Open Med (Wars) 2022; 17:1973-1986. [PMID: 36561842 PMCID: PMC9743196 DOI: 10.1515/med-2022-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
We investigated the function of lncRNA zinc finger antisense 1 (ZFAS1) in intervertebral disc degeneration (IDD) progression in vitro and in vivo. Nucleus pulposus (NP) tissues were obtained from 20 patients with IDD. IL-1β was used to stimulate primary NP cells to establish the IDD models in vitro. Gene expression was determined by RT-qPCR. 5-Ethynyl-2'-deoxyuridine and flow cytometry were performed to determine cell proliferation and apoptosis, and western blotting was conducted to measure the apoptosis- and extracellular matrix (ECM)-related protein expression. Luciferase reporter assay was used to examine the interactions between the genes. We also investigated the effect of ZFAS1 in a mouse model of IDD induced by needle punctures. Our results showed that ZFAS1 expression was elevated in degenerative NP tissues and IL-1β-treated NP cells. ZFAS1 knockdown inhibited NP cell apoptosis and ECM degradation induced by IL-1β. Mechanically, ZFAS1 sponged miR-4711-5p and adaptor-associated kinase 1 (AAK1) was targeted by miR-4711-5p. Furthermore, AAK1 overexpression partially eliminated the impact of ZFAS1 depletion on NP cell proliferation, apoptosis, and ECM degradation. More importantly, the results of the in vivo studies confirmed the effect of silencing ZFAS1 on alleviating the symptoms of IDD mice. Overall, silencing ZFAS1 inhibits IDD progression by reducing NP cell apoptosis and ECM degradation through the miR-4711-5p/AAK1 axis.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Bin Liu
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Xiangyu Ma
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yu Wang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Wenfeng Han
- Department of Orthopedics, General Hospital of Northern Theater Command, No. 83 Wenhua
Road, Shenyang 110016, Liaoning, China
| | - Liangbi Xiang
- Department of Orthopedics, General Hospital of Northern Theater Command, No. 83 Wenhua
Road, Shenyang 110016, Liaoning, China
| |
Collapse
|
15
|
Hydroxysafflor Yellow A (HSYA) Protects Endplate Chondrocytes Against IL-1 β-Induced Injury Through Promoting Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6326677. [PMID: 35832517 PMCID: PMC9273358 DOI: 10.1155/2022/6326677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022]
Abstract
Background Intervertebral disc degeneration (IDD) refers to intractable pain in patients' waist and legs, which is caused by internal structural disorder and degeneration of intervertebral. This disease severely affects the quality-of-life of people. It has been reported that hydroxysafflor yellow A (HSYA), the active ingredient in safflower extract, could inhibit IL-1β-induced apoptosis of endplate chondrocytes. However, the mechanism by which HSYA regulates the occurrence and progression of IDD remains unclear. Methods Rat endplate chondrocytes were isolated from the intervertebral disc. Next, toluidine blue staining and collagen II immunofluorescence staining were used to identify endplate chondrocytes. Then, MDC staining was used to detect the autophagy of endplate chondrocytes. In addition, Western blot was used to measure the expression of cleaved caspase 3, LC-3I/II and ATG7 in endplate chondrocytes. Results IL-1β obviously inhibited the viability and proliferation of endplate chondrocytes, while these phenomena were notably reversed by HSYA. Additionally, HSYA was able to inhibit IL-1β-induced apoptosis of endplate chondrocytes. Moreover, HSYA protected endplate chondrocytes against IL-1β-induced inflammation via inducing autophagy. Conclusion HSYA protected rat endplate chondrocytes against IL-1β-induced injury via promoting autophagy. Therefore, the present study might provide some theoretical basis for exploring novel and effective methods for patients with IDD.
Collapse
|
16
|
A protocol for recruiting and analyzing the disease-oriented Russian disc degeneration study (RuDDS) biobank for functional omics studies of lumbar disc degeneration. PLoS One 2022; 17:e0267384. [PMID: 35560143 PMCID: PMC9106166 DOI: 10.1371/journal.pone.0267384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Lumbar intervertebral disc degeneration (DD) disease is one of the main risk factors for low back pain and a leading cause of population absenteeism and disability worldwide. Despite a variety of biological studies, lumbar DD is not yet fully understood, partially because there are only few studies that use systematic and integrative approaches. This urges the need for studies that integrate different omics (including genomics and transcriptomics) measured on samples within a single cohort. This protocol describes a disease-oriented Russian disc degeneration study (RuDDS) biobank recruitment and analyses aimed to facilitate further omics studies of lumbar DD integrating genomic, transcriptomic and glycomic data. A total of 1,100 participants aged over 18 with available lumbar MRI scans, medical histories and biological material (whole blood, plasma and intervertebral disc tissue samples from surgically treated patients) will be enrolled during the three-year period from two Russian clinical centers. Whole blood, plasma and disc tissue specimens will be used for genotyping with genome-wide SNP-arrays, glycome profiling and RNA sequencing, respectively. Omics data will be further used for a genome-wide association study of lumbar DD with in silico functional annotation, analysis of plasma glycome and lumbar DD disease interactions and transcriptomic data analysis including an investigation of differential expression patterns associated with lumbar DD disease. Statistical tests applied in each of the analyses will meet the standard criteria specific to the attributed study field. In a long term, the results of the study will expand fundamental knowledge about lumbar DD development and contribute to the elaboration of novel personalized approaches for disease prediction and therapy. Additionally to the lumbar disc degeneration study, a RuDDS cohort could be used for other genetic studies, as it will have unique omics data. Trial registration numberNCT04600544.
Collapse
|
17
|
Godinho MI, Carvalho V, Matos MT, Fernandes PR, Castro APG. Computational modeling of lumbar disc degeneration before and after spinal fusion. Clin Biomech (Bristol, Avon) 2021; 90:105490. [PMID: 34601326 DOI: 10.1016/j.clinbiomech.2021.105490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Advancing age and degeneration frequently lead to low back pain, which is the most prevalent musculoskeletal disorder worldwide. Degenerative changes in intervertebral discs and musculo-ligamentous incapacity to compensate sagittal imbalance are typically amongst the sources of instability, with spinal fusion techniques being the main treatment options to relieve pain. The aims of this work were to: (i) assess the link between ligament degeneration and spinal instability by determining the role of each ligament per movement, (ii) evaluate the impact of disc height reduction in degenerative changes, and (iii) unveil the most advantageous type of posterior fixation in Oblique Lumbar Interbody Fusion to prevent adjacent disc degeneration. METHODS Two L3-L5 finite element models were developed, being the first in healthy condition and the second having reduced L4-L5 height. Different degrees of degeneration were tested, combined with different fixation configurations for Oblique Lumbar Interbody Fusion. FINDINGS Facet capsular ligament and anterior longitudinal ligament were the most influential ligaments for spinal stability, particularly with increasing degeneration and disc height reduction. Pre-existent degeneration had lower influence than the fusion procedure for the risk of adjacent disc degeneration, being the highest stability and minimal degeneration achieved with bilateral fixation. Right unilateral fixation was more suited to reduce disc stress than left unilateral fixation. INTERPRETATION Bilateral fixation is the best option to stabilize the spinal segment, but unilateral right fixation may suffice. This has direct implications for clinical practice, and the extension to a population-based study will allow for more efficient fusion surgeries.
Collapse
Affiliation(s)
- M I Godinho
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - V Carvalho
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M T Matos
- Hospital dos Lusíadas, Lisbon, Portugal
| | - P R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - A P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
18
|
Kague E, Turci F, Newman E, Yang Y, Brown KR, Aglan MS, Otaify GA, Temtamy SA, Ruiz-Perez VL, Cross S, Royall CP, Witten PE, Hammond CL. 3D assessment of intervertebral disc degeneration in zebrafish identifies changes in bone density that prime disc disease. Bone Res 2021; 9:39. [PMID: 34465741 PMCID: PMC8408153 DOI: 10.1038/s41413-021-00156-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Back pain is a common condition with a high social impact and represents a global health burden. Intervertebral disc disease (IVDD) is one of the major causes of back pain; no therapeutics are currently available to reverse this disease. The impact of bone mineral density (BMD) on IVDD has been controversial, with some studies suggesting osteoporosis as causative for IVDD and others suggesting it as protective for IVDD. Functional studies to evaluate the influence of genetic components of BMD in IVDD could highlight opportunities for drug development and repurposing. By taking a holistic 3D approach, we established an aging zebrafish model for spontaneous IVDD. Increased BMD in aging, detected by automated computational analysis, is caused by bone deformities at the endplates. However, aged zebrafish spines showed changes in bone morphology, microstructure, mineral heterogeneity, and increased fragility that resembled osteoporosis. Elements of the discs recapitulated IVDD symptoms found in humans: the intervertebral ligament (equivalent to the annulus fibrosus) showed disorganized collagen fibers and herniation, while the disc center (nucleus pulposus equivalent) showed dehydration and cellular abnormalities. We manipulated BMD in young zebrafish by mutating sp7 and cathepsin K, leading to low and high BMD, respectively. Remarkably, we detected IVDD in both groups, demonstrating that low BMD does not protect against IVDD, and we found a strong correlation between high BMD and IVDD. Deep learning was applied to high-resolution synchrotron µCT image data to analyze osteocyte 3D lacunar distribution and morphology, revealing a role of sp7 in controlling the osteocyte lacunar 3D profile. Our findings suggest potential avenues through which bone quality can be targeted to identify beneficial therapeutics for IVDD.
Collapse
Affiliation(s)
- Erika Kague
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Francesco Turci
- grid.5337.20000 0004 1936 7603School of Physics, HH Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - Elis Newman
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Yushi Yang
- grid.5337.20000 0004 1936 7603School of Physics, HH Wills Physics Laboratory, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Centre for Nanoscience and Quantum Information, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, UK
| | - Kate Robson Brown
- grid.5337.20000 0004 1936 7603Department of Anthropology and Archaeology, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Department of Mechanical Engineering, University of Bristol, Bristol, UK
| | - Mona S. Aglan
- grid.419725.c0000 0001 2151 8157Clinical Genetics Department, Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Ghada A. Otaify
- grid.419725.c0000 0001 2151 8157Clinical Genetics Department, Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Samia A. Temtamy
- grid.419725.c0000 0001 2151 8157Clinical Genetics Department, Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Victor L. Ruiz-Perez
- grid.413448.e0000 0000 9314 1427Instituto de Investigaciones, Biomedicas de Madrid, and Ciber de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Stephen Cross
- grid.5337.20000 0004 1936 7603Wolfson Bioimaging Facility, Biomedical Sciences, University of Bristol, Bristol, UK
| | - C. Patrick Royall
- grid.5337.20000 0004 1936 7603School of Physics, HH Wills Physics Laboratory, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603School of Chemistry, University of Bristol, Bristol, UK
| | - P. Eckhard Witten
- grid.5342.00000 0001 2069 7798Evolutionary Developmental Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Chrissy L. Hammond
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
The Role of Polymorphisms in Collagen-Encoding Genes in Intervertebral Disc Degeneration. Biomolecules 2021; 11:biom11091279. [PMID: 34572492 PMCID: PMC8465916 DOI: 10.3390/biom11091279] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
(1) Background: The purpose of this review is to analyze domestic and foreign studies on the role of collagen-encoding genes polymorphism in the development of intervertebral discs (IVDs) degeneration in humans. (2) Methods: We have carried out a search for full-text articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier and Google Scholar databases. The search was carried out using keywords and their combinations. The search depth was 5 years (2016–2021). In addition, this review includes articles of historical interest. Despite an extensive search, it is possible that we might have missed some studies published in recent years. (3) Results: According to the data of genome-wide and associative genetic studies, the following candidate genes that play a role in the biology of IVDs and the genetic basis of the processes of collagen degeneration of the annulus fibrosus and nucleus pulposus of IVDs in humans are of the greatest interest to researchers: COL1A1, COL2A1, COL9A2, COL9A3, COL11A1 and COL11A2. In addition, the role of genes COL1A2, COL9A1 and others is being actively studied. (4) Conclusions: In our review, we summarized and systematized the available information on the role of genetic factors in IVD collagen fibers turnover and also focused on the functions of different types of collagen present in the IVD. Understanding the etiology of impaired collagen formation can allow doctors to prescribe pathogenetically-based treatment, achieving the most effective results.
Collapse
|
20
|
Long Z, Gong F, Li C. MiR-532-3p Suppresses Nucleus Pulposus Cells Proliferation and Extracellular Matrix Production, Promotes Cell Apoptosis via Targeting High Mobility Group AT-Hook 2. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study aimed to investigate the function and mechanism of microRNA (miR)-532-3p in intervertebral disc degeneration (IDD). Further, whether miR-532-3p regulates HMGA2 in nucleus pulposus (NP) cells was explored. We collected human nucleus pulposus (NP) tissues from the patients
with IDD, and detected miR-532-3p in NP tissues using RT-qPCR. MiR-532-3p mimic and inhibitor were constructed, and they were transfected into the human nucleus pulposus cells (HNPCs) by Lipofectamine 3000. MTT assay was conducted to determine cell proliferation. Cell apoptosis and extracellular
matrix remodeling were examined by flow cytometric, Caspase 3/8 Assay Kits and Western blot. A dual-luciferase reporter assay was applied to investigate whether miR-532-3p targets High mobility group AT-hook 2 (HMGA2). We found miR-532-3p expression level was significantly increased in NP
tissues of IDD patients, comparing with the controls. MiR-532-3p exerted an inhibitory effect on HNPCs proliferation; however, cell apoptosis and the degradation of extracellular matrix were induced by miR-532-3p. MiR-532-3p directly targets HMGA2, and HMGA2 overexpression reversed the role
of miR-532-3p mimic in HNPCs proliferation, apoptosis, and extracellular matrix remodeling. Our study is the first to report that miR-532-3p might suppress NP cell proliferation, promote cell apoptosis and inhibit ECM production of NP cells via targeting HMGA2, thus facilitating the progression
of IDD. MiR-532-3p was supposed to be a novel target for the treatment of IDD.
Collapse
Affiliation(s)
- Zhisheng Long
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital, Nanchang 360000, Jiangxi, China
| | - Feipeng Gong
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital, Nanchang 360000, Jiangxi, China
| | - Chen Li
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital, Nanchang 360000, Jiangxi, China
| |
Collapse
|
21
|
Fiani B, Covarrubias C, Jarrah R. Genetic Predictors of Early-Onset Spinal Intervertebral Disc Degeneration: Part One of Two. Cureus 2021; 13:e15182. [PMID: 34178503 PMCID: PMC8221406 DOI: 10.7759/cureus.15182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a progressive and painful pathology that can root from mechanical, biochemical, and environmental stressors. However, recent advancements in biogenetics have now found a predominating genetic influence. Nevertheless, despite these advancements, the pathophysiology of IVD degeneration remains poorly understood. In the first of our two-part series, we will characterize some of the most recent and best-studied genes in the context of intervertebral disc degeneration. We will attempt to formulate the first contemporary gene guide that characterizes the genetic profile of IVD degeneration. The genes of interest include aggrecan (ACAN), matrix metalloproteinase 2 (MMP2), vitamin D receptor (VDR), interleukin 1 alpha (IL1A), and those encoded for collagens such as collagen type XI alpha 1 chain (COL11A1), collagen type I alpha 1 chain (COL1A1), collagen type IX alpha 2 chain (COL9A2), and collagen type IX alpha 3 chain (COL9A3). Genetic analysis studies reveal that these genes play vital roles in maintaining the structural integrity of the intervertebral disc, activating enzymes involved in the extracellular matrix, and promoting connective tissue formation. Nevertheless, characterizing these genes alone is not enough to understand the pathophysiology of IVD degeneration. Therefore, further studies are warranted to understand molecular signalling pathways of IVD degeneration better and ultimately create more sophisticated genetic and cell-based therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Brian Fiani
- Neurosurgery, Desert Regional Medical Center, Palm Springs, USA
| | | | - Ryan Jarrah
- Miscellaneous, University of Michigan - Flint, Flint, USA
| |
Collapse
|
22
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
23
|
Tam V, Chen P, Yee A, Solis N, Klein T, Kudelko M, Sharma R, Chan WC, Overall CM, Haglund L, Sham PC, Cheah KSE, Chan D. DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics. eLife 2020; 9:64940. [PMID: 33382035 PMCID: PMC7857729 DOI: 10.7554/elife.64940] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
The spatiotemporal proteome of the intervertebral disc (IVD) underpins its integrity and function. We present DIPPER, a deep and comprehensive IVD proteomic resource comprising 94 genome-wide profiles from 17 individuals. To begin with, protein modules defining key directional trends spanning the lateral and anteroposterior axes were derived from high-resolution spatial proteomes of intact young cadaveric lumbar IVDs. They revealed novel region-specific profiles of regulatory activities and displayed potential paths of deconstruction in the level- and location-matched aged cadaveric discs. Machine learning methods predicted a ‘hydration matrisome’ that connects extracellular matrix with MRI intensity. Importantly, the static proteome used as point-references can be integrated with dynamic proteome (SILAC/degradome) and transcriptome data from multiple clinical samples, enhancing robustness and clinical relevance. The data, findings, and methodology, available on a web interface (http://www.sbms.hku.hk/dclab/DIPPER/), will be valuable references in the field of IVD biology and proteomic analytics. The backbone of vertebrate animals consists of a series of bones called vertebrae that are joined together by disc-like structures that allow the back to move and distribute forces to protect it during daily activities. It is common for these intervertebral discs to degenerate with age, resulting in back pain and severely reducing quality of life. The mechanical features of intervertebral discs are the result of their proteins. These include extracellular matrix proteins, which form the external scaffolding that binds cells together in a tissue, and signaling proteins, which allow cells to communicate. However, how the levels of different proteins in each region of the disc vary with time has not been fully examined. To establish how protein composition changes with age, Tam, Chen et al. quantified the protein levels and gene activity (which leads to protein production) of intervertebral discs from young and old deceased individuals. They found that the position of different mixtures of proteins in the intervertebral disc changes with age, and that young people have high levels of extracellular matrix proteins and signaling proteins. Levels of these proteins decreased as people got older, as did the amount of proteins produced. To determine which region of the intervertebral disc different proteins were in, Tam, Chen et al. also performed magnetic resonance imaging (MRI) of the samples to correlate image intensity (which represents water content) with the corresponding protein signature. The data obtained provides a high-quality map of how the location of different proteins changes with age, and is available online under the name DIPPER. This database is an informative resource for research into skeletal biology, and it will likely advance the understanding of intervertebral disc degeneration in humans and animals, potentially leading to the development of new treatment strategies for this condition.
Collapse
Affiliation(s)
- Vivian Tam
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China
| | - Peikai Chen
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Anita Yee
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Nestor Solis
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Theo Klein
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Mateusz Kudelko
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, The University of Hong Kong, Hong Kong
| | - Wilson Cw Chan
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China.,Department of Orthopaedics Surgery and Traumatology, HKU-Shenzhen Hospital, Shenzhen, China
| | - Christopher M Overall
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, Montreal, Canada
| | - Pak C Sham
- Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Hong Kong
| | | | - Danny Chan
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
24
|
Zhang Z, Huo Y, Zhou Z, Zhang P, Hu J. Role of lncRNA PART1 in intervertebral disc degeneration and associated underlying mechanism. Exp Ther Med 2020; 21:131. [PMID: 33376513 PMCID: PMC7751492 DOI: 10.3892/etm.2020.9563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/08/2020] [Indexed: 01/20/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a chronic skeletal muscle degeneration disease. Previous studies have demonstrated that long non-coding RNAs (lncRNAs) exert significant roles in serious illnesses. Prostate androgen-regulated transcript 1 (PART1) is an identified lncRNA that has been reported to be a regulator in a number of diseases. However, the potential effects of PART1 in IDD have yet to be fully elucidated. The present study aimed to investigate the roles of lncRNA PART1 in IDD and identify a possible underlying mechanism. Human nucleus pulposus (NP) cells were first exposed to lipopolysaccharide (LPS) to construct in vitro IDD models. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure lncRNA PART1 expression levels in 10 ng/ml LPS-stimulated NP cells and normal cells (untreated cells). Dual-luciferase reporter assays were conducted to verify the possible binding sites of microRNA (miR)-190a-3p on lncRNA PART1. In addition, NP cell viability and apoptosis were measured by performing MTT and flow cytometry, respectively. Expression and secretion of inflammatory factors (TNF-α, IL-1β and IL-6) and extracellular matrix (ECM) degradation-related proteins (aggrecan and collagen type II) were measured using ELISA, RT-qPCR and western blotting. Expression levels of lncRNA PART1 in LPS-treated NP cells were found to be higher compared with those in the control groups. miR-190a-3p directly targeted lncRNA PART1. PART1 knockdown enhanced cell viability, reduced cell apoptosis, inhibited inflammatory factor secretion and promoted ECM degradation in LPS-stimulated NP cells. However, transfection with the miR-190a-3p inhibitor reversed the aforementioned PART1 knockdown-induced alterations in cell viability, apoptosis, inflammatory cytokine and ECM degradation. Collectively, these results suggest that PART1 accelerates the progression of IDD by directly targeting miR-190a-3p, which provides a novel target for IDD diagnosis and treatment.
Collapse
Affiliation(s)
- Zongyu Zhang
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| | - Yongfeng Huo
- Department of Orthopedics, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222004, P.R. China
| | - Zhijing Zhou
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| | - Peng Zhang
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| | - Jun Hu
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| |
Collapse
|
25
|
De Pieri A, Byerley AM, Musumeci CR, Salemizadehparizi F, Vanderhorst MA, Wuertz‐Kozak K. Electrospinning and 3D bioprinting for intervertebral disc tissue engineering. JOR Spine 2020; 3:e1117. [PMID: 33392454 PMCID: PMC7770193 DOI: 10.1002/jsp2.1117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain and represents a massive socioeconomic burden. Current conservative and surgical treatments fail to restore native tissue architecture and functionality. Tissue engineering strategies, especially those based on 3D bioprinting and electrospinning, have emerged as possible alternatives by producing cell-seeded scaffolds that replicate the structure of the IVD extracellular matrix. In this review, we provide an overview of recent advancements and limitations of 3D bioprinting and electrospinning for the treatment of IVD degeneration, focusing on future areas of research that may contribute to their clinical translation.
Collapse
Affiliation(s)
- Andrea De Pieri
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
| | - Ann M. Byerley
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
| | - Catherine R. Musumeci
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
| | | | - Maya A. Vanderhorst
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
| | - Karin Wuertz‐Kozak
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
- Schön Clinic Munich Harlaching, Spine CenterAcademic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (AU)MunichGermany
| |
Collapse
|
26
|
Associations between vitamin D receptor gene polymorphisms and spinal degenerative disease: evidence from a meta-analysis based on 35 case-control studies. Clin Neurol Neurosurg 2020; 200:106325. [PMID: 33160714 DOI: 10.1016/j.clineuro.2020.106325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Dozens of reports on the associations of vitamin D receptor (VDR) gene polymorphisms and susceptibility to spinal degenerative disease (SDD) were conducted with inconsistent findings. This study aimed to elucidate the associations through a meta-analysis approach. METHODS Databases of PubMed, EMBASE, Web of Science, CNKI, and Wanfang were searched until July 10, 2020. Study quality was evaluated by using Newcastle-Ottawa Scale (NOS). Odds ratios (ORs) and 95% confidence intervals (95%CIs) were calculated to evaluate the associations under allelic model (1 vs. 2), homozygous model (11 vs. 22), heterozygous model (12 vs. 22), dominant model (11 + 12 vs. 22), and recessive model (11 vs. 12 + 22). RESULTS A total of 5021 cases and 5746 controls from 35 studies were eligible to this meta-analysis. According to NOS, the included studies were in excellent quality. In the overall population, the pooled data indicated that ApaI was associated with a reduced SDD susceptibility (AA vs. Aa + aa, OR = 0.83, 95%CI 0.71 - 0.96, P = 0.010). But the association was not observed in FokI, TaqI, and BsmI polymorphisms. Subgroup analysis suggested that TaqI polymorphism was correlated to an elevated SDD risk in Asians (TT + Tt vs. tt, OR = 2.55, 95%CI 1.90 - 3.44, P < 0.001). CONCLUSION The present study indicates that ApaI polymorphism may contribute to a reduced risk to SDD in the overall population, and TaqI polymorphism confers an elevated susceptibility to SDD in Asians. While, BsmI and FokI polymorphisms appear to have no significant association with SDD.
Collapse
|
27
|
Abstract
STUDY DESIGN A prospective follow-up study. OBJECTIVE The aim of this study was to investigate whether early lumbar disc degeneration (DD) in young low back pain (LBP) patients predicts progression of degenerative changes, pain, or disability in a 30-year follow-up. SUMMARY OF BACKGROUND DATA MRI is an accurate method for studying degenerative changes in intervertebral discs. Decreased signal intensity (SI) can be used as indication of decreased water content. Long-term prognosis of early DD remains unclear. METHODS In an earlier study, 75 conscripts aged 20 years with LBP had their lumbar spine examined by MRI. At a follow-up of 30 years, the subjects were contacted; 35 of 69 filled a pain and disability questionnaire, and 26 of 35 were also reexamined clinically and by MRI. The images were evaluated for decreased SI and other degenerative changes. Association between decreased SI of a disc at baseline and the presence of more severe degenerative changes in the same disc space at follow-up was analyzed using Fisher exact test. Association between decreased baseline SI and pain/disability scores from the questionnaire was analyzed with Kruskal-Wallis H test. RESULTS The total number of lumbar discs with decreased SI increased from 23 of 130 (18%) to 92 of 130 (71%)-from 0.9 to 3.5 per subject during the follow-up. Distribution of DD changed from being mostly in L4-L5 and L5-S1 discs to being almost even between the four lowermost discs. Discs that had even slightly decreased SI at baseline were more likely to have severely decreased SI at follow-up, compared to healthy discs (57% vs. 11%, P < 0.001). Other degenerative changes were also more common in these discs. Severity of DD at baseline did not have a significant association with current pain or disability. CONCLUSION In young LBP patients, early degeneration in lumbar discs predicts progressive degenerative changes in the respective discs, but not pain, disability, or clinical symptoms. LEVEL OF EVIDENCE 4.
Collapse
|
28
|
Wang B, Shi Y, Chen B, Shao Z, Chen L, Lin J, Huang C, Yan Y, Wang X. No evidence of a correlation between lumbar spinal subtypes and intervertebral disc degeneration among asymptomatic middle-aged and aged patients. Exp Ther Med 2020; 20:2993-3000. [PMID: 32855665 PMCID: PMC7444345 DOI: 10.3892/etm.2020.9055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 02/18/2020] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to identify whether lumbar spinal subtypes (LSS) were associated with lumbar disc degeneration (LDD) among asymptomatic middle-aged and aged subjects. A cohort of 158 asymptomatic Chinese adults aged >40 years was recruited and 97 volunteers that met the inclusion criteria with complete information available were selected for inclusion. According to spinal morphology, volunteers were divided into four subtypes based on the classification of Roussouly. After baseline information was collected and spinopelvic parameters were measured, the data were compared among the four groups. According to the Pfirrmann classification, the degree of LDD was evaluated at each level on the MRI. For grades I-V, LDD at each level was effectively compared. Each of the four LSS from I to IV according to Roussouly classification from types I to IV were comprised of 25 (25.8%), 19 (19.6%), 38 (39.2%) and 15 (15.5%) of volunteers, respectively. Lumbar lordosis, sacral slope and pelvic incidence were significantly different among the four sub-types (P<0.001 for each), but no difference in pelvic tilt was observed (P=0.21). From types I to IV LSS, the proportion of disc degeneration was found to be 44, 52, 50 and 48%, respectively, which exhibited no statistically significant difference among LSS. No correlation between LSS and intervertebral disc degeneration was obtained among the asymptomatic middle-aged and aged subjects. The present study provides a reference for spinal surgery and indicated that additional risk factors should be assessed in the asymptomatic population of this age group, particularly in terms of differentially expressed genes.
Collapse
Affiliation(s)
- Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, P.R. China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, P.R. China
| | - Boda Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, P.R. China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, P.R. China
| | - Lijie Chen
- Department of Surgical Oncology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, P.R. China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, P.R. China
| | - Yingzhao Yan
- Department of Orthopaedics, Zhejiang Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
29
|
Dickinson PJ, Bannasch DL. Current Understanding of the Genetics of Intervertebral Disc Degeneration. Front Vet Sci 2020; 7:431. [PMID: 32793650 PMCID: PMC7393939 DOI: 10.3389/fvets.2020.00431] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Premature degeneration of the intervertebral disc and its association with specific chondrodystrophic dog breeds has been recognized for over a century. Several lines of evidence including disease breed predisposition, studies suggesting heritability of premature intervertebral disc degeneration (IVDD) and association of a dog chromosome 12 (CFA 12) locus with intervertebral disc calcification have strongly supported a genetic component in IVDD in dogs. Recent studies documenting association of IVDD with an overexpressing FGF4 retrogene on CFA 12 have opened up new areas of investigation to further define the pathophysiology of premature IVDD. While preliminary data from studies investigating FGF4 retrogenes in IVDD implicate FGF4 overexpression as a major disease factor, they have also highlighted knowledge gaps in our understanding of intervertebral disc herniation which is a complex and multifactorial disease process.
Collapse
Affiliation(s)
- Peter J Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Danika L Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
30
|
Current perspectives on the role of biomechanical loading and genetics in development of disc degeneration and low back pain; a narrative review. J Biomech 2020; 102:109573. [PMID: 32000991 DOI: 10.1016/j.jbiomech.2019.109573] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 12/25/2022]
Abstract
Degenerative changes in the disc have long been of interest; they are thought to be strongly associated with low back pain and caused by inappropriate loading or through injury. However, independent of the magnitude of occupational spinal loading, twin studies find that the heritability of lumbar disc degeneration is 34-74%. This finding has led to intensive searches for susceptibility genes; some genes associated with disc degeneration have been identified, though all with small effects on the degenerative process. The complex nature of degenerative changes suggests that many different genes are involved, and that interactions with environmental factors are influential in progression of degeneration. Low back pain itself also appears heritable (30-46%). The most important clinical question though, is not how discs degenerate but is disc degeneration related to low back pain. Imaging studies find many people with degenerate discs or even with discs showing pathological features such as herniations, are asymptomatic. However results are obscured by the lack of consistent definitions of the phenotypes of disc degeneration and of low back pain. Epidemiological studies could help disentangle these complex relationships, but they will only be successful once consistent classifications and phenotypes of both disc degeneration and low back pain are developed.
Collapse
|
31
|
17β-Estradiol Prevents Extracellular Matrix Degradation by Downregulating MMP3 Expression via PI3K/Akt/FOXO3 Pathway. Spine (Phila Pa 1976) 2020; 45:292-299. [PMID: 31809475 DOI: 10.1097/brs.0000000000003263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro studies of the role of 17β-estradiol (E2) and its possible targets in intervertebral disc degeneration (IDD). OBJECTIVE To define the regulatory role of E2 in IDD and the potential mechanisms. SUMMARY OF BACKGROUND DATA IDD has intricate etiology that is influenced by multiple risk factors. However, the underlying molecular mechanisms of occurrence and progression of IDD are not well elucidated. The degradation of extracellular matrix (ECM) has been extensively observed in IDD. E2 was found to inhibit ECM degradation in human nuleus pulposus cells (HNPCs), but the molecular mechanism remained to be determined. METHODS Western blot and qPCR was performed to quantify the expression of target proteins in HNPCs. Luciferase reporter gene assay was applied to detect the effects of E2 and forkhead box O-3 (FOXO3) on matrix metalloproteinases (MMP)-3 promoter activity. Chromatin immunoprecipitation assay analyzed the binding of FOXO3 to MMP-3 and the effect of E2 on this process. RESULTS We identified the upregulation of collagen II and aggrecan by E2 independent of time and concentration. And E2 downregulated MMP-3 expression in human nucleus pulposus cells. The phosphorylation of FOXO3 led to the reduction of MMP-3 promoter activity. Furthermore, 17β-estradiol-induced the activation of PI3K/Akt pathway is required for FOXO3 phosphorylated. CONCLUSION E2 prevents the degradation of ECM by upregulating collagen II and aggrecan expression via reducing MMP-3 expression in HNPCs, and PI3K/Akt/FOXO3 pathway is dispensable for MMP-3 downregulated. Therefore, E2 protects against IDD by preventing ECM degradation. LEVEL OF EVIDENCE 3.
Collapse
|
32
|
Schwarz-Nemec U, Friedrich KM, Prayer D, Trattnig S, Schwarz FK, Weber M, Bettelheim D, Grohs JG, Nemec SF. Lumbar Intervertebral Disc Degeneration as a Common Incidental Finding in Young Pregnant Women as Observed on Prenatal Magnetic Resonance Imaging. J Womens Health (Larchmt) 2020; 29:713-720. [PMID: 31934808 DOI: 10.1089/jwh.2019.7964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Obstetric imaging, subserving fetal evaluation, may yield incidental maternal findings. Based on prenatal magnetic resonance (MR) imaging, this study aims to investigate incidental intervertebral disc degeneration and displacement in young, pregnant women. Methods: This retrospective study included the sagittal 1.5 Tesla, T2-weighted lumbar spine images of 943 pregnant Central Europeans (age range, 18-47 years), who initially had undergone MR imaging because of sonographically suspected fetal abnormalities. Qualitatively, 4715 lumbar intervertebral discs were evaluated for degeneration using a modified Pfirrmann MR classification (nondegenerated, low-grade, moderate, and high-grade degeneration), as well as for displacement. In addition to descriptive statistics, an ordinal regression analysis was performed to analyze the relationship between degeneration and the women's age, and body weight. Results: With regard to the highest degree of degeneration in each woman, 578 (61.3%) showed low-grade, 211 (22.4%) moderate, and 154 (16.3%) high-grade degeneration, and no woman had entirely nondegenerated discs. For the span from 18 to 47 years of age, moderate and high-grade degeneration increased from 6.7% to 36.7% and from 13.3% to 22.4%, respectively. Of 943 women, 57 (6%) had disc displacements, of which 97% were in conjunction with high-grade degeneration. There was a statistically significant relationship (p < 0.001) between degeneration and age, and between degeneration and body weight. Conclusions: In young pregnant women, lumbar intervertebral disc degeneration is a ubiquitous, incidental finding, increasing from the late second decade of life onward, which may be part of physiological aging, as opposed to a small percentage of incidental disc displacements.
Collapse
Affiliation(s)
- Ursula Schwarz-Nemec
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Klaus M Friedrich
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- MR Center of Excellence, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Felix K Schwarz
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dieter Bettelheim
- Division of Obstetrics and Fetomaternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Josef G Grohs
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan F Nemec
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Sun Z, Liu B, Luo ZJ. The Immune Privilege of the Intervertebral Disc: Implications for Intervertebral Disc Degeneration Treatment. Int J Med Sci 2020; 17:685-692. [PMID: 32210719 PMCID: PMC7085207 DOI: 10.7150/ijms.42238] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the body. It is composed of three parts: the nucleus pulposus (NP), the annulus fibrosus (AF) and the cartilaginous endplate (CEP). The central NP is surrounded by the AF and sandwiched by the two CEPs ever since its formation. This unique structure isolates the NP from the immune system of the host. Additionally, molecular factors expressed in IVD have been shown inhibitive effect on immune cells and cytokines infiltration. Therefore, the IVD has been identified as an immune privilege organ. The steady state of immune privilege is fundamental to the homeostasis of the IVD. The AF and the CEP, along with the immunosuppressive molecular factors are defined as the blood-NP barrier (BNB), which establishes a strong barrier to isolate the NP from the host immune system. When the BNB is damaged, the auto-immune response of the NP occurs with various downstream cascade reactions. This effect plays an important role in the whole process of IVD degeneration and related complications, such as herniation, sciatica and spontaneous herniated NP regression. Taken together, an enhanced understanding of the immune privilege of the IVD could provide new targets for the treatment of symptomatic IVD disease. However, the underlying mechanism above is still not fully clarified. Accordingly, the current study will extensively review and discuss studies regarding the immune privilege of the IVD.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University. Western Changle Road, Xi'an, 710032, Shannxi Provence, P. R. China
| | - Bing Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University. Western Changle Road, Xi'an, 710032, Shannxi Provence, P. R. China
| | - Zhuo-Jing Luo
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University. Western Changle Road, Xi'an, 710032, Shannxi Provence, P. R. China
| |
Collapse
|
34
|
Liu Z, Easson GWD, Zhao J, Makki N, Ahituv N, Hilton MJ, Tang SY, Gray RS. Dysregulation of STAT3 signaling is associated with endplate-oriented herniations of the intervertebral disc in Adgrg6 mutant mice. PLoS Genet 2019; 15:e1008096. [PMID: 31652254 PMCID: PMC6834287 DOI: 10.1371/journal.pgen.1008096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/06/2019] [Accepted: 09/18/2019] [Indexed: 12/01/2022] Open
Abstract
Degenerative changes of the intervertebral disc (IVD) are a leading cause of disability affecting humans worldwide and has been attributed primarily to trauma and the accumulation of pathology during aging. While genetic defects have also been associated with disc degeneration, the precise mechanisms driving the initiation and progression of disease have remained elusive due to a paucity of genetic animal models. Here, we discuss a novel conditional mouse genetic model of endplate-oriented disc herniations in adult mice. Using conditional mouse genetics, we show increased mechanical stiffness and reveal dysregulation of typical gene expression profiles of the IVD in adhesion G-protein coupled receptor G6 (Adgrg6) mutant mice prior to the onset of endplate-oriented disc herniations in adult mice. We observed increased STAT3 activation prior to IVD defects and go on to demonstrate that treatment of Adgrg6 conditional mutant mice with a small molecule inhibitor of STAT3 activation ameliorates endplate-oriented herniations. These findings establish ADGRG6 and STAT3 as novel regulators of IVD endplate and growth plate integrity in the mouse, and implicate ADGRG6/STAT3 signaling as promising therapeutic targets for endplate-oriented disc degeneration. Back pain is a leading cause of disability in humans worldwide and one of the most common culprits of these issues are the consequence of degenerative changes of the intervertebral disc. Here, we demonstrate that conditional loss of the Adgrg6 gene in cartilaginous tissues of the spine results in endplate-oriented disc herniations and degenerative changes of the intervertebral disc in mice. We further establish that these obvious degenerative changes of the disc are preceded by substantial alterations in normal gene expression profiles, including upregulation of pro-inflammatory STAT3 signaling, and increased mechanical stiffness of the intervertebral disc. Increased STAT3 activation is a signal observed in other models of degenerative musculoskeletal tissues. As such, we tested whether systemic treatment with a small-molecule STAT3 inhibitor would protect against the formation of endplate-oriented disc herniations in conditional Adgrg6 mutant mice, and report a significant positive improvement of histopathology in our treatment group. Taken together, we demonstrate a novel conditional model of endplate-oriented disc herniation in mouse. We establish ADGRG6 and STAT3 as novel regulators of endplate integrity of the intervertebral disc in mouse and suggest that modulation of ADGRG6/STAT3 signaling could provide robust disease-modifying targets for endplate-oriented disc degeneration in humans.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas, United States of America
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, Texas, United States of America
| | - Garrett W. D. Easson
- Department of Orthopedics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Nadja Makki
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew J. Hilton
- Department of Orthopedic Surgery and Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Simon Y. Tang
- Department of Orthopedics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ryan S. Gray
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas, United States of America
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Mohanty S, Pinelli R, Dahia CL. Characterization of Krt19 CreERT allele for targeting the nucleus pulposus cells in the postnatal mouse intervertebral disc. J Cell Physiol 2019; 235:128-140. [PMID: 31187500 PMCID: PMC6778700 DOI: 10.1002/jcp.28952] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Intervertebral disc degeneration and associated back pain are relatively common but sparsely understood conditions, affecting over 70% of the population during some point of life. Disc degeneration is often associated with a loss of nucleus pulposus (NP) cells. Genetic mouse models offer convenient avenues to understand the cellular and molecular regulation of the disc during its formation, growth, maintenance, and aging. However, due to the lack of inducible driver lines to precisely target NP cells in the postnatal mouse disc, progress in this area of research has been moderate. NP cells are known to express cytokeratin 19 (Krt19), and tamoxifen (Tam)‐inducible Krt19CreERT allele is available. The current study describes the characterization of Krt19CreERT allele to specifically and efficiently target NP cells in neonatal, skeletally mature, middle‐aged, and aged mice using two independent fluorescent reporter lines. The efficiency of recombination at all ages was validated by immunostaining for KRT19. Results show that following Tam induction, Krt19CreERT specifically drives recombination of NP cells in the spine of neonatal and aged mice, while no recombination was detected in the surrounding tissues. Knee joints from skeletally mature Tam‐treated Krt19CreERT/+; R26tdTOM mouse show the absence of recombination in all tissues and cells of the knee joint. Thus, this study provides evidence for the use of Krt19CreERT allele for genetic characterization of NP cells at different stages of the mouse life.
Collapse
Affiliation(s)
- Sarthak Mohanty
- Orthopaedic Soft Tissue Research, Hospital for Special Surgery, New York, New York
| | - Robert Pinelli
- Orthopaedic Soft Tissue Research, Hospital for Special Surgery, New York, New York
| | - Chitra Lekha Dahia
- Orthopaedic Soft Tissue Research, Hospital for Special Surgery, New York, New York.,Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Sciences, New York, New York
| |
Collapse
|
36
|
Sirtuin 2 expression suppresses oxidative stress and senescence of nucleus pulposus cells through inhibition of the p53/p21 pathway. Biochem Biophys Res Commun 2019; 513:616-622. [PMID: 30981502 DOI: 10.1016/j.bbrc.2019.03.200] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
Intervertebral disc degeneration (IDD) is a kind of disease associated with nucleus pulposus (NP) cell senescence. Previous studies have shown that the sirtuin family plays an extremely important role in the progress of cell aging. However, whether sirtuin2 (Sirt2) protects against IDD remains unknown. The aim of this study was to determine whether Sirt2 protected NP from degradation in IDD. The expression of Sirt2 in different degree of degenerate disc tissues was determined by reverse transcription-polymerase chain reaction. Interleukin 1 beta (IL-1β) was used to stimulate the degeneration of NP cells. Subsequently, lentivirus transfection was performed to increase Sirt2 expression in vitro. Meanwhile, the function of Sirt2 overexpression in the progress of NP cell degeneration was evaluated. Our study showed that the expression of Sirt2 markedly decreased in severe degenerated disc tissues. IL-1β significantly promoted the progress of IDD. Meanwhile, overexpression of Sirt2 could reverse the effects of IL-1β. The data also revealed that Sirt2 overexpression obviously increased the production of antioxidant SOD1/2 and suppressed oxidative stress in the disc. Moreover, p53 and p21 could be significantly suppressed by Sirt2 overexpression. These results suggested that Sirt2 prevented NP degradation via restraining oxidative stress and cell senescence through inhibition of the p53/p21 pathway. Furthermore, Sirt2 might become a novel target for IDD therapy in the future.
Collapse
|